

Brigham Young University BYU ScholarsArchive

Theses and Dissertations

2019-07-01

Isolation, Characterization, and Genomic Comparison of Bacteriophages of Enterobacteriales Order

Ruchira Sharma Brigham Young University

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

BYU ScholarsArchive Citation

Sharma, Ruchira, "Isolation, Characterization, and Genomic Comparison of Bacteriophages of Enterobacteriales Order" (2019). *Theses and Dissertations*. 8577. https://scholarsarchive.byu.edu/etd/8577

This Dissertation is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

Isolation, Characterization, and Genomic Comparison of Bacteriophages

of Enterobacteriales Order

Ruchira Sharma

A dissertation submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Julianne H. Grose, Chair Bradley D. Geary Steven M. Johnson Perry G. Ridge K. Scott Weber

Department of Microbiology and Molecular Biology

Brigham Young University

Copyright © 2019 Ruchira Sharma

All Rights Reserved

ABSTRACT

Isolation, Characterization and Genomic Comparison of Bacteriophages of *Enterobacteriales* Order

Ruchira Sharma Department of Microbiology and Molecular Biology, BYU Doctor of Philosophy

According to CDC, every year at least 2 million people are affected and 23,000 dies as a result of antibiotic resistance in U.S. It is considered one of the biggest threats to global health. More and more bacterial infections are becoming harder to treat. One such infection is fire blight, one of the most destructive disease of apple and pear trees. It is caused by bacteria *Erwinia amylovora* and its outbreaks have been known to destroy entire orchards in a single season. The conventional method of treatments includes use of antibiotics like streptomycin and oxytetracycline but the incidences like presence of multi-drug resistant bacteria in the mammals grazing in the fields have raised concerns. Phage therapy is considered one of the few ways available to combat bacterial resistance and prevent fire blight. In this method, a cocktail of highly lytic bacteriophages is prepared and sprayed on the trees at different time intervals. Bacteriophages are an "intelligent" drug. They multiply at the site of the infection until there are no more bacteria and then they are excreted back into the nature. These phenomena make them more efficient than an antibiotic, which kills all kind of bacteria including good bacteria and can be maintained in the environment for long periods of time. These qualities of bacteriophage have resulted in many commercially available phage therapies.

The initial part of this research focuses on isolation, characterization and genomic comparison of bacteriophages that infect a plant pathogen *E.amylovora* of *Erwiniaceae* family of *Enterobacteriales* order. In this study, 28 novel bacteriophages were isolated, fully sequenced, characterized and grouped into seven families based on phage homology. To take this further, we characterized a novel jumbo family of bacteriophages that has a small burst size of 4.6-4.9 and are most similar to bacteriophages that infect *Pseudomonas* and *Ralstonia* rather than *Enterobacteriales* bacteria by protein similarity. These bacteriophages are shown to infect *Erwinia* and *Pantoea* bacterial strains, but no infection of 9 other bacterial strains tested, was seen, under laboratory conditions. The results of this work provide an insight on special characteristics that makes bacteriophage so unique and adaptable.

The final part of this research explores the enormous diversity of bacteriophages. In 2014 Grose and Casjens grouped 337 fully sequenced tailed phages into 56 diverse clusters (32 lytic and 24 temperate). We further expanded our current understanding of these clusters by performing the comprehensive analysis of genomes and proteomes of 1037 tailed bacteriophages, posted on GenBank. The results of this work provide insights into diversity and relatedness of bacteriophages and the data is posted on GenBank.

Keywords: *E. amylovora*, bacteriophage, *Enterobacteriaceae*, phage clusters, fire blight, *Pantoea*, phage therapy

ACKNOWLEDGEMENTS

This work is dedicated to my husband Yomesh, and kids Avani and Aniruddh. It would have been impossible without their sacrifice and support. I am indebted to my parents, siblings and in-laws for their trust and unconditional love.

I would like to begin with thanking my pillar of support and phabulous mentor Dr. Julianne Grose. Her creative thinking, caring attitude and prompt replies to my dumb questions even at 2 am in the morning, made this a fruitful journey. I would also like to thank my committee Dr. Weber, Dr. Johnson, Dr. Geary and Dr. Ridge for their valuable advice and encouragement. I am grateful to the graduate committee and Dr. Griffitts for admitting me into the program at the last minute and for enhancing the quality of my research with his wonderful insight. A big thank you goes to our academic advisors Marcia and Kevin, business managers Amanda, Becky and Heidi and graduate secretaries for their hard work, time and support. I would also like to thank Sue Pratley for fulfilling my last-minute room-scheduling requests and for reviewing this dissertation.

I am lucky to have built everlasting friendships in and out of our lab and greatly appreciate their affection and much needed constructive criticism. Thank you, Jenny, KaiLi, Trever, Elise, Daniel T, Daniel A, Claudia, Deborah, Khin, Israel, Anna, Nidhi, Jeralyn, Evita, Desi, Ian, Jordan and Garrett for mentoring and guiding me and lending your shoulders to cry on. I would also like to thank all the phage hunters and high school interns, who I had the honor of training, for making me a better scientist.

I appreciate the patience and kindness of my friends outside of school and everyone who has helped in making this possible.

TITLE PAGE i
ABSTRACTii
ACKNOWLEDGEMENTSiii
TABLE OF CONTENTS iv
LIST OF FIGURES x
LIST OF TABLES
CHAPTER 1: Isolation, Characterization and Genomic Comparison of Bacteriophages of
Enterobacteriales Order1
1.1 Background1
1.2 Introduction to bacteriophages1
1.3 Structure and morphology of Caudovirales bacteriophages
1.4 The <i>Enterobacteriales</i> order
1.5 Erwinia amylovora
1.6 Fire blight
1.7 The interplay between bacteria-bacteriophage6
1.8 Bacteriophage isolation and basic characterization7
1.9 Summary of research chapters
1.10 Summary of appendices
REFERENCES 10
CHAPTER 2: Genome Sequences of Nine Erwinia amylovora Bacteriophages 14
2.1 Abstract

TABLE OF CONTENTS

2.2 Introduction	14
2.3 Materials and methods	15
2.3.1 Bacteriophage isolation and genome sequencing	15
2.3.2 Electron microscopy	15
2.3.3 Computational analysis	16
2.4 Results and discussion	16
2.5 Acknowledgements	20
REFERENCES	22
CHAPTER 3: A Novel, Highly Related Jumbo Family of Bacteriophages That Were Isolate	d
Against Erwinia	24
3.1 Abstract	24
3.2 Introduction	24
3.3 Materials and methods	27
3.3.1 Bacteriophage isolation, electron microscopy and genome sequencing	27
3.3.2 Electron microscopy	27
3.3.3 Burst size	28
3.3.4 Host range	28
3.3.5 Computational analysis and genomic comparison	29
3.3.6 Mass spectrometry	30
3.3.7 Extracellular polymeric substance (EPS) depolymerase mediated biofilm degrada	tion
assay	31
3.3.8 Motif identification and analysis	32

3.4 Results and discussion	2
3.4.1 Isolation and characterization of eight closely related large bacteriophages infecting E	7.
amylovora	2
3.4.2 Electron microscopy reveals myovirus structure eight <i>E. amylovora</i> bacteriophages 3	4
3.4.3 Host range and burst size	4
3.4.4 Genomic and evolutionary characteristics	8
3.4.5 Proteomic analysis of the <i>Agrican357virus</i> family	2
3.4.6 Mass spectrometry validates 27 hypothetical proteins as proteins of unknown function	ı
	6
3.4.7 Biofilm degradation (EPS) assays suggest specificity for <i>Pantoea</i>	7
3.4.8 Structural prediction supports the putative function of several proteins	9
3.5 Conclusion	2
3.6 Acknowledgements	4
3.7 Supplementary data	4
3.7.1 References for supplementary material	8
REFERENCES	9
CHAPTER 4: Classification and Proteomic Analysis of <i>Enterobacteriales</i> Bacteriophages 6	9
4.1 Abstract	9
4.2 Introduction	9
4.3 Materials and methods	1
4.3.1 Comparative genomic nucleotide analysis using Gepard dot plots	1
4.3.2 Comparative proteome analysis of clusters and subclusters	2

4.3.3 Genomic and proteome comparison of Lytic 1 cluster
4.3.4 Proteome analysis among all <i>Enterobacteriaceae</i> infecting phages
4.3.5 SplitsTree analysis of singletons with one phage from each lytic cluster
4.4 Results
4.4.1 Comparative genomic nucleotide analysis using Gepard dot plots
4.4.2 Comparative proteome analysis of clusters and sub clusters
4.4.3 Proteome analysis among all <i>Enterobacteriaceae</i> infecting phages:
4.4.4 Cluster assignment confirmed by SplitsTree
4.5 Conclusion
4.6 Supplementary data
REFERENCES
CHAPTER 5: Conclusion and Future Directions 129
REFERENCES
APPENDIX I: Genome Sequences of 19 Novel Erwinia amylovora Bacteriophages 134
I.1 Abstract
I.2 Discussion
I.3 Accession number(s)
I.4 Acknowledgements
I.5 Funding statement
I.6 Conflict of interest
REFERENCES 138

APPENDIX II: Genomic Comparison of 60 Completely Sequenced Bacteriophages that	at Infect
Erwinia and/or Pantoea Bacteria	140
II.1 Abstract	140
II.2 Introduction	140
II.3 Materials and methods	
II.3.1 Isolation, sequencing and assembly of phages	142
II.3.2 Genomic analysis and comparison	
II.4 Results and discussion	143
II.4.1 Genomic and proteomic analyses separate the 60 Erwiniaceae bacteriophag	es into 20
clusters	143
II.4.2 Protein function among the <i>Erwiniaceae</i> phages	153
II.4.3 Lifestyles of <i>Erwiniaceae</i> tailed phages	153
II.4.4 The 20 clusters of <i>Erwiniaceae</i> tailed phages	157
II.5 Conclusions	170
II.6 Declarations	172
II.6.1 Competing interests	172
II.6.2 Funding	172
II.6.3 Authors contributions	172
II.7 Acknowledgements	172
II.8 Supplementary tables and figures	173
II.8.1 References for supplementary material	
REFERENCES	

APPENDIX III: Presentations	8	3	9)
-----------------------------	---	---	---	---

LIST OF FIGURES

Figure 1.1 Two lifecycles of bacteriophages (A) lytic and (B) temperate distinguished on plate . 2
Figure 1.2 TEM image of <i>Erwinia amylovora</i>
Figure 1.3 Fire blight infection as seen on (A) pear and (B) apple tree
Figure 2.1 Whole genome dot plot of nine phages displays distinct clusters
Figure 3.1 Electron microscopy STEM images of Deimos-Minion, Special G, RAY, Simmy50,
Bosolaphorus, Desertfox, MadMel, and Mortimer revealed Myoviruses with long
contractile tails
Figure 3.2 Growth curve for Deimos-Minion with host Erwinia amylovora ATCC 29780 by
plaque assays shows first burst at ~4 hours and second burst at ~6 hours
Figure 3.3 Whole-genome nucleotide (A) and protein terminase (B) or major capsid protein (C)
dot plot analysis reveals a fairly isolated cluster of bacteriophages that includes Deimos-
Minion, Special G, RAY, Simmy50, Bosolaphorus, Desertfox, MadMel and Mortimer and
Ea35-70
Figure 3.4 Phylogenetic analyses of phage terminase proteins supports the relationships depicted
by dot plot analysis of the Agrican357virus bacteriophages
Figure 3.5 Whole genome Phamerator map of <i>E. amylovora</i> bacteriophages illustrates the high
similarity of bacteriophages
Figure 3.6 Protein-conservation analysis displayed by Splitstree of the Agrican357virus genus
with related jumbo Myoviridae bacteriophages reveals Agrican357virus as a distant
evolutionary group

Figure 3.7 Halo formation on <i>P. vagans</i> by RAY (A) and bio-film degradation activity of gp76
on <i>P. vagans</i> (B)
Supplementary Figure 3.S1 Classification of proteins demonstrates the uniqueness of
Agrican357virus bacteriophages due to A) abundance of novel proteins found in RAY and,
B) by discovering majority of proteins with predicted function as structural genes
Supplementary Figure 3.S2 Predicting putative protein structure of interesting proteins from
Agrican357virus family via Raptor
Figure 4.1 Panels I-VII display the Gepard dot plots of the seven clusters chosen to represent the
88 identified
Figure 4.2 Lytic 1 subcluster B Pham Map
Figure 4.3 Pham Map of <i>Enterobacteriaceae</i> infecting 7 Lytic Clusters
Figure 4.4 Lytic 1 Pham Map
Figure 4.5 Gepard dot plot of phages representative of each subcluster within the Lytic 1 cluster
Figure 4.6 Categorization of 11923 unique proteins
Figure 4.7 Distribution of all categorized proteins identified among 597 lytic Enterobacteriaceae
infecting phages based on known function
Figure 4.8 Identifying conserved proteins in 597 Lytic phages
Figure 4.9 Protein conservation of 49 phages confirms the supercluster assignment by comparing
their protein families
Figure II.1 Comparison of Enterobacteriales bacteriophage average genome size with the
average Erwiniaceae phage genome reveals large Erwiniaceae phage genomes

Figure II.2 Dot plots that compare the <i>Erwiniaceae</i> tailed phages reveal 20 clusters of related
phages
Figure II.3 A proteome phylogeny of 59 of Erwiniaceae tailed phages reveals 19 clusters of
phages
Figure II.4 Open reading frame density in <i>Erwiniaceae</i> bacteriophage clusters
Figure II.5 Dot plots of 17 <i>Erwiniaceae</i> phage clusters with their relatives
Supplementary Figure II.S1 Phamerator map of the genomes of 19 Erwiniaceae clusters using
the founding phage of each cluster
Supplementary Figure II.S2.A Cronus defines a unique subcluster within the Enterobacteriales
T4-like phage cluster
Supplementary Figure II.S2.B Cronus defines a unique subcluster within the Enterobacteriales
T4-like phage cluster
Supplementary Figure II.S3 Comparison of Pavtok and DC1, two novel, large proteins and their
predicted domains

LIST OF TABLES

Table 2.1 Properties of nine Erwinia amylovora bacteriophage genomes ORFs, open reading
frames based on current annotation17
Table 2.2 Average Nucleotide Identity (ANI) of nine phages
Table 3.1 General characteristics of nine related bacteriophage Deimos-Minion (DM), RAY,
Special G, Desertfox, MadMel, Mortimer, Bosolaphorus, Simmy50, and Ea35-70 that
infect E. amylovora ATCC 29780
Table 3.2 Host range analysis of eight Agrican357virus bacteriophages 37
Table 3.3 Mass Spectrometry reveals 27 hypothetical proteins as proteins of unknown function47
Supplementary Table 3.S1 Average Nucleotide Identity of Agrican357viruses- Deimos-Minion,
RAY, Special G, Simmy50, Desertfox, Mortimer, Bosolaphorus, MadMel and Ea35-70
suggests a single cluster of related bacteriophages with little or no similarity to other
bacteriophages
Supplementary Table 3.S2 Putative gene products predicted to encode mechanisms of replication
and DNA repair
Supplementary Table 4.S1 Table containing all phages from the seven selected cluster
Supplementary Table 4.S2 ANI chart comparing all 74 phages of Lytic 1 (T1-like) cluster 93
Supplementary Table 4.S3 List of phages used in genomic and proteomic analysis that needed
annotation corrections
Supplementary Table 4.S4 Phages used in creating SplitsTree
Table I.1 Properties of 19 novel Erwinia amylovora bacteriophage genomes 136
Table II.1 Sixty Erwinia and Pantoea bacteriophages 143

Table II.2 A summary of the 20 clusters of <i>Erwiniaceae</i> phages 151
Table II.3 Putative gene functions reported from representative phages of each of the 19
annotated <i>Erwiniaceae</i> phage clusters 154
Table II.4 The closest tBLASTn match to the MCP of 20 <i>Erwiniaceae</i> bacteriophage clusters 156
Supplementary Table II.S1 Average Nucleotide Identity (5) matrix using Geneious (6) reveals
20 clusters from 48 representative Erwinia/Pantoea bacteriophages
Supplementary Table II.S2 Members of the T4-like cluster of phages that infect the
Enterobacteriales

CHAPTER 1: Isolation, Characterization and Genomic Comparison of Bacteriophages of *Enterobacteriales* Order

1.1 Background

Bacteriophages were likely first reported in 1896, when Ernest Hanbury Hankin discovered antibacterial activity against cholera in the waters of two large rivers in India, the Ganges and Yamuna (1). In the early 1900s two scientists, a bacteriologist Frederick Twort (2, 3) and a microbiologist Félix d'Herelle (4), independently discovered "something" that infected and killed bacteria (5). They found that filtrate obtained from sewage could dissolve cultures of some intestinal bacteria, and theorized that this was due to lysing of the bacterial cells caused by a virus (later known as bacteriophages) (4).

1.2 Introduction to bacteriophages

Bacteriophages have a structure composed of a protein coat encapsulating DNA or RNA. They are obligate intracellular parasites meaning that they depend on a host for their replication, making nucleic acid and protein from host resources. During the infection process, bacteriophages can transfer foreign DNA to their host (including virulence factors), integrate into the host genome, and/or kill their host through cell lysis (6). The sheer number of bacteriophages combined with their clear evolutionary influence makes them an important target for understanding the ecology and evolution of bacteria, including pathogenic strains (7, 8). In addition, their specificity, genomic plasticity, and rapid multiplication rates make them a potential weapon to treat bacterial infections (9, 10). Bacteriophages are obligate intracellular parasites meaning that they depend on a host for their replication, making nucleic acid and protein from host resources. There are many bacteriophages and very little is known about them. Their specificity, genomic plasticity, and rapid multiplication rates make them a suitable drug for curing bacterial infections. In Europe, they have been used for over 90 years as an alternative to antibiotics and are seen as a possible therapy against multi-drug-resistant strains of many bacteria (11-13).

1.3 Structure and morphology of Caudovirales bacteriophages

The Caudovirales or tailed bacteriophages (14) are divided into three families based on morphology: *Myoviridae* (with long contractile tail and sheath)(15), *Podoviridae* (with small non contractile tail) (16) and *Siphoviridae* (with long non contractile tail) (17). The bacteriophages can either be lytic or temperate (prophages) with visible differences in plaque morphology. Lytic bacteriophages make clear plaques and temperate makes plaque with bullseye or cloudy appearance.

Figure 1.1 Two lifecycles of bacteriophages (A) lytic and (B) temperate distinguished on plate

1.4 The Enterobacteriales order

Enterobacteriales is an order of class *Gammaproteobacteria* and is home to eight families of bacteria including *Thorselliaceae* (18), and seven families proposed by Adelou *et.al.* (19) in 2017: *Budviciaceae*, *Enterobacteriaceae*, *Erwiniaceae*, *Moganellaceae*, *Pectobactericeae*, *Yersiniaceae*, and *Hafniaceae*. It also hosts some unclassified *Enterobacteriales*, and untested environmental sample. All bacterial species of *Enterobacteriales*

order are Gram-negative, rod shaped, facultative anaerobic, non-spore forming bacteria (19). Many known animal and plant pathogens like *Salmonella*, *E.coli*, *Klebsiella*, *Serratia*, *Erwinia*,

Pantoea etc are members of *Enterobacteriales* order and have shown increasing resistance to antibiotics (20-25). The immediate need of fighting antibiotic resistance have paved way to further investigations into phage therapy (26, 27).

1.5 Erwinia amylovora

Erwinia amylovora is a Gram negative, rod shaped bacterium of *Erwiniaceae* family of *Enterobacteriales* order. As a member of *Enterobacteriales*, *E. amylovora* is a close relative to opportunistic plant pathogens like *P. vagans* (28) and *P. agglomerans* (29) and other animal pathogens like *E. coli* (30) and *Salmonella* (20). The bacterium can range anywhere from 1.1 to 1.6 μ m x 0.6 to 0.9 μ m. It is a casual plant pathogen and causative agent of the contagious disease fire blight and is responsible for millions of dollars of loss in agriculture in US alone, annually (31). The conventional antibacterial treatment for fire blight is the use of copper or antibiotics like Streptomycin (32). Increase in number of reported cases of Streptomycin resistance and discolored fruits due to copper has drawn attention to research more effective

modes of treatment (33, 34). Chapter 3 in this study focuses on characterization and genomic comparison of a new genus (35) *Agrican357virus* of bacteriophages that infects *E. amylovora*

Figure 1.2 TEM image of Erwinia amylovora

1.6 Fire blight

Fire blight mainly affects pears, apples, and ornamental plants of the *Rosaceae* family. During cold season *E. amylovora* survives by residing in cankers. Owing to optimal moisture and temperature conditions, *E. amylovora* targets blossoms early spring and then travel through the entire tree infecting shoots, stem and roots. Progressive infection leads to the wilting, oozing and death of blossoms, shoots and branches. (36) Small droplets of sticky bacterial ooze (Figure

1.3A), blighted appearance and darkened wood (Figure 1.3B), as if scorched on fire, are characteristics of fire blight (31).

Figure 1.3 Fire blight infection as seen on (A) pear and (B) apple tree

The conventional treatment for fire blight includes use of antibiotics like streptomycin three times a year. This has led to increasing resistance to streptomycin (37). In 2013 Scherer *et.al.* (38) found multidrug-resistant bacteria in the nasal cavity and feces of sheep grazing through farms where streptomycin was sprayed for pant diseases. To avoid such conditions alternative methods have been researched to fight fire blight. One such method is using phage therapy to combat bacterial resistance and control of fire blight. Chapter 2 and Appendix I talks more about bacteriophages that infect *E. amylovora*, causative agent of fire blight.

1.7 The interplay between bacteria-bacteriophage

Bacteriophages have shown promise as an alternative treatment for bacterial infection where antibiotic resistance has become a major concern. (39). The bacteriophages attach themselves to bacteria, hack their machinery to make more bacteriophage progeny, and then exit by lysing the wall and killing bacteria. (40). To attach they look for receptors on bacterial surface which a bacterium can alter to become resistant to the bacteriophage. (41) To overcome this a cocktail of highly lytic bacteriophages is used in the preventative treatment that makes it very hard for bacteria to become resistant to. Prophages (temperate bacteriophage) on the other hand, can equip bacteria with necessary information and machinery through horizontal gene transfer or specialized transduction, to become resistant (42). Understanding this host-phage interplay is crucial to our study of bacteria and their evolution. By studying the bacteriophages, both lytic and temperate, we can enhance our understanding of their co-evolution. Chapter 4 and Appendix II in this study expands more on the enormous diversity of bacteriophages of *Enterobacteriales* order

6

1.8 Bacteriophage isolation and basic characterization

Bacteriophages used in chapter 2, 3 and Appendix I were isolated by collecting samples from infected trees like dead leaves, soil, twigs and ooze. In late spring to early summer, local farms were contacted for samples when bacteria are ready to spread their highly contagious infection to trees. These samples are then enriched in the lab by growing with *E. amylovora* bacteria and looked for bacteriophage through infection assays for the formation of a plaque, a place where a bacteriophage has landed and killed the bacteria. The bacteriophage is then isolated through subsequent rounds of plaque purification, the DNA is isolated and sequenced, and the phages are imaged using electron microscopy (EM). The sequence data is assembled, annotated and compared with other bacteriophage genomes. This characterization may identify genes that contribute to the evolution and virulence of *E. amylovora* strains.

1.9 Summary of research chapters

Chapter 1 begins with an introduction to the bacteriophages and dives into the importance and industrial application of research presented in following chapters.

Chapter 2 (43) is a published genome announcement of nine *E. amylovora* bacteriophages that fall into five distinct clusters based on genome similarity. Eight of these bacteriophages are *Myoviridae* whereas the ninth one is a *Podoviridae*. All nine of these bacteriophages were isolated on ATCC 29780 from various locations of Wasatch Front, Utah. In this announcement we studied the morphology, genomic similarity and mode of packaging of these bacteriophages. We found that based on genomic similarity these phages fall into five distinct clusters with vB_EamM_Bosolaphorus, vB_EamM_Desertfox, vB_EamM_MadMel and vB_EamM_Mortimer in *Agrican357virus*, vB_EamM_Asesino and vB_EamM_Wellington in

SPN3US/CR5 like, vB_EamM_Alexandra in Y2- like, vB_EamM_SunLIRen in PhiEa21-4 like and vB_EamPPavtok in Pep14 like cluster.

Chapter 3 is published research titled, "A novel, highly-related jumbo family of bacteriophages that were isolated against *Erwinia*",(44) and discusses in detail the characterization of a highly conserved family of eight jumbo bacteriophages which were recently added a genus *Agrican357virus* by ICTV along with another bacteriophage Ea35-70 found in Ontario, Canada. The bacteriophages of this family are myoviruses with genome size ranging from 271-275Kb. They are comparatively more similar to bacteriophages that infect *Pseudomonas* and *Ralstonia* than to other *Erwinia* which can be seen through their genomic and proteomic analysis. They have a broad host range, small burst size and harbor genes that may be helpful in the survival of this family in unfavorable conditions. In this chapter we discuss the unique characteristics of these jumbo bacteriophages.

In chapter 4 we shift our focus to a broader community of bacteriophages. Herein we performed the classification of more than 1000 lytic bacteriophages that infect bacterial hosts of *Enterobacteriales* order. The bacteriophages were put into clusters based on major capsid protein similarity and dot plot analysis. This research is a built upon previous research done by Grose and Casjens in 2014 (14) and follow methods designed by Dr. Hatfull and his coworkers (14, 45, 46). We were able to categorize these bacteriophages into 49 supercluster and 90 clusters (greater than 50% genomic and 33% proteomic similarity). This research contributes to our current understanding of bacteriophage relationships and confirms the previous analysis of grouping bacteriophages into clusters based on major capsid protein.

8

1.10 Summary of appendices

Appendix I contains a published Genome Announcement by the American Society of Microbiology titled, "Genome Sequences of 19 *Erwinia amylovora* bacteriophages (47). In this announcement we present the characterization and genomic comparison of 19 novel bacteriophages. Three podoviridae and 16 myoviridae phages were identified using TEM and were grouped into families based on their genomic similarity.

Appendix II contains a published manuscript on "Genomic comparison of 60 completely sequenced bacteriophages that infect *Erwinia* and/or *Pantoea* bacteria" (48). In this study we divided 60 bacteriophages from *Erwiniaceae* into 20 groups or clusters based on their nucleotide and protein homology.

Appendix III lists oral and poster presentations exhibited during this PhD.

REFERENCES

- Abedon, S. T., C. Thomas-Abedon, A. Thomas, and H. Mazure. "Bacteriophage Prehistory: Is or Is Not Hankin, 1896, a Phage Reference?" [In eng]. *Bacteriophage* 1, no. 3 (May 2011): 174-78.
- 2. Twort, F. W. "Further Investigations on the Nature of Ultra-Microscopic Viruses and Their Cultivation." [In eng]. *J Hyg (Lond)* 36, no. 2 (Jun 1936): 204-35.
- 3. Twort, F.W., L.R.C.P. LOND., M.R.C.S. "An Investigation on the Nature of Ultra-Microscopic Viruses." *The Lancet* 186, no. 4814 (1915): 1241-43.
- D'Herelle, F. "On an Invisible Microbe Antagonistic toward Dysenteric Bacilli: Brief Note by Mr. F. D'herelle, Presented by Mr. Roux. 1917." [In eng]. *Res Microbiol* 158, no. 7 (Sep 2007): 553-4.
- 5. Keen, E. C. "A Century of Phage Research: Bacteriophages and the Shaping of Modern Biology." [In eng]. *Bioessays* 37, no. 1 (Jan 2015): 6-9.
- 6. Chen, J., and R. P. Novick. "Phage-Mediated Intergeneric Transfer of Toxin Genes." [In eng]. *Science* 323, no. 5910 (Jan 2 2009): 139-41.
- 7. Boyd, E. F. "Bacteriophage-Encoded Bacterial Virulence Factors and Phage-Pathogenicity Island Interactions." [In eng]. *Adv Virus Res* 82 (2012): 91-118.
- 8. Bollback, J. P., and J. P. Huelsenbeck. "Parallel Genetic Evolution within and between Bacteriophage Species of Varying Degrees of Divergence." [In eng]. *Genetics* 181, no. 1 (Jan 2009): 225-34.
- Shivaswamy, V. C., S. B. Kalasuramath, C. K. Sadanand, A. K. Basavaraju, V. Ginnavaram, S. Bille, S. S. Ukken, and U. N. Pushparaj. "Ability of Bacteriophage in Resolving Wound Infection Caused by Multidrug-Resistant Acinetobacter Baumannii in Uncontrolled Diabetic Rats." [In eng]. *Microb Drug Resist* 21, no. 2 (Apr 2015): 171-7.
- Sulakvelidze, A. "Phage Therapy: An Attractive Option for Dealing with Antibiotic-Resistant Bacterial Infections." [In eng]. *Drug Discov Today* 10, no. 12 (Jun 15 2005): 807-9.
- 11. Zwet TVD, Keil HL. Fireblight: A Bacterial Disease of Rosaceous Plants. 1979.
- 12. Forster, H., G. C. McGhee, G. W. Sundin, and J. E. Adaskaveg. "Characterization of Streptomycin Resistance in Isolates of Erwinia Amylovora in California." [In eng]. *Phytopathology* 105, no. 10 (Oct 2015): 1302-10.
- Tancos, K. A., S. Villani, S. Kuehne, E. Borejsza-Wysocka, D. Breth, J. Carol, H. S. Aldwinckle, and K. D. Cox. "Prevalence of Streptomycin-Resistant Erwinia Amylovora in New York Apple Orchards." [In eng]. *Plant Dis* 100, no. 4 (Apr 2016): 802-09.
- Grose, J. H., and S. R. Casjens. "Understanding the Enormous Diversity of Bacteriophages: The Tailed Phages That Infect the Bacterial Family Enterobacteriaceae." [In eng]. Virology 468-470 (Nov 2014): 421-43.

- 15. Yap, M. L., and M. G. Rossmann. "Structure and Function of Bacteriophage T4." [In eng]. *Future Microbiol* 9, no. 12 (2014): 1319-27.
- Aksyuk, A. A., V. D. Bowman, B. Kaufmann, C. Fields, T. Klose, H. A. Holdaway, V. A. Fischetti, and M. G. Rossmann. "Structural Investigations of a Podoviridae Streptococcus Phage C1, Implications for the Mechanism of Viral Entry." [In eng]. *Proc Natl Acad Sci U S A* 109, no. 35 (Aug 28 2012): 14001-6.
- 17. Friedman, D. I., and D. L. Court. "Bacteriophage Lambda: Alive and Well and Still Doing Its Thing." [In eng]. *Curr Opin Microbiol* 4, no. 2 (Apr 2001): 201-7.
- Kampfer, P., S. P. Glaeser, L. K. Nilsson, T. Eberhard, S. Hakansson, L. Guy, S. Roos, H. J. Busse, and O. Terenius. "Proposal of Thorsellia Kenyensis Sp. Nov. And Thorsellia Kandunguensis Sp. Nov., Isolated from Larvae of Anopheles Arabiensis, as Members of the Family Thorselliaceae Fam. Nov." [In eng]. *Int J Syst Evol Microbiol* 65, no. Pt 2 (Feb 2015): 444-51.
- Adeolu, M., S. Alnajar, S. Naushad, and S. Gupta R. "Genome-Based Phylogeny and Taxonomy of the 'Enterobacteriales': Proposal for Enterobacterales Ord. Nov. Divided into the Families Enterobacteriaceae, Erwiniaceae Fam. Nov., Pectobacteriaceae Fam. Nov., Yersiniaceae Fam. Nov., Hafniaceae Fam. Nov., Morganellaceae Fam. Nov., and Budviciaceae Fam. Nov." [In eng]. *Int J Syst Evol Microbiol* 66, no. 12 (Dec 2016): 5575-99.
- 20. D, V. T. Nair, K. Venkitanarayanan, and A. Kollanoor Johny. "Antibiotic-Resistant Salmonella in the Food Supply and the Potential Role of Antibiotic Alternatives for Control." [In eng]. *Foods* 7, no. 10 (Oct 11 2018).
- Rasheed, M. U., N. Thajuddin, P. Ahamed, Z. Teklemariam, and K. Jamil.
 "Antimicrobial Drug Resistance in Strains of Escherichia Coli Isolated from Food Sources." [In eng]. *Rev Inst Med Trop Sao Paulo* 56, no. 4 (Jul-Aug 2014): 341-6.
- 22. Adamo, R., and I. Margarit. "Fighting Antibiotic-Resistant Klebsiella Pneumoniae with "Sweet" Immune Targets." [In eng]. *MBio* 9, no. 3 (May 15 2018).
- 23. Gajdacs, M., and E. Urban. "Resistance Trends and Epidemiology of Citrobacter-Enterobacter-Serratia in Urinary Tract Infections of Inpatients and Outpatients (Recesuti): A 10-Year Survey." [In eng]. *Medicina (Kaunas)* 55, no. 6 (Jun 18 2019).
- 24. Ge, Y., J. H. Lee, B. Hu, and Y. Zhao. "Loss-of-Function Mutations in the Dpp and Opp Permeases Render Erwinia Amylovora Resistant to Kasugamycin and Blasticidin S." [In eng]. *Mol Plant Microbe Interact* 31, no. 8 (Aug 2018): 823-32.
- Mardaneh, J., and M. M. Dallal. "Isolation, Identification and Antimicrobial Susceptibility of Pantoea (Enterobacter) Agglomerans Isolated from Consumed Powdered Infant Formula Milk (Pif) in Nicu Ward: First Report from Iran." [In eng]. *Iran J Microbiol* 5, no. 3 (Sep 2013): 263-7.
- 26. Abedon, S. T., S. J. Kuhl, B. G. Blasdel, and E. M. Kutter. "Phage Treatment of Human Infections." [In eng]. *Bacteriophage* 1, no. 2 (Mar 2011): 66-85.

- 27. Alisky, J., K. Iczkowski, A. Rapoport, and N. Troitsky. "Bacteriophages Show Promise as Antimicrobial Agents." [In eng]. *J Infect* 36, no. 1 (Jan 1998): 5-15.
- Smits, T. H., F. Rezzonico, T. Kamber, A. Goesmann, C. A. Ishimaru, V. O. Stockwell, J. E. Frey, and B. Duffy. "Genome Sequence of the Biocontrol Agent Pantoea Vagans Strain C9-1." [In eng]. *J Bacteriol* 192, no. 24 (Dec 2010): 6486-7.
- Deletoile, A., D. Decre, S. Courant, V. Passet, J. Audo, P. Grimont, G. Arlet, and S. Brisse. "Phylogeny and Identification of Pantoea Species and Typing of Pantoea Agglomerans Strains by Multilocus Gene Sequencing." [In eng]. *J Clin Microbiol* 47, no. 2 (Feb 2009): 300-10.
- Kolodner, R., S. D. Hall, and C. Luisi-DeLuca. "Homologous Pairing Proteins Encoded by the Escherichia Coli Rece and Rect Genes." [In eng]. *Mol Microbiol* 11, no. 1 (Jan 1994): 23-30.
- 31. Zwet TVD, Keil HL. Fireblight: A Bacterial Disease of Rosaceous Plants. 1979.
- 32. Forster, H., G. C. McGhee, G. W. Sundin, and J. E. Adaskaveg. "Characterization of Streptomycin Resistance in Isolates of Erwinia Amylovora in California." [In eng]. *Phytopathology* 105, no. 10 (Oct 2015): 1302-10.
- 33. Tancos, K. A., S. Villani, S. Kuehne, E. Borejsza-Wysocka, D. Breth, J. Carol, H. S. Aldwinckle, and K. D. Cox. "Prevalence of Streptomycin-Resistant Erwinia Amylovora in New York Apple Orchards." [In eng]. *Plant Dis* 100, no. 4 (Apr 2016): 802-09.
- Tancos, K. A., and K. D. Cox. "Exploring Diversity and Origins of Streptomycin-Resistant Erwinia Amylovora Isolates in New York through Crispr Spacer Arrays." [In eng]. *Plant Dis* 100, no. 7 (Jul 2016): 1307-13.
- 35. Adams, M. J., E. J. Lefkowitz, A. M. Q. King, B. Harrach, R. L. Harrison, N. J. Knowles, A. M. Kropinski, *et al.* "Changes to Taxonomy and the International Code of Virus Classification and Nomenclature Ratified by the International Committee on Taxonomy of Viruses (2017)." [In eng]. *Arch Virol* 162, no. 8 (Aug 2017): 2505-38
- 36. SV, Thomson. *Epidemiology of Fire Blight*. Fire Blight; the Disease and Its Causative Agent, Erwinia Amylovora. Edited by Vanneste JL. Wallingford, United Kingdom: CABI Publishing, 2000.
- 37. Smits, T. H., V. M. Guerrero-Prieto, G. Hernandez-Escarcega, J. Blom, A. Goesmann, F. Rezzonico, B. Duffy, and V. O. Stockwell. "Whole-Genome Sequencing of Erwinia Amylovora Strains from Mexico Detects Single Nucleotide Polymorphisms in Rpsl Conferring Streptomycin Resistance and in the Avrrpt2 Effector Altering Host Interactions." [In eng]. *Genome Announc* 2, no. 1 (Jan 23 2014).
- Scherer, A., H. R. Vogt, E. M. Vilei, J. Frey, and V. Perreten. "Enhanced Antibiotic Multi-Resistance in Nasal and Faecal Bacteria after Agricultural Use of Streptomycin." [In eng]. *Environ Microbiol* 15, no. 1 (Jan 2013): 297-304.
- 39. Svircev, A., D. Roach, and A. Castle. "Framing the Future with Bacteriophages in Agriculture." [In eng]. *Viruses* 10, no. 5 (Apr 25 2018).

- Arens, D. K., T. S. Brady, J. L. Carter, J. A. Pape, D. M. Robinson, K. A. Russell, L. A. Staley, *et al.* "Characterization of Two Related Erwinia Myoviruses That Are Distant Relatives of the Phikz-Like Jumbo Phages." [In eng]. *PLoS One* 13, no. 7 (2018): e0200202.
- Samson, J. E., A. H. Magadan, M. Sabri, and S. Moineau. "Revenge of the Phages: Defeating Bacterial Defences." [In eng]. *Nat Rev Microbiol* 11, no. 10 (Oct 2013): 675-87.
- Penades, J. R., J. Chen, N. Quiles-Puchalt, N. Carpena, and R. P. Novick.
 "Bacteriophage-Mediated Spread of Bacterial Virulence Genes." [In eng]. *Curr Opin Microbiol* 23 (Feb 2015): 171-8.
- 43. Sharma R, Berg JA, Beatty NJ, Choi MC, Cowger AE, Cozzens BJR, Duncan SG, Fajardo CP, Ferguson HP, Galbraith T, Herring JA, Hoj TR, Durrant JL, Hyde JR, Jensen GL, Ke SY, Killpack S, Kruger JL, Lawrence EEK, Nwosu IO, Tam TC, Thompson DW, Tueller JA, Ward MEH, Webb CJ, Wood ME, Yeates EL, Baltrus DA, Breakwell DP, Hope S, Grose JH. "Genome Sequences of Nine Erwinia Amylovora Bacteriophages." *Microbiology Resource Announcements* 7 (October 11, 2018 2018).
- Sharma, R, Pielstick, B.A, Bell, K.A., Nieman, T.B., Stubbs, O.A., Yeates, E.L., Baltrus, D.A., Grose, J.H. "A Novel, Highly-related Jumbo Family of Bacteriophages that were Isolated against *Erwinia*." (In production), *Frontiers in Microbiology*, 2019 DOI: 10.3389/fmicb.2019.01533
- 45. Hatfull G. F. (2014). Molecular Genetics of Mycobacteriophages. *Microbiology spectrum*, 2(2), 1-36.
- 46. Hatfull, G.F., Jacobs-Sera, D., Lawrence, J.G., Pope, W.H., Russell, D.A., Ko, C.C., Weber, R.J., Patel, M.C., Germane, K.L., Edgar, R.H., Hoyte, N.N., Bowman, C.A., Tantoco, A.T., Paladin, E.C., Myers, M.S., Smith, A.L., Grace, M.S., Pham, T.T., O'Brien, M.B., Vogelsberger, A.M., Hryckowian, A.J., Wynalek, J.L., Donis-Keller, H., Bogel, M. W., Peebles, C.L., Cresawn, S.G., Hendrix, R.W. (2010). Comparative genomic analysis of 60 Mycobacteriophage genomes: genome clustering, gene acquisition, and gene size. J. Mol. Biology, 397: 119–143.
- 47. Esplin, I. N. D., J. A. Berg, R. Sharma, R. C. Allen, D. K. Arens, C. R. Ashcroft, S. R. Bairett, *et al.* "Genome Sequences of 19 Novel Erwinia Amylovora Bacteriophages." [In eng]. *Genome Announc* 5, no. 46 (Nov 16 2017).
- 48. Thompson, D.T., Casjens, S.R., Sharma, R and Grose, J.H."Genomic comparison of 60 completely sequenced bacteriophages that infect *Erwinia* and/or *Pantoea* bacteria. [In Press], *Virology*, 2019.

CHAPTER 2: Genome Sequences of Nine *Erwinia amylovora* Bacteriophages The following chapter is taken from an article submitted to Microbial Resource Announcements in American society of Microbiology Journal. Some unpublished sections, which were integral to obtaining results for this chapter were reinserted.

2.1 Abstract

Erwinia amylovora is a plant pathogen belonging to the *Enterobacteriaceae* family, a family containing many plant and animal pathogens. Herein, we announce nine genome sequences of *E. amylovora* bacteriophages isolated from infected apple trees along the Wasatch Front in Utah.

2.2 Introduction

At an estimated total number of 10³¹, phages are by far the most abundant biological entity on the planet (1–7). They dramatically influence the evolution of bacteria by their ability to infect and kill their hosts and to transfer genetic material. *Erwinia amylovora* is a rod-shaped facultative anaerobic member of the Enterobacteriaceae bacterial family, which includes many well-characterized Gram-negative plant and animal pathogens, such as *Salmonella* spp., *Escherichia coli*, and *Klebsiella* spp. As the causative agent of fire blight, *Erwinia amylovora* infects members of the *Rosaceae* plant family, causing diseased areas to appear burnt (8–10). The isolation and characterization of phages that infect *E. amylovora* may aid in our understanding of these bacteria and provide potential treatment for this devastating agricultural disease.

2.3 Materials and methods

2.3.1 Bacteriophage isolation and genome sequencing

Environmental samples of leaves, branches and soil surrounding infected trees were collected from around the state of Utah, USA and used to create enrichment cultures with the host *E. amylovora*. To test for the presence of amplified bacteriophages, the enrichment cultures were spun at 4000 rpm and 4°C for 20 minutes and the supernatant was removed and used without filtering. 50µL of this supernatant was incubated at room temperature with 500µL of *E. amylovora* ATCC 29780 bacteria for 30-45 minutes, mixed with 5ml NBDYE top agar (at half concentration agar), plated on NBSYE agar plate, and incubated at 25°C overnight. Plaque presence on the plates was the primary indicator of bacteriophage presence in the environmental sample. Using a sterile needle or pipette tip, we picked a plaque from the initial bacteriophage identification plate and performed three rounds of plaque purification. All eight isolated bacteriophages were able to infect *E. amylovora*, ATCC 29780 (11). Bacteriophage DNA was extracted using the Phage DNA isolation kit (Norgen Biotek Corporation), and was sequenced, assembled and annotated as previously described (11).

2.3.2 Electron microscopy

Electron microscopy was performed at Brigham Young University in the Life Sciences Microscopy Lab using a FEI Helios NATOCAB 600i DualBeam FIB/SEM with STEM detector. The samples for SEM analysis were prepared by placing 15μ L of high-titer bacteriophage lysate on a 200-mesh copper carbon type-B electron microscope grid for one-two minutes. The lysate was wicked away and the grids were stained for two minutes using 15μ L of 2% phosphotungstic acid (pH = 7). Residual liquid was wicked away using Kimtech wipes and the grid was allowed to dry before being imaged. Bacteriophage structures in electron micrographs were measured using ImageJ (12). The average and standard deviation for each measurement was calculated from a minimum of four separate measurements.

2.3.3 Computational analysis

These sequences were then used in Gepard (13) to generate the dot plots of nucleic acid. The Average Nucleotide Identity (ANI) percentages comparing each of the *E. amylovora* bacteriophage genomes were calculated using MAFFT (14) plugin in Geneious R8.1 (15) 2.4 Results and discussion

Herein, we announce the genome sequences of nine *E. amylovora* bacteriophages, vB_EamM_Asesino, vB_EamM_Alexandra, vB_EamM_Bosolaphorus, vB_EamM_Desertfox, vB_EamM_MadMel, vB_EamM_Mortimer, vB_EamP_Pavtok, vB_EamM_SunLIRen, and vB_EamM_Wellington. Phages were isolated from apple trees along the Wasatch Front in Utah that appeared to harbor fire blight infection. Phages were plaque purified through a minimum of three passages after amplification via enrichment culture (11). All nine phages reported here infect the *Erwinia amylovora* ATCC 29780 strain, as indicated by plaque assays, and their characteristics are summarized in Table 2.1. Genomic DNA was extracted (Phage DNA isolation kit; Norgen Biotek), a library was made using the Illumina TruSeq DNA Nano kit, and sample genomes were sequenced by Illumina HiSeq 2500 sequencing (250-bp paired end) and assembled with Geneious (15) version 8.1 using de novo assembly with medium-low sensitivity and various percentages of data. All phages circularized upon assembly and were annotated using DNA Master (http://cobamide2.bio.pitt.edu/computer.htm), giving preference for calls that

				0		0			
					Assembly				
					fold				
	GenBank	SRA	Total		coverage				
	accession	accession	no. of	No. of	(range	Length	No.	No.	G+C content
Name	no.	no.	reads	reads used	[mean])	(bp)	of ORFs	of tRNAs	(%)
					492–2,086				
vB_EamP_Pavtok	MH426726	SRX4597602	1,301,332	386,192	[1,069]	61,401	62	0	36.9
					8,249–42,4				
vB_EamM_SunLIRen	MH426725	SRX4597606	1,301,332	386,192	22 [13,566]	84,559	141	22	36.3
					133–514				
vB_EamM_Wellington	MH426724	SRX4597603	626,048	372,488	[329.7]	244,950	295	8	50.3
					512-1,378				
vB_EamM_Asesino	KX397364	SRX4597609	2,222,038	1,022,382	[1,037.7]	246,290	289	12	51.2
					63–516				
vB_EamM_Alexandra	MH248138	SRX4597608	381,540	200,005	[166.3]	266,532	349	0	49.8
					83–555				
vB_EamM_Bosolaphorus	M G655267	SRX4597604	778,168	326,344	[248.4	272,228	321	1	49.4
					115–612				
vB_EamM_Desertfox	M G655268	SRX4597605	1,930,470	1,138,933	[352.9]	272,458	320	0	49.6
					47–207				
vB_EamM_Mortimer	MG655270	SRX4616109	2,581,160	287,396	[129.4]	273,914	325	1	49.5
					567-1,577				
vB_EamM_MadMel	M G655269	SRX4597607	1,604,720	1,443,568	[1,213.9]	275,000	321	0	49.4

Table 2.1 Properties of nine Erwinia amylovora bacteriophage genomes ORFs, open reading frames based on current annotation

Figure 2.1 Whole genome dot plot of nine phages displays distinct clusters. Whole genome nucleotide dot plot constructed using Gepard was used to group phages in different clusters based on their nucleotide similarity. In Gepard dot plots greater than 50% similarity is represented with darker line at the word size of 10. Lack of line dark line is indicative of no significant similarity between phages of different clusters.

Table 2.2 Average Nucleotide Identity (ANI) of nine phages K-align was used to investigate the nucleotide identity of the phages. The phages with more than 50% average nucleotide similarity were grouped in same clusters. Less than 30% similarity is considered insignificant Shading indicates level of similarity from dark grey (>50% similar) to light grey.

	Bosolaphorus	Mortimer	MadMel	Desertfox	Wellington	Asesino	Alexandra	SunLIRen	Pavtok
Bosolaphorus	100	97.109	95.63	96.164	29.905	29.975	28.388	17.324	9.035
Mortimer	97.109	100	95.396	96.075	29.888	29.847	28.426	17.213	8.984
MadMel	95.63	95.396	100	96.325	29.773	29.743	28.291	17.143	8.943
Desertfox	96.164	96.075	96.325	100	30.009	29.998	28.552	17.298	9.014
Wellington	29.905	29.888	29.773	30.009	100	51.084	28.012	12.08	9.963
Asesino	29.975	29.847	29.743	29.998	51.08	100	28.407	12.007	10.062
Alexandra	28.388	28.426	28.291	28.552	28.012	28.407	100	10.682	7.872
SunLIRen	17.324	17.213	17.143	17.298	12.08	12.007	10.682	100	17.989
Pavtok	9.035	8.984	8.943	9.014	9.963	10.062	7.872	17.989	100

gave full coding potential coverage. The nine phages were grouped into five distinct clusters by genomic dot plot (Figure 2.1) and average nucleotide identity analyses (Table 2.2), as previously described (11, 14), with the first three groups containing jumbo *Myoviridae*. The first jumbo group included four myoviruses, vB_EamM_Bosolaphorus, vB_EamM_Desertfox, vB_EamM_MadMel, and vB_EamM_Mortimer, which are similar to previously published *Erwinia* phage Ea35-70 (17), as well as other phages we have isolated (11). The second group included two jumbo myoviruses, vB_EamM_Asesino and vB_EamM_Wellington, with similarity to the well characterized *Salmonella* SPN3US phage (18) and related phages. The third is a single jumbo myovirus, vB_EamM_Alexandra, which has similarity to previously published *Erwinia* phages vB_EamM_Yoloswag (11) and vB_EamM_Y3 (19). Podovirus vB_EamP_Pavtok and myovirus vB_EamM_SunLIRen are similar to *Erwinia* phages PEp14 and phiEa21-4 (20), respectively.

The three jumbo myovirus groups package DNA by headful packaging based on homology to phage phiKZ terminase (21), and their bp 1 was chosen by alignment to their phage family. PhageTerm (22) was used to determine the packaging strategy of SunLIRen and Pavtok. SunLIRen appeared to have headful packaging, and its bp 1 was assigned based on homology alignment to *Erwinia* phage phiEa21-4, while the packaging strategy of Pavtok is unknown, and its bp 1 was assigned due to homology to PEp14.

2.5 Acknowledgements

We thank the Howard Hughes Medical Institute Science Education Alliance–Phage Hunters Advancing Genomics and Evolutionary Science (SEA-PHAGES) for phage analysis training. In addition, we thank Ed Wilcox (BYU DNA Sequencing Center) and Michael Standing (BYU Microscopy Lab). This work was graciously funded by a USDA grant (to D.A.B., University of Arizona) and the Department of Microbiology and Molecular Biology and the College of Life Sciences at Brigham Young University, as well as a private donor.
REFERENCES

- 1. Bergh DA, Borsheim KY, Bratbak G, Heldal M. 1989. High abundance of viruses found in aquatic environments. Nature 340, 467-468.
- 2. Woomack KE, Colwell RR. 2000. Virioplankton: viruses in aquatic ecosystems. Microbiol. Mol. Biol. Rev. 64, 69-114.
- 3. Brussow H, Hendrix, RW. 2002. Phage genomics: small is beautiful. Cell 108, 13-16.
- 4. Wilhelm SW, Jeffrey WH, Suttle CA, Mitchell DL. 2002. Estimation of biologically damaging UV levels in marine surface waters with DNA and viral dosimeters. Photochem Photobiol. 76(3), 268-73.
- 5. Hendrix RW. 2003. Bacteriophage genomics. Curr. Opin. Microbiol. 6, 506-511.
- 6. Hambly E, Suttle CA. 2005. The viriosphere, diversity, and genetic exchange within phage communities. Curr. Opin. Microbiol. 8, 444-450.
- 7. Suttle CA. 2005 Viruses in the sea. Nature 437, 356-361.
- 8. Khan MA, Zhao Y, Korban SS. 2012. Molecular Mechanisms of Pathogenesis and Resistance to the Bacterial Pathogen *Erwinia amylovora*, Causal Agent of Fire Blight Disease in Rosaceae. Plant Molecular Biology Reporter 30:247-260.
- 9. MA K, Y Z, S K. 2012. Molecular Mechanisms of Pathogenesis and Resistance to the Bacterial Pathogen *Erwinia amylovora*, Causal Agent of Fire Blight Disease in Rosaceae. Plant Molecular Biology Reporter 30:247-260.
- 10. Schroth M, Thomson S, Hildebrand D, Moller W. 1974. Epidemiology and control of fire blight. Annual Review of Phytopathology 12:389-412.
- 11. Esplin IND, et al. 2017. Genome Sequences of 19 Novel *Erwinia amylovora* Bacteriophages. Genome Announc. 5(46).
- 12. Abramoff, M.D., P.J. Magalhaes, and S.J. Ram. "Image Processing with Imagej." no. Biophotonics International (2004).
- 13. Krumsiek, J., R. Arnold, and T. Rattei. "Gepard: A Rapid and Sensitive Tool for Creating Dotplots on Genome Scale." [In eng]. *Bioinformatics* 23, no. 8 (Apr 15 2007): 1026-8.
- 14. Katoh, K., K. Misawa, K. Kuma, and T. Miyata. "Mafft: A Novel Method for Rapid Multiple Sequence Alignment Based on Fast Fourier Transform." [In eng]. *Nucleic Acids Res* 30, no. 14 (Jul 15 2002): 3059-66.
- 15. Kearse, M., R. Moir, A. Wilson, S. Stones-Havas, M. Cheung, S. Sturrock, S. Buxton, *et al.* "Geneious Basic: An Integrated and Extendable Desktop Software Platform for the Organization and Analysis of Sequence Data." [In eng]. *Bioinformatics* 28, no. 12 (Jun 15 2012): 1647-9.

- 16. Thomson SV. 2000. Epidemiology of Fire Blight 2, p 9-36. Fire Blight: the disease and its causative agent, *Erwinia amylovora*. CABI Publishing, Wallingford, United Kingdom.
- 17. Yagubi AI, Castle AJ, Kropinski AM, Banks TW, Svircev AM. 2014. Complete Genome Sequence of *Erwinia amylovora* Bacteriophage vB_EamM_Ea35-70. Genome Announc 2(4):e00413-14.
- 18. Lee JH, Shin H, Kim H, Ryu S. 2011. Complete genome sequence of *Salmonella* bacteriophage SPN3US. J Virol 85:13470-1.
- 19. Buttimer C, Born Y, Lucid A, Loessner MJ, Fieseler L, Coffey A. 2018. *Erwnia* amylovora phage vB_EamM_Y3 represents another lineage of hairy Myoviridae. S0923-2508(18)30062-7.
- 20. Lehman SM, Kropinski AM, Castle AJ, Svircev AM. Complete genome of the broadhost-range *Erwinia amylovora* phage phiEa21-4 and its relationship to *Salmonella* phage felix O1. Applied and environmental microbiology. 2009;75(7):2139-47.
- 21. Mesyanzhinov VV, Robben J, Grymonprez B, Kostyuchenko VA, Bourkaltseva MV, Sykilinda NN, Krylov VN, Volckaer G. 2002. The genome of bacteriophage phiKZ of *Pseudomonas aeruginosa*. J Mol Biol 317:1-19.
- 22. Garneau JR, Depardieu F, Fortier LC, Bikard D, Monot M. PhageTerm: a tool for fast and accurate determination of phage termini and packaging mechanism using next-generation sequencing data. Sci Rep. 7(1), 8292.

CHAPTER 3: A Novel, Highly Related Jumbo Family of Bacteriophages That Were Isolated Against *Erwinia*

The following chapter is taken from an article published in Frontiers in Microbiology Journal. All content and figures have been formatted for this dissertation, but it is otherwise unchanged.

3.1 Abstract

Erwinia amylovora is a plant pathogen from the *Erwiniaceae* family and a causative agent of the devastating agricultural disease fire blight. Here we characterize eight lytic bacteriophages of *E. amylovora* that we isolated from the Wasatch front (Utah, USA) that are highly similar to vB_EamM_Ea35-70 which was isolated in Ontario, Canada. With the genome size ranging from 271-275 kb, this is a novel jumbo family of bacteriophages. These jumbo bacteriophages were further characterized through genomic and proteomic comparison, mass spectrometry, host range and burst size. Their proteomes are highly unstudied, with over 200 putative proteins with no known homologs. The production of 27 of these putative proteins was confirmed by mass spectrometry analysis. These bacteriophages appear to be most similar to bacteriophages that infect *Pseudomonas* and *Ralstonia* rather than *Enterobacteriales* bacteria by protein similarity, however we were only able to detect infection of *Erwinia* and the closely related strains of *Pantoea*.

3.2 Introduction

In 1998, Whitman *et al.*(1) estimated that there are approximately 5×10^{30} bacteria on earth, which is more than the number of plants and animals combined. Most, or likely all, bacteria are subject to infection by one or more viruses or "bacteriophages", making bacteriophages the most common and diverse biological entity at an estimated 10^{32} (2-4). Bacteriophages were likely first reported in 1896, when Ernest Hanbury Hankin discovered

24

antibacterial activity against cholera in the waters of two large rivers in India, the Ganges and Yamuna (5). They were independently characterized and named in the 1900s by bacteriologist Frederick Twort (6,7) and microbiologist Félix d'Herelle (8,9). During the infection process, bacteriophages can transfer foreign DNA to their host (including virulence factors), integrate into the host genome, and/or kill their host through cell lysis (10). The sheer number of bacteriophages combined with their clear evolutionary influence makes them an important target for understanding the ecology and evolution of bacteria, including pathogenic strains (11,12). In addition, their specificity, genomic plasticity, and rapid multiplication rates make them a potential weapon to treat bacterial infections (13, 14).

One such bacterial infection caused by a phytopathogen *Erwinia amylovora* (15) is called fire blight that mainly affects ornamental plants of the *Rosaceae* family. The symptoms of the infected tissues include wilting, ooze production and death of blossoms, shoots branches and entire trees (16). We have recently isolated and characterized twenty-eight bacteriophages that infect *E. amylovora* (17, 18). Out of these 28, there is a distinct group of eight highly related bacteriophages: vB_EamM_Special G (Special G), vB_EamM_Simmy50 (Simmy50), vB_EamM_RAY (RAY), vB_EamM_Deimos-Minion (Deimos-Minion or DM), vB_EamM_Bosolaphorus (Bosolaphorus), vB_EamM_Desertfox (Desertfox), vB_EamM_MadMel (MadMel) and vB_EamM_Mortimer (Mortimer) very similar to *Erwinia* bacteriophage Ea35-70 which was isolated in Ontario, Canada (19). These nine bacteriophages were recently added as the *Agrican357virus* genus of bacteriophages by the ICTV (20) and are

considered jumbo bacteriophages due to their large genome (>200 kb) and particle size (21).

As reviewed in 2017, jumbo bacteriophages have diverse genome sizes (ranging from 208-497 kb) as well as diverse virion morphology and complex virion structure (21). They often encode greater than 60 structural proteins with some displaying complex head structures composed of more than five proteins (22) or long, wavy, curly tail fibers (23). Jumbo bacteriophages were also found to be highly diverse, with over 11 clusters and five singleton bacteriophages suggested from 52 complete jumbo bacteriophage genomes analyzed in 2017, many of which are uncharacterized (21). Only a few jumbo bacteriophage families have been characterized beyond sequence analysis and EM, including the phiKZ-like bacteriophages 201phi2-1 (24), KTN4 (25), phiPA3 (26), phiRSL2 (27), phiRSF1(27), OBP (28), EL (29) and phiKZ (30), related bacteriophages phiRSL1 (31) and PaBG (32), Cronobacter bacteriophage CR5 (33), Prochlorococcus bacteriophage P-SSM2 (34), related bacteriophages KVP40 (35) and Aeh1 (36), Aeromonas bacteriophage phiAS5 (37), Pectobacterium bacteriophage CBB (38), Caulobacter bacteriophage phiCbK (39), related Erwinia bacteriophages Joad and RisingSun (40), related bacteriophage RaK2 (41) and GAP32 (42), *Bacillus* bacteriophage 0305phi8-36 (43), related Bacillus bacteriophages BpSp (23) and AR9 (44). Herein we further analyze the genome, proteome, and host range of our eight Agrican357virus jumbo bacteriophages. Their lytic nature and plethora of novel genes makes them a unique entity to be studied further and analyzed. As a close relative of the animal pathogens *Escherichia coli* and *Salmonella* (45), viruses that infect *E. amylovora* may help us understand the evolution of pathogenic strains in this family.

3.3 Materials and methods

3.3.1 Bacteriophage isolation, electron microscopy and genome sequencing

Environmental samples of leaves, branches and soil surrounding infected trees were collected from around the state of Utah (USA) and used to create enrichment cultures with the host E. amylovora. To test the presence of amplified bacteriophages, the enrichment cultures were spun at 4000 rpm and 4°C for 20 minutes and the supernatant was removed and used without filtering. 50μ L of this supernatant was incubated at room temperature with 500μ L of E. amylovora ATCC 29780 bacteria for 30-45 minutes, mixed with 5ml NBDYE top agar (at half concentration agar), plated on NBSYE agar plate, and incubated at 25°C overnight. Plaque presence on the plates was the primary indicator of bacteriophage presence in the environmental sample. Using a sterile needle or pipette tip, we picked a plaque from the initial bacteriophage identification plate and performed three rounds of plaque purification. All eight isolated bacteriophages: Special G (KU886222), Simmy50 (KU886223), RAY (KU886224), Deimos-Minion (KU886225), Bosolaphorus (MG655267), Desertfox (MG655268), MadMel (MG655269) and Mortimer (MG655270) were able to infect E. amylovora ATCC 29780 (17, 18). Bacteriophage DNA was extracted using the Phage DNA isolation kit (Norgen Biotek Corporation), and was sequenced, assembled and annotated as previously described (17, 18).

3.3.2 Electron microscopy

Electron microscopy was performed at Brigham Young University in the Life Sciences Microscopy Lab using a FEI Helios NATOCAB 600i DualBeam FIB/SEM with STEM detector. The samples for SEM analysis were prepared by placing 15µL of high-titer bacteriophage lysate on a 200-mesh copper carbon type-B electron microscope grid for one-two minutes. The lysate was wicked away and the grids were stained for two minutes using 15μ L of 2% phosphotungstic acid (pH = 7). Residual liquid was wicked away using Kimtech wipes and the grid was allowed to dry before being imaged. Bacteriophage structures in electron micrographs were measured using ImageJ (46). The average and standard deviation for each measurement was calculated from a minimum of four separate measurements.

3.3.3 Burst size

Burst size was calculated by performing single-infection assay as described by M. Delbruck (47). The bacteria-bacteriophage mixture was allowed to adsorb for 10 minutes at a multiplicity of infection (MOI) of 100. The lysate was then removed at different time-intervals ranging from 1-6 hours and diluted to avoid secondary infection. Soft agar plaque method was used to determine titers and a graph of 10 separate readings was plotted with their average titers and time.

3.3.4 Host range

Host range of all eight bacteriophages was determined using the soft agar plaque method (48). For this, 50µL of bacteriophage lysate dilutions were incubated with 500µL of bacteria grown overnight for 30 min before plating in top agar. The plates were incubated with the top agar facing up at 25°C overnight for this assay. Seventeen bacterial strains including *E. amylovora* ATCC 29780 (49) as control were used including five other *E. amylovora* strains (Ea110 (49), GH9 (50), EaBH (50), RB02 (50), Ea273 (51)), *Pantoea agglomerans* E325 (52), *Pantoea vagans* C-91 (53, 54) , *E. coli* K-12 BW 25113 (54), *Salmonella enterica* LT2 (generously donated by John Roth lab), *Yersinia pestis* KIM6 (56, 57), *Enterobacter cloacae* ATCC 13047 (58), *Klebsiella pneumoniae* ATCC 10031 (59), *Bacillus subtilis* ATCC 6033 (60),

Cronobacter sakazakii ATCC 29544 (61, 62), standard clinical isolate *Pseudomonas aeruginosa* PA100 (63) and *Pseudomonas chlororaphis* ATCC 13985 (64). An average of two readings was taken to obtain bacteriophage titers post infection.

3.3.5 Computational analysis and genomic comparison

Bacteriophages with any similarities to Agrican357 virus genus were identified using a blastx analysis of their putative major capsid and terminase proteins, and the corresponding bacteriophage for all retrieved hits with a cutoff e-value of less than 1.00E-04 and 33% similarity were downloaded from GenBank (65-67). In addition, any bacteriophages that showed up in at least three qblast hits while annotating were also retrieved. These sequences were then used in Gepard (68) to generate the dot plots of nucleic acid and protein sequences. PhamDB, a web interface (69) was used for creating databases and Phamerator, (70) an open-source program was used to compare bacteriophage genes and genomes. PhamDB uses kClust (71) to cluster large protein sequence databases. The default settings of PhamDB were used in this comparison.of Splitstree (72) protein analysis was produced from the exported pham table of conserved proteins converted to a Nexus file using Janus (http://cobamide2.bio.pitt.edu). The Average Nucleotide Identity (ANI) percentages comparing each of the E. amylovora bacteriophage genomes were calculated using MAFFT (73) plugin in Geneious R8.1 (74). The genome sequences of all eight bacteriophages were compared against one phage from each potential cluster formed in whole genome dot plot analysis.

The evolutionary history was inferred by using the Maximum Likelihood method and Poisson correction model (75). The bootstrap consensus tree inferred from 100 replicates (76) is taken to represent the evolutionary history of the taxa analyzed (76). Branches corresponding to partitions reproduced in less than 50% bootstrap replicates are collapsed. The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (100 replicates) are shown next to the branches (76). Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using a JTT model, and then selecting the topology with superior log likelihood value. This analysis involved 59 amino acid sequences. There were a total of 1302 positions in the final dataset. Evolutionary analyses were conducted in MEGA X (77).

3.3.6 Mass spectrometry

Sample preparation was performed (78) by diluting crude lysates of RAY and Deimos-Minion in TNE (50mM Tris pH 8.0, 100mM NaCl, 1mM EDTA) buffer and adding RapiGest SF reagent (Waters Corp.) to a final concentration of 0.1%. Samples were then boiled for 5 min followed by addition of 1mM (final concentration) of TCEP (Tris (2-carboxyethyl) phosphine) and incubated at 37°C for 30 min. Afterwards, carboxymethylation of samples was done with 0.5 mg/ml of iodoacetamide for 30 min at 37°C followed by neutralization with 2mM TCEP (final concentration). Trypsin (trypsin: protein ratio - 1:50) was used overnight at 37°C to digest the crude lysates prepared as above. The samples were treated with 250mM HCl at 37°C for 1h followed by centrifugation at 14000 rpm for 30 min at 4°C to degrade and remove RapiGest. The soluble fraction was then added to a new tube and Aspire RP30 desalting columns (Thermofisher Scientific) were used for extraction and desalting of the peptides.

High pressure liquid chromatography (HPLC) coupled with tandem mass spectroscopy (LC-MS/MS) using nano-spray ionization was used to analyze Trypsin-digested peptides (79). A TripleT of 5600 hybrid mass spectrometer (ABSCIEX) interfaced with nano-scale reversed-

phase HPLC (Tempo) using a 10 cm-100-micron ID glass capillary packed with 5-µm C18 ZorbaxTM beads (Agilent Technologies, Santa Clara, CA) was used to perform the nano-spray ionization experiments. By using a linear gradient (5–60%) of ACN (Acetonitrile) at a flow rate of 250µl/min for 1h, peptides were eluted from the C18 column into the mass spectrometer The ACN gradient was created using these buffers: buffer A (98% H₂O, 2% ACN, 0.2% formic acid, and 0.005% TFA) and buffer B (100% ACN, 0.2% formic acid, and 0.005% TFA). In a datadependent manner MS/MS data were acquired in which the MS1 data was acquired for 250 ms at m/z of 400 to 1250 Da and the MS/MS data was acquired from m/z of 50 to 2,000 Da. For Independent data acquisition (IDA) parameters MS1-TOF 250 milliseconds, followed by 50 MS2 events of 25 milliseconds each. The IDA criteria; over 200 counts threshold, charge state of plus 2-4 with 4 seconds exclusion window. Finally, MASCOT[®] (Matrix Sciences) was used to analyze the collected data and Protein Pilot 4.0 (ABSCIEX) was used for peptide identifications.

3.3.7 Extracellular polymeric substance (EPS) depolymerase mediated biofilm degradation assay

Soft agar plaque method (48), as described previously in host range method, was used to detect the presence of halo zone on *P. vagans* strain C9-1 and *E. amylovora* ATCC 29780. The putative EPS-depolymerase from bacteriophage RAY was PCR amplified from lysate using primers designed to amplify the full length gp76. It was cloned by digesting with enzymes NdeI/SalI into a similarly digested pET15b. The resulting plasmid (JG1700) was amplified by transforming into *E. coli* DH5 α and plated on LB-amp. Resulting colonies were PCR checked and were used to start overnight cultures and DH5 α without plasmid pJG1700 was grown as a control. The protein was induced using IPTG and extracted by lysing cells via sonication. Post

sonication, cell debris was removed from both cultures by centrifuging at 12000 rpm and 4°C for 2x20 minutes. 10µl of resulting supernatant was spotted on bacterial lawns of *P. vagans* strain C9-1and *E. amylovora* ATCC 29780 embedded in top agar after plating for 2 hours.

3.3.8 Motif identification and analysis

MEME (80) and FIMO (81) tools at public phage galaxy (<u>https://cpt.tamu.edu/galaxy-pub/</u>) were used to scan bacteriophage genome of *Agrican357virus* for statistically significant motifs. Motifs found by MEME (80) with e-value less than 1e-002 were selected by FIMO (81) to be searched for their coordinates and iterations in their respective genomes. User defined cutoff values (P-value < 1e-3, Q-value < 0.05), as described in Berg *et al* (82) were used to maximize the results. The location of the motifs within bacteriophage genomes was determined from the annotated GenBank files (17, 18).

3.4 Results and discussion

3.4.1 Isolation and characterization of eight closely related large bacteriophages infecting *E. amylovora*

Eight novel bacteriophages (Deimos-Minion, Special G, RAY, Simmy50, Bosolaphorus, Desertfox, Mortimer and MadMel) that infect *E. amylovora* were plaque isolated and their genomes were subsequently sequenced and annotated as previously described (17, 18). All eight bacteriophages have relatively large genomes with genome sizes of 271 to 275 kb (Table 3.1), which are comparable to the related bacteriophage Ea35-70 (271084 bp). These bacteriophages have correspondingly large putative proteomes, with 317 to 324 predicted ORFs. A search for tRNA's using tRNA ScanSE (83) suggests that RAY, Simmy50, Bosolaphorus and Mortimer have 1 tRNA each coding for Asparagine, whereas no tRNA's were detected for DM,

Table 3.1 General characteristics of nine related bacteriophage Deimos-Minion (DM), RAY, Special G, Desertfox, MadMel, Mortimer, Bosolaphorus, Simmy50, and Ea35-70 that infect E. amylovora ATCC 29780. Sample type is as reported by collectors, no sample type was recorded for Mortimer. Due to the high conservation of this family, differences in encoded genes is also provided with missing genes numbered with respect to Deimos-Minion.

Phage Name	GenBank Accession	Genome length (bp)	Sample type	Conserved Domains	ORFs (tRNAs)	Gene Differences compared to				
					Ì.	extra genes	Missing			
Deimos-Minion (DM)	KU886225	273,501	fruit	39	324					
RAY	KU886224	271,182	leaves, stem	39	317 (1)	0	gp49, gp50, gp90, gp91, gp166, gp234			
Special G	KU886222	273,224	branches, blossoms	41	321	gp63, gp203, gp231	gp90, gp91, gp111, gp166, gp234			
Desertfox	MG655268	272,458	soil	39	320	gp106, gp231, gp256,	gp48, gp50, gp90, gp91, gp111, gp234			
Madmel	MG655269	275,000	soil	41	321	gp62, gp202, gp230	gp90, gp91, gp111, gp252			
Mortimer	MG655270	273,914	_	40	324 (1)	gp62, gp110, gp238, gp261	gp48, gp117, gp234			
Bosolaphorus	MG655267	272,228	orchard dirt	39	320 (1)	gp223	gp48, gp90, gp91, gp234			
Simmy50	KU886223	271,088	bark	39	322 (1)	gp8, gp63, gp209, gp210	gp51, gp90, gp91, gp166, gp234			
Ea35-70	KF806589	271,084	soil	36	318 (1)	gp61, gp115, gp224	gp86, gp93, gp120, gp166, gp232, gp234, gp252			

Special G, MadMel and Desertfox. No lysogeny related genes were identified (including integrase, excisionase or repressors). Their clear plaque morphology and ease in obtaining higher titers (~10⁸-10¹⁰ pfu/ml) suggest they may be lytic bacteriophages, however rigorous testing for bacterial lysogeny has not been performed.

3.4.2 Electron microscopy reveals myovirus structure eight E. amylovora bacteriophages

Deimos-Minion, Special G, RAY, Simmy50, Mortimer, MadMel, Desertfox, and Bosolaphorus were all found to be similarly sized Myoviridae (Figure 3.1), having contractile tails (average size 159 nm +- 11.4 nm), a tail sheath (average size 78.5 nm+- 9.28 nm), visible tail fibers, and large capsids (average size 128 nm +- 5.96 nm). This morphology is supported by their protein-based relationships to other jumbo *Myoviridae* discussed below. Due to apparent similarity within these bacteriophages, only RAY's morphological calculations are listed but all eight of these bacteriophages were imaged extensively.

3.4.3 Host range and burst size

Bacteriophages of the *Agrican357virus* family were tested for activity against seventeen different bacterial strains (Table 3.2). Out of these, fifteen were from the *Enterobacteriales- P. agglomerans* E325 (52), *P. vagans* C-91 (53, 54), *E. coli* K-12 BW 25113 (55), *S. enterica* (generous donation by roth lab), *Y. pestis* KIM6 (56, 57), *E. cloacae* ATCC 13047 (58), *K. pneumoniae* ATCC 10031 (59), *B. subtilis* ATCC 6033 (60), *C. sakazakii* ATCC 29544 (61, 62), *E. amylovora* Ea110 (49), *E. amylovora* GH9 (50), *E. amylovora* EaBH (50), *E. amylovora* RB02 (50), *E. amylovora* Ea273 (51), *E. amylovora* ATCC 29780 (control) (49) and two from *Pseudomonadaceae- P. aeruginosa* PA100 (63) and *P. chlororaphis* ATCC 13985 (64) *Enterobacteriales* strains were chosen due to being members of the same bacterial order as

Figure 3.1 Electron microscopy STEM images of Deimos-Minion, Special G, RAY, Simmy50, Bosolaphorus, Desertfox, MadMel, and Mortimer revealed *Myoviruses* with long contractile tails

Erwinia, whereas *Pseudomonadaceae* strains were the hosts of bacteriophages related to the *Agrican357virus* bacteriophages based on protein BLAST.

Our current analyses displayed that Agrican357virus bacteriophages infect all Erwinia strains (with the exception of Special G and Mortimer that failed to infect GH9 and EaBH, respectively) as well as closely related genera also commonly found on plants- P. agglomerans (84) and P. vagans (85) (Table 3.2). Owing to the large nature of Agrican357virus bacteriophages, we investigated the burst size of bacteriophage Deimos-Minion on E. amylovora strain ATCC 29780. Burst size studies suggested that when infected at MOI of 100 Deimos-Minion has burst size of 4.6-4.9 with latent period of 3-4 hours before the first burst (Figure 3.2) under the laboratory growth conditions used herein, consistent with their large size. As seen in Figure 3.2, a second burst is appearing at the end of this six hours period. Owing to the large nature of Agrican357virus bacteriophages, we investigated the burst size of bacteriophage Deimos-Minion on E. amylovora strain ATCC 29780. Burst size studies suggested that when infected at MOI of 100 Deimos-Minion has burst size of 4.6-4.9 with latent period of 3-4 hours before the first burst (Figure 3.2) under the laboratory growth conditions used herein, consistent with their large size. As seen in Figure 3.2, a second burst is appearing at the end of this six hours period. The observed burst size (~5) was confirmed with phage RAY (data not shown) and is consistent with other large Myoviridae in that Pseudomonas aeruginosa bacteriophage KTN4has a reported burst of 6-8 and may be due to the need to build internal cellular structures for the Jumbo viruses to be built (25), or due to sub-optimal assay conditions for proliferation.

Table 3.2 Host range analysis of eight *Agrican357virus* bacteriophages. Host range tests on *Agrican357virus* displays infection of *E. amylovora* strains ATCC 29780 (control), GH9, Ea110, EaBH, RBO2, Ea273, *P. agglomerans* (E325) and *P. vagans* (C9-1) only. Bacteriophages Special G and Mortimer failed to infect strain EaGH9 and EaBH respectively. All other bacterial strains remained uninfected. Plaque forming units (pfu) should be compared to the ATCC strain, because the same amount of the same lysate was used to infect each strain

	Bacteriophages										
Bacterial strains (strain number)	Deimos-Minion	RAY	Special G	Desertfox	MadMel	Mortimer	Bosolaphorus	Simmy50			
E. amylovora (ATCC 29780)	5.20E+09	7.80E+09	3.40E+09	2.56E+07	5.42E+08	2.87E+06	3.29E+04	4.33E+08			
E. amylovora GH9	3.03E+10	3.90E+09	_	1.77E+07	5.00E+06	3.49E+05	5.09E+04	4.15E+08			
E. amylovora EA110	6.60E+09	5.20E+09	4.52E+09	9.00E+06	3.63E+08	5.26E+06	5.65E+04	8.97E+08			
E. amylovora EaBH	5.70E+09	4.40E+09	2.60E+09	1.06E+07	5.78E+08	_	6.04E+04	3.00E+08			
E. amylovora RB02	3.25E+09	4.05E+09	1.84E+08	3.65E+07	4.47E+08	1.06E+06	5.03E+04	2.42E+08			
E. amylovora 273	1.04E+10	9.75E+09	1.45E+07	2.36E+07	4.37E+08	5.39E+06	6.15E+03	2.61E+08			
P. vagans (C9-1)	3.14E+10	2.64E+10	1.00E+11	5.01E+07	2.05E+09	6.39E+06	4.05E+03	4.95E+09			
P. agglomerans (E325)	3.10E+10	9.30E+09	2.60E+10	5.80E+06	2.67E+09	2.90E+06	2.79E+04	4.48E+09			
P. chlororaphis (ATCC 13985)	_	-	-	-	_	_	-	-			
E. coli k-12 (BW 25113)	-	_	_	-	-	_	-	-			
B. subtilis (ATCC 6033)	-	_	_	_	_	_	_	_			
C. sakazakii (ATCC 29544)	-	-	_	-	-	_	-	-			
K. pneumoniae (ATCC 10031)	-	-	-	-	_	-	-	-			
S. enterica (Roth lab)	-	-	-	-	-	-	-	-			
E. cloacae (ATCC13047)	-	-	-	_	_	_	_	_			
P. aeruginosa (PA100)	-	-	-	-	-	-	—	—			
Y. pestis (KIM6)	-	_	_	_	_	_	_	_			

Figure 3.2 Growth curve for Deimos-Minion with host *Erwinia amylovora* ATCC 29780 by plaque assays shows first burst at ~4 hours and second burst at ~6 hours.

3.4.4 Genomic and evolutionary characteristics

To determine the overall genomic and proteomic similarity of our eight novel bacteriophages to available bacteriophages in GenBank, related bacteriophages were identified by BLAST (qblast) using each of the putative gene products encoded by RAY. The bacteriophages with e-values below 1.00E-04 and above 33% identity that were identified in three or more BLAST searches were then compared using Gepard dot plot (68) average nucleotide identity (ANI analysis) (86), and BLAST alignment (65). Dot plots were constructed using whole genome sequences, major capsid protein amino acid, and terminase amino acid sequences (Figure 3.3 A-C respectively). While looking at the results of the whole genome dot plot, all eight of our bacteriophages show no similarity to any other bacteriophages used in the dot plot except for very close similarity to Ea35-70 (KF806589) (19), an *Erwinia* bacteriophage isolated in Canada in 2014 (see Figure 3.3A). In addition, their average nucleotide identity (ANI) using Geneious (74) was remarkably high >94% (see supplementary table 3.S1). These results indicate that these eight bacteriophages Deimos-Minion, Simmy50, RAY, Special G, Bosolaphorus, Desertfox, MadMel and Mortimer along with Ea35-70 make a distinct family of bacteriophages, consistent with the International committee on taxonomy of viruses' classification as new species of a new genus *Agrican357virus* in the family *Myoviridae* of order *Caudovirales* (20).

The major capsid protein (MCP) and terminase proteins are two of the most conserved proteins in bacteriophage genomes and have been used to group bacteriophages in families by single gene analysis (87). In order to identify distant bacteriophage relatives, a proteomic comparison of these bacteriophages was performed using terminases (see Figure 3.3B) and MCPs (see Figure 3.3C) by Gepard dot plot (68). The same bacteriophage order from the whole genome dot plot (Figure 3.3A) was used in these dot plots.

Whole genome and terminase dot plots both displayed limited synteny between *Agrican357virus* bacteriophages and *Erwinia* bacteriophage phiEaH1 (4.00E-155 from blastp of terminase) indicating this bacteriophage as the closest known relative from *Erwiniaceae*. In contrast, little similarity to *Pseudomonas* bacteriophages phiKZ (8.00E-156), KTN4 (8.00E-156), phiPA3 (2.00E-149), 201phi2-1 (5.00E-140), OBP (2.00E-101), EL (3.00E-77) and *Ralstonia* bacteriophages RSF1 (9.00E-122) and RSL2 (3.00E-120)

Figure 3.3 Whole-genome nucleotide (A) and protein terminase (B) or major capsid protein (C) dot plot analysis reveals a fairly isolated cluster of bacteriophages that includes Deimos-Minion, Special G, RAY, Simmy50, Bosolaphorus, Desertfox, MadMel and Mortimer and Ea35-70. Dot plots were constructed using Gepard.

can be seen in the terminase dot plot which was not apparent in the whole genome and major capsid protein dot plots. All of these bacteriophages are distantly related jumbo *Myoviridae*.

The two subunits of terminase protein; large and small, are an essential part of DNA packaging (88; 89). All eight of our Agrican357virus bacteriophages have a putative terminase gene with identical amino acid sequences: Deimos-Minion gp189, Special G gp185, RAY gp183, Simmy50 gp186, Desertfox gp184, Bosolaphorus gp185, MadMel gp185 and Mortimer gp188. This protein is also present in Ea35-70 gp181. This indicates that it is a highly conserved protein for this family. Considering the similarity between these bacteriophages, it can be inferred that all nine bacteriophages of Agrican357virus may have headful packaging (Figure 3.4). In support of this conclusion, blastp results demonstrated a match with *Pseudomonas* bacteriophage phiKZ with an e-value of 8.00E-156, a terminase large subunit from Erwinia bacteriophage PhiEaH2 with an e-value of 6.00E-122 and a terminase large subunit of *Pseudomonas* bacteriophage 201phi2-1 with an e-value of 5.00E-140. Bacteriophages phiKZ, phiEaH2 and 201phi2-1 are all known to have headful packaging (90). In addition to blastp, bacteriophage termini and packaging mode for six bacteriophages (excluding Deimos-Minion and Special G) was also determined using randomly fragmented next-generation sequencing (NGS) data with the help of software PhageTerm (91) <u>https://galaxy.pasteur.fr</u>. PhageTerm analysis indicated that RAY, MadMel, Desertfox, Bosolaphorus, Simmy50 and Mortimer have headful packaging without a pac site. Thus, the headful packaging strategy is supported by terminase homology and NGS sequencing data.

41

Figure 3.4 Phylogenetic analyses of phage terminase proteins supports the relationships depicted by dot plot analysis of the *Agrican357virus* bacteriophages. The evolutionary history was inferred using the Neighbor-Joining method in MEGAX. Unrooted tree was condensed to cutoff value of 50% where 2000 was set to be initial bootstrapping value.

3.4.5 Proteomic analysis of the Agrican357virus family

Due to great similarity between these bacteriophages we randomly chose RAY as a

representative for the protein classification. Proteomic analysis of RAY reveals the novel nature

of these bacteriophages in that of 318 proteins, 202 proteins were considered to be novel with no BLAST hit (the e-value cutoff was <1.00E-04), 50 were hypothetical proteins with BLAST hits, and 67 were proteins with a putative function based on their BLAST hit (Supplementary figure 3.S1A). Thus, over half of the proteins had no BLAST hit outside of the *Agrican357virus* bacteriophages. These proteins represent a considerable proteomic "dark matter" (92), and underscore the vast biological richness harbored in bacteriophages. Of the 67 proteins with predicted function, a majority appear to be structural proteins (~41%), and DNA metabolism proteins (approximately 41%) (Supplementary figure 3.S1B)

The computer program Phamerator (70) was used to compare the entire genomes of the nine *Agrican357virus* bacteriophages that infect *E. amylovora*: Deimos-Minion, Special G, RAY, Simmy50, Bosolaphorus, Desertfox, MadMel, Mortimer and Ea35-70 (Figure 3.5). Despite their large size, these genomes display remarkable nucleotide sequence and proteomic conservation (>94% ANI, see supplementary table 3.S1). The genomes encode recognizable structural and enzymatic bacteriophage proteins vital to the bacteriophage life cycle, including terminase proteins, major capsid proteins, and tail fiber proteins as well as proteins involved in DNA transcription and translation, such as helicase proteins, DNA polymerase, and RNA polymerase. Though the genomes of these nine bacteriophage are virtually identical, a few genes are differentially present across these bacteriophage genomes. Most of these are hypothetical proteins, however, HNH endonucleases also differed consistently between the *Agrican357virus* bacteriophages. HNH endonucleases are proteins that splice DNA and assist in the movement of introns and other intron-like sequences (93).

Deimos-minion has two such HNH endonucleases, gp93 and gp234 that do not appear to be homologs based on protein similarity. Protein BLAST results of gp93 show that the HNH

43

endonuclease is also found in bacteriophages. Bosolaphorus, Desertfox, MadMel, RAY, Simmy 50, Special G and Ea35-70, and is similar to those found in some *Pseudomonas* bacteriophages (phiKZ and KTN4) as well as both Gram-negative and Gram-positive strains of bacteria. However, only the HNH endonuclease domain (~amino acid 58-109 of bp93) is primarily conserved, the remaining 278 amino acid protein is not conserved in bacteria. On the other hand, homologs of HNH endonuclease gp234 are only found in Deimos-minion and MadMel, as well as several Gram-positive and Gram-negative bacteria. Genomes of Deimos-Minion, Desertfox and MadMel also displayed a reversed order of two proteins (gp93-gp94 in Deimos-Minion, gp88-gp89 in Desertfox and gp90-gp91 in MadMel) when compared to similar proteins in other bacteriophages of this family. The proteins involved are HNH endonuclease and ribonucleotide reductase. To search for repetitive sequences in the genome which may be involved in recombination, MEME (80) and FIMO (81) were used to locate motifs in the genomes of all eight of our Agrican357virus bacteriophages. Several common and unique motifs were discovered, however they had poor e-values with little or no significance and were not followed further.

Due to the large size of these bacteriophages, and their terminase similarity to bacteriophage phiKZ, these bacteriophages likely belong to the jumbo bacteriophages (21; 94) making it no surprise that the structural proteins are found in other bacteriophages. Along with hypothetical proteins, the proteins that are conserved with other phiKZ-like jumbo bacteriophages include: RNA polymerase beta subunit, nuclease RtcB-like, SbcC like, helicase, virion structural proteins, tail fiber, tail sheath, lysozyme domain, terminase, and major capsid protein.

44

Mortimer	virion structural protein	20		HN	l endonucleases	phosphohydrol	ase93		Jihydrofolate reductase	
MadMel	/	putative membrane protein	SbcC lytic transglycosylase		thymidylate s	synthase	RNA2'-phosphotransf	erase		
Desertfox		20	acetyltransferase				90 ^{nu}	ucleoside triphosphate pyro	phosphohydrolase	-
Bosolaphorus		20	stringest st	arvation protein	exodeoxyribonuclea	ase VIII EPS de	epolymerase ₉₀	thymidi	ne kinase	TR
Deimos-Minior	n	20		DNA primase			ribonucleotide diphos	phate reductase	ATP-dependent protease	
SpecialG		20		RtcB like			92			Carl A
RAY		20					89			-
Simmy50		21			4		92			time to a second
Ea35-70		20					90		-	
dead like helicase	ribonuclease HI Uv	sX phage lysozyme domain	RNA polymerase transglycosyalse	tail sheath	terminase	203	RNA polymerase	HNH endonuclea	ses SbcCD subunit	254
		164	/		200					251
	and the start of	163			19	9		- Charles	249	-
and Participation		164			20	0			250	_
		168		and the second state of the second	2	04			2	54
		164			201				<u></u> 2	252
-		162			198				248	-
	يحمد بالحمي	165			201				248	
SE2 holises	ويغصص مسر	162			198	a incide		mandra a series a	248	_
	274	DNA polymerase		tail fiber	thymidylate ki	nase 325				
	270	-	and the second	Territoria and a		321	major capsid protein			
and the second second	269			terre i generale terre		320				
and Theory Sound	270	M/M				321				
	273					322				
	267					318				
	272					323				
	268					319				

Figure 3.5 Whole genome Phamerator map of *E. amylovora* bacteriophages illustrates the high similarity of bacteriophages. Mortimer, MadMel, Desertfox, Bosolaphorus, Deimos-Minion, Special G, RAY, Simmy50, and Ea35-70. Bacteriophages were mapped using Phamerator and arranged based on highest protein similarity. Violet shading between genomes indicates genome nucleotide homology (with standard e-value cutoff of 1.00E-04) and the ruler indicates genome base pairs, while white spaces indicate areas without significant nucleotide similarity. Boxes above and below the genome ruler indicate ORFs going in the forward and reverse direction, respectively. They are labeled with predicted function, occasionally numbered, and colored to indicate protein homologs between the bacteriophages

A SplitsTree analysis showing the relationship of the related jumbo bacteriophages by protein conservation is displayed in Figure 3.6. This protein-based tree suggests seven groups of related jumbo *Myoviridae* bacteriophages, with the *Agrican357virus* group as the most distant group. It further confirms that proteins of *Agrican357virus* family are more similar to proteins from *Pseudomonas* bacteriophages EL and OBP and *Ralstonia* bacteriophage RSL2 than to other *Enterobacteriales* bacteriophages.

Figure 3.6 Protein-conservation analysis displayed by Splitstree of the *Agrican357virus* genus with related jumbo *Myoviridae* bacteriophages reveals *Agrican357virus* as a distant evolutionary group

3.4.6 Mass spectrometry validates 27 hypothetical proteins as proteins of unknown function

Further analysis of Deimos-Minion and RAY genomes via mass spectrometry (MS) detected several novel proteins, promoting the status of 27 proteins from hypothetical proteins to proteins of unknown function. In RAY and Deimos-Minion genomes collectively, MS analysis identified seventeen proteins with a putative function, eighteen novel hypothetical proteins specific to this bacteriophage family and nine hypothetical proteins (seven known bacteriophage proteins and two other) with blastp hits to other bacteriophages (Table 3.3). The majority of proteins found through MS are novel hypothetical proteins found only in this family, followed by putative bacteriophage structural proteins, hypothetical bacteriophage proteins, proteins with putative functions and other hypothetical proteins (see Table 3.3). This analysis agrees with our predicted conservation of proteins depicted through Phamerator analyses.

3.4.7 Biofilm degradation (EPS) assays suggest specificity for Pantoea

Enzymatic proteins like extracellular polysaccharide (EPS) depolymerase and phagerelated lysozyme are few of the annotated proteins with putative functions which were also predicted via mass spectrometry. EPS depolymerase (95) is an enzyme that degrades EPS and phage-related lysozyme is shown to lyse the bacterial cell wall (96). It has been shown that halo formation on the host could be a result of biofilm degradation assay (97, 98). The presence of halo zone after in infections of *Agrican357virus* family was first observed on *P. vagans* strain C9-1 (Figure 3.7A).

To investigate further the EPS- depolymerase gene was cloned into a plasmid pJG1700, amplified using *E. coli* DH5 α , and spotted on *P.vagans* stain C-91 and *E. amylovora* strain ATCC 29780 (Figure 3.7B). Lysate from a similarly grown and prepared DH5 α culture was used as a control. The clearing is indicative of EPS depolymerase activity on *P. vagans*. This activity was not seen on *E. amylovora* ATCC 29780.

Table 3.3 Mass Spectrometry reveals 27 hypothetical proteins as proteins of unknown function. Peptides detected by LC/MS/MS of a crude bacteriophage lysate of RAY and/or Deimos-Minion. Columns provide the gene product number corresponding to the peptide(s) detected, the putative function of the protein, the mass spectrometry retrieval number (which may reflect abundance), and the percent coverage for the protein. Gene products are grouped by putative function when available, and then by conservation. Deimos-Minion is abbreviated to DM

DAN	DM	Putative function	Retrieva	al #	# % coverage		
RAY			RAY	DM	RAY	DM	
		Putative Bacteriophage Structu	iral Prote	ins			
	gp323	putative major capsid protein		4		62.65	
gp178		putative virion structural protein	35		40.2		
gp154		putative virion structural protein	57		28.6		
gp179	gp185	putative tail sheath protein	105	45	22.5	43.45	
gp18	BP100	putative virion structural protein	61		18.7		
OF	gp308	putative tail fiber protein		106		51.21	
	gp9	putative virion structural protein		146		23.16	
	gp19	putative virion structural protein		153		10.92	
	gp188	putative virion structural protein		121		10.14	
gp293		putative virion structural protein	104		31.89		
Putative I	Enzymatic l	Proteins		•		•	
gp76	gp79	putative EPS-depolymerase	58	89	23.6	20.16	
gp162		putative phage-related lysozyme	94		29.2		
gp102	gp107	putative nucleotide triphosphatase	103	72	25.6	39.53	
	gp127	putative dihydrofolate reductase		171		12.1	
	gp23	putative SbcC-like protein		169		25.18	
	gp228	putative DNA-directed RNA pol.		67		41.82	
	gp94	putative ribonucleotide					
		diphosphate reductase beta subunit		91		10.32	
	Novel l	hypothetical proteins found only in t	his bacter	iophage fa	mily		
gp281	gp287	novel hypothetical protein	6	61	33.5	36.31	
gp295	gp301	novel hypothetical protein	9	64	23.8	29.11	
gp287		novel hypothetical protein	17		71.7		
gp185	gp191	novel hypothetical protein	18	68	66.0	68.49	
gp188		novel hypothetical protein	33		35.5		
gp186		novel hypothetical protein	41		16.8		
gp196	gp202	novel hypothetical protein	44	137	34.9	21.7	
gp55		novel hypothetical protein	46		37.3		
gp316		novel hypothetical protein	47		42.6		
gp110	gp114	novel hypothetical protein	49	116	21.6	33.99	
gp298	gp304	novel hypothetical protein	50	70	42.8	27.72	
gp173	gp179	novel hypothetical protein	55	55	58.1	61.49	
gp166		novel hypothetical protein	78		40.9		
gp75		novel hypothetical protein	92		29.0		
gp99		novel hypothetical protein	62		28.0		
gp207	gp212	novel hypothetical protein	95	95	4.7	17.13	
gp98	gp103	novel hypothetical protein	97	133	6.8	9.74	
	gp140	novel hypothetical protein		84		18.49	
		Hypothetical bacteriophage	proteins				
gp222	gp227	hypothetical phage protein	23	87	33.4	39.1	
gp240	gp246	hypothetical phage protein	34	Q 1	22.2	57.42	
gp210	an207	hypothetical phage protein	54	01	32.3	58.8	
gp301 gp202	gp307	hypothetical phage protein	73	95	13.20	30.0	
gp202		hypothetical phage protein	79		37.9		
5P272	gn251	hypothetical phage protein	17	88	51.7	25.88	
	on224	hypothetical phage protein		129		33 33	
	1 5P227	Other hypothetical pro	teins	127	1	55.55	
gp273		hypothetical protein	68		18.7		
gn41		hypothetical protein	56		34.2		
or · ·	1			1	<i>zz</i>	l	

3.4.8 Structural prediction supports the putative function of several proteins

To further understand *Agrican357virus* and verify their protein functions, we studied proteins involved in DNA metabolism (~ 45%), the largest group of functional proteins conserved in the *Agrican357virus*. Multiple mechanisms for DNA regulation and repair are evident with the presence of proteins that are hypothesized to aid DNA synthesis, repair, and recombination. These proteins may increase the stability and survival of these jumbo bacteriophages (supplementary table 3.S2, supplementary figure 3.S2). In order to proliferate in host cells, bacteriophages need to be equipped with proteins that allow them to reproduce effectively. Although many bacteriophages harbor proteins for DNA damage repair and DNA reproduction inside a host bacteria cell, these large bacteriophages may require extremely viable progeny due to lower burst sizes (~4.6 functional virions compared to thousands reported for other bacteriophages).Two proteins with a conserved domain found in the nine *Agrican357virus* bacteriophages are SbcC and a SbcCD nuclease (see supplementary figure 3.S2A). The ability of SbcC and SbcCD to regulate and repair DNA has been shown to be essential for the stability and proliferation of some bacteriophages (99). During DNA replication, palindromic sequences will create hairpin-like structures that can inhibit the progression of DNA polymerase (100) SbcC and SbcCD proteins work together to cleave both double- stranded and single-stranded DNA and have been shown to recognize and specifically cleave hairpin structures.

This breaks down the replication fork, allowing the genome to be repaired through recombination, so replication can proceed (99, 100). The proteins SbcC and SbcCD nucleases preserve the viability of the genome by allowing replication without excising the palindromic sequences (100). There are many types of DNA damage that may occur within a genome, making recombination and repair of DNA important, such as mutations due to UV damage. UV damage creates kinks or abnormalities within a genome and prohibits proliferation. Exodeoxyribonuclease VIII breaks double stranded DNA, and degrades a genome on both 5' ends (101, 102). This allows the kinked and abnormal portions of a genome to be straightened and repaired through homologous recombination. Additionally, exodeoxyribonuclease VIII does not require ATP to perform DNA repair, enabling repair of the genome even in low-energy environments where the bacteriophage does not have access to ATP (102). We hypothesize that exodeoxyribonuclease VIII enables the bacteriophages to remain stable despite mutations from

UV damage. However, unique from our other predicted structure alignments, the protein from RAY does not match up well with other exodeoxyribonuclease VIII homologs (see supplementary figure 3.S2B). It is possible that since these proteins do not have the same protein folding and alignment, they may not have the same function but a related, adapted function.

In the Agrican357virus bacteriophages, there are several encoded proteins with conserved domains of the thymidylate kinase and thymidine kinase (see supplementary table 3.S2). Structural prediction and alignment confirm these proteins as likely thymidine kinases (see supplementary figure 3.S2C and 3.S2D), a necessary step due to the distant relationship (low evalues) of Agrican357virus bacteriophage proteins when compare to other biological entities. Thymidine kinase is an enzyme that catalyzes the phosphorylation of thymidine monophosphate (103). Thymidylate kinase then catalyzes the phosphorylation of thymidine diphosphate (104), which is an essential precursor for DNA (105). Therefore, these proteins are regulatory enzymes that make bacteriophage cell growth and survival possible by aiding proliferation through the synthesis of DNA (104, 105, 106). Other proteins shown in supplementary figure 3.S2.E and 3.S2.F are putative UvsX recombinase and a putative SF2 helicase with conserved helicase domain known as UvsW, which finishes the recombination (107, 108). UvsX and UvsW are proteins that have been known to work together to repair broken replication forks through homologous recombination (Maher and Morrical, 2013; Kadyrov and Drake, 2004). Homologous recombination is one of the most efficient ways to have error free DNA repair and is beneficial to bacteriophages to have this repair mechanism. These repair mechanisms would be important to the bacteriophages because it would not only help repair broken replication forks but it would also help repair damaged or broken DNA (109, 110). It has been shown that the absence of UvsX increases UV sensitivity (110).

51

3.5 Conclusion

Agrican357virus genus of bacteriophages are Myoviridae with dsDNA, large capsids, long contractile tails and high GC content. Their genomes are nearly identical (>94% ANI). All three dot plots (whole genome, major capsid protein, and terminase protein) show no close similarity between the Agrican357virus family and any of the other bacteriophages on NCBI (see fig. 3.3A, 3.3B, and 3.3C). We have also found that the Agrican357virus cluster is more closely related to bacteriophages infecting *Pseudomonas* and *Ralstonia*, than those infecting *E*. *amylovora*. The contrast that we observe between this cluster of bacteriophages and the distantly related bacteriophage analyzed by dot plot contributes valuable information about evolutionary relationships between these other clusters (see figure 3.3), suggesting the distant relationship may emphasize the importance of ecological niche, since most other *Enterobacteriales* bacteriophages isolated infect animal pathogens rather than plant pathogens. It may also, however, simply indicate the abundance of unstudied bacteriophages. The Agrican357virus family of bacteriophages is a novel family, with very low similarity to any other viruses, providing approximately 250 novel proteins to add to the viral dark matter that have no homolog by blastp (92). To understand a bacteriophage, it is vital to understand the encoded proteome. A bacteriophage's proteins determine how effectively it can infect bacteria, and how stable and safe it would be to use in a phage cocktail (a mixture of bacteriophages used together for phage therapy). Of the proteins with predicted function, this family encodes primarily DNA metabolism and repair proteins. Since the bacteriophage host, E. amylovora, is found primarily on the blossoms of fruit trees of the Rosaceae family, these proteins may be particularly vital due to the onset of UV radiation including putative thymidine and thymidylate kinases which aid the production of the nucleotide thymine for DNA synthesis (104), putative SbcC and SbcCD

52

proteins which protect against DNA damage by cleaving harmful hairpin structures during replication (99), putative exodeoxyribonuclease VIII which makes double stranded DNA breaks to help repair DNA damage at low energy (101), and putative UvsX recombinase and putative SF2 helicase which aid in repair and recombination of DNA (109). The small burst size we report herein for these jumbo bacteriophages (~4.6 functional virions), may require a high level of fidelity to ensure success in the environment.

A paper published in 2003 on evolutionary pathways of *P. aeruginosa* bacteria demonstrated that phiKZ-like bacteriophages have a very broad host range (111). In 1995, Campbell et al (112) isolated bacteriophages from barley rhizosphere that infected Pseudomonas spp. other than P. aeruginosa. These bacteriophages displayed great morphological similarity to phiKZ-like bacteriophages despite low genomic similarity (89; 111, 29). Similarly, Agrican357 virus bacteriophages display proteomic similarity to phiKZ-like bacteriophages, particularly with their structural proteins, with little genomic synteny. These results suggest the phiKZ-like bacteriophages are highly divergent, derived from a common ancestor and successful in a wide range of ecological niches. It is highly likely that Agrican357virus family evolved through both mutational divergence and modular evolution (acquisition of larger regions of DNA, or modules), which is a common phenomenon in bacteriophages (113), and yet there is extremely low variance in all isolates thus far (>94% ANI). Such high conservation in these large genomes may reflect selective forces on a majority of the genome, which is for the most part uncharacterized. The great challenge ahead is both the abundance of bacteriophages that are completely uncharacterized, and the abundance of novel proteins harbored in their genomes.

3.6 Acknowledgements

Genomics and Evolutionary Science (SEA-PHAGES) for support and training on bacteriophage analysis, Steven Cresawn training on Phamerator, Majid Ghassemian and BMPMSF at UCSD for carrying out mass spectrometry, George W Sundin for donating *E. amylovora* strains, Edward Wilcox from the BYU Sequencing Center, Michael Standing from the BYU Microscopy Lab, David Parady and Brandon Ekins from Life Science IT at BYU for hosting DNAmaster and PhamDB on BYU server, Tsz Ching Tam for media preparation, Daniel Arens for helping with cloning and Yomesh Sharma for helping with the formatting of manuscript. We would also like to thank the following undergraduates from the BYU Phage hunters' program for their contributions to isolation of the bacteriophages: Garrett Jensen, Jared Kruger, Madison Melville, Trevon Galbraith, Savannah Grossarth, Hannah Ferguson and Austin Simister.

3.7 Supplementary data

Supplementary Table 3.S1 Average Nucleotide Identity of *Agrican357viruses*- Deimos-Minion, RAY, Special G, Simmy50, Desertfox, Mortimer, Bosolaphorus, MadMel and Ea35-70 suggests a single cluster of related bacteriophages with little or no similarity to other bacteriophages . The genome sequences of all eight bacteriophages were compared against one phage from each potential cluster formed in whole genome dot plot analysis. Bacteriophages used in this analysis are *Erwinia* bacteriophages Deimos-Minion (KU886225) , RAY (KU886224), Simmy50 (KU886223), Special G (KU886222), Desertfox (MG655268), Bosolaphorus (MG6552687), MadMel (MG655269), Mortimer (MG655270), Ea35-70 (NC_023557), PhiEaH1 (NC_023610), Rexella (KX098390), Huxley (NC_031127), Yoloswag (KY448244), Joad (MF459647), SunLIRen (MH426725), phiEa21-4 (NC_011811) and Pavtok (MH426726) Salmonella phage SPN3US (NC_07402), Pseudomonas phage phiKZ (AF399011), 201phi2-1 (NC_010821) and Ralstonia phage RSL2 (AP014693).

Color coding based on decreasing order of similarity: dark grey (<100%) to light grey (<50%).

	Ea35-70	Special G	Simmy50	Deimos-Minion	RAY	Mortimer	Bosolaphorus	Desertfox	MadMel	Joad	SPN3US	Huxley	201phi2-1	Yoloswag	phiKZ	RSL2	phiEaH1	Rexella	SunLiRen	phiEa21-4	Pavtok
Ea35-70	100																				
Special G	95.3	100																			
Simmy50	95.5	96.7	100																		
Deimos- Minion	95.3	94.5	94.7	100																	
RAY	96	96.7	97.4	95.2	100																
Mortimer	95.6	96	96.6	95.3	96.9	100															
Bosolaphorus	94.8	95.7	96.2	95.9	96.8	97.1	100														
Desertfox	95.3	94.9	94.9	96.1	95.4	96.1	96.2	100													
MadMel	94.6	96.4	95.1	96.4	95.3	95.4	95.6	96.3	100												
Joad	33.4	33	33.1	33.1	33.3	32.9	33.1	33.1	32.8	100											
SPN3US	28	27.7	27.8	27.7	28	27.6	27.8	27.8	27.5	26.7	100										
Huxley	28.3	28	28	28	28.2	27.9	28	28.1	27.7	26.8	52.6	100									
201phi2-1	25.4	25.2	25.2	25.1	25.3	25.1	25.2	25.2	25	22.5	23.2	23.2	100								
Yoloswag	25.5	25.2	25.2	25.2	25.4	25.1	25.3	25.2	25	23.7	24.5	24.5	23.1	100							
phiKZ	24.4	24.2	24.2	24.2	24.4	24.2	24.2	24.2	24.1	22.5	23.2	23.1	24.8	24.4	100						
RSL2	24.4	24.1	24.1	24.1	24.3	24	24.2	24.1	23.9	23.8	24.7	25	21	24.5	21.5	100					
phiEaH1	20.7	20.5	20.5	20.5	20.7	20.5	20.6	20.6	20.4	19.6	20.2	20.3	19	20.4	35.1	19.3	100				
Rexella	15.8	15.6	15.6	15.6	15.7	15.5	15.6	15.6	15.5	12.8	10.3	10.3	7.7	8.6	7.9	9.9	7.8	100			
SunLiRen	9.8	9.7	9.8	9.7	9.8	9.7	9.8	9.8	9.7	10.2	10.2	10.2	15.4	9.4	8.9	10.4	8.5	7.7	100		
phiEa21-4	9.8	9.7	9.8	9.7	9.8	9.7	9.8	9.8	9.7	10.2	10.2	10.2	15.4	9.4	8.9	10.4	8.5	7.7	97.6	100	
Pavtok	7	6.9	6.9	6.9	7	6.9	7	7	6.9	7.1	7.3	7.4	5.7	13.6	6	8.1	6.6	6	6.1	6.1	100

Supplementary Table 3.S2 Putative gene products predicted to encode mechanisms of replication and DNA repair

Protein	Deimos- Minion	Simmy50	RAY	Special G	Mortimer	Desertfox	Bosolaphor us	MadMel				
DNA repair proteins												
SbcC-like proteins	gp23	gp24	gp23	gp23	gp23	gp23	gp23	gp23				
exodeoxyribonuclease VIII	gp67	gp67	gp64	gp67	gp66	gp64	gp65	gp66				
SbcCD, D subunit	gp244	gp244	gp238	gp242	gp244	gp239	gp241	gp242				
RADZ/SF2 Helicase	gp256	gp256	gp250	gp254	gp256	gp251	gp252	gp253				
UvsX protein	gp155	gp153	gp150	gp152	gp154	gp150	gp151	gp151				
Replication Proteins												
thymidine kinase	gp118	gp116	gp113	gp115	gp117	gp113	gp114	gp114				
thymidylate kinase	gp317	gp316	gp311	gp315	gp318	gp313	gp314	gp314				

Supplementary Figure 3.S1 Classification of proteins demonstrates the uniqueness of *Agrican357virus* bacteriophages due to A) abundance of novel proteins found in RAY and, B) by discovering majority of proteins with predicted function as structural genes. NCBI translated BLAST (blastx) was used to find the novel proteins in the genome of the bacteriophage RAY (BLAST hit of an e-value less than 1e-04 and no hit outside of the Agrican357virus bacteriophages).

Supplementary Figure 3.S2 Predicting putative protein structure of interesting proteins from *Agrican357virus* family via Raptor . Conserved domains for all bacteriophages in the family were found using the NCBI Conserved Domain Database (1-3) with the acceptable return threshold set at E-value < 3e-5. RaptorX (4-6) was used to predict tertiary structure and binding sites and to produce the possible images of Agrican357virus proteins. These predicted structures were used to show similarity between putative and known proteins as evidence that these proteins may indeed perform the given putative functions (4, 5, 7)The predicted fold of the proteins from the phage RAY is shown in blue and the known crystallography structures of these proteins are shown in green A) SbcCD protein of RAY with MRE11 B) Exodeoxyribonuclease VIII protein of RAY with exodeoxyribonuclease VIII of E. coli C) thymidine kinase of RAY with thymidine kinase from *Thermotoga maritime* D) Thymidylate kinase of RAY with thymidylate kinase of Mycobacterium tuberculosis. E) UvsW and F) UvsX of RAY with UvsW and UvsX from T4 help confirm putative functions.
3.7.1 References for supplementary material

- Marchler-Bauer, A., J. B. Anderson, C. DeWeese-Scott, N. D. Fedorova, L. Y. Geer, S. He, D. I. Hurwitz, *et al.* "Cdd: A Curated Entrez Database of Conserved Domain Alignments." [In eng]. *Nucleic Acids Res* 31, no. 1 (Jan 1 2003): 383-7.
- Marchler-Bauer, A., J. B. Anderson, P. F. Cherukuri, C. DeWeese-Scott, L. Y. Geer, M. Gwadz, S. He, *et al.* "Cdd: A Conserved Domain Database for Protein Classification." [In eng]. *Nucleic Acids Res* 33, no. Database issue (Jan 1 2005): D192-6.
- Marchler-Bauer, A., M. K. Derbyshire, N. R. Gonzales, S. Lu, F. Chitsaz, L. Y. Geer, R. C. Geer, *et al.* "Cdd: Ncbi's Conserved Domain Database." [In eng]. *Nucleic Acids Res* 43, no. Database issue (Jan 2015): D222-6.
- 4. Wang, S., J. Peng, and J. Xu. "Alignment of Distantly Related Protein Structures: Algorithm, Bound and Implications to Homology Modeling." [In eng]. *Bioinformatics* 27, no. 18 (Sep 15 2011): 2537-45.
- 5. Wang, S., J. Ma, J. Peng, and J. Xu. "Protein Structure Alignment Beyond Spatial Proximity." [In eng]. *Sci Rep* 3 (2013): 1448.
- 6. Peng, J., and J. Xu. "Raptorx: Exploiting Structure Information for Protein Alignment by Statistical Inference." [In eng]. *Proteins* 79 Suppl 10 (2011): 161-71.
- Kallberg, M., H. Wang, S. Wang, J. Peng, Z. Wang, H. Lu, and J. Xu. "Template-Based Protein Structure Modeling Using the Raptorx Web Server." [In eng]. *Nat Protoc* 7, no. 8 (Jul 19 2012): 1511-2

REFERENCES

- 1. Whitman, W. B., D. C. Coleman, and W. J. Wiebe. "Prokaryotes: The Unseen Majority." [In eng]. *Proc Natl Acad Sci U S A* 95, no. 12 (Jun 9 1998): 6578-83.
- 2. Wommack, K. E., and R. R. Colwell. "Virioplankton: Viruses in Aquatic Ecosystems." [In eng]. *Microbiol Mol Biol Rev* 64, no. 1 (Mar 2000): 69-114.
- 3. Bergh, O., K. Y. Borsheim, G. Bratbak, and M. Heldal. "High Abundance of Viruses Found in Aquatic Environments." [In eng]. *Nature* 340, no. 6233 (Aug 10 1989): 467-8.
- 4. Hambly, E., and C. A. Suttle. "The Viriosphere, Diversity, and Genetic Exchange within Phage Communities." [In eng]. *Curr Opin Microbiol* 8, no. 4 (Aug 2005): 444-50.
- Abedon, S. T., C. Thomas-Abedon, A. Thomas, and H. Mazure. "Bacteriophage Prehistory: Is or Is Not Hankin, 1896, a Phage Reference?" [In eng]. *Bacteriophage* 1, no. 3 (May 2011): 174-78.
- 6. Twort, F.W., L.R.C.P. LOND., M.R.C.S. "An Investigation on the Nature of Ultra-Microscopic Viruses." *The Lancet* 186, no. 4814 (1915): 1241-43.
- 7. Twort, F. W. "Further Investigations on the Nature of Ultra-Microscopic Viruses and Their Cultivation." [In eng]. *J Hyg (Lond)* 36, no. 2 (Jun 1936): 204-35.
- D'Herelle, F. "On an Invisible Microbe Antagonistic toward Dysenteric Bacilli: Brief Note by Mr. F. D'herelle, Presented by Mr. Roux. 1917." [In eng]. *Res Microbiol* 158, no. 7 (Sep 2007): 553-4.
- 9. Keen, E. C. "A Century of Phage Research: Bacteriophages and the Shaping of Modern Biology." [In eng]. *Bioessays* 37, no. 1 (Jan 2015): 6-9.
- 10. Chen, J., and R. P. Novick. "Phage-Mediated Intergeneric Transfer of Toxin Genes." [In eng]. *Science* 323, no. 5910 (Jan 2 2009): 139-41.
- Bollback, J. P., and J. P. Huelsenbeck. "Parallel Genetic Evolution within and between Bacteriophage Species of Varying Degrees of Divergence." [In eng]. *Genetics* 181, no. 1 (Jan 2009): 225-34.
- 12. Boyd, E. F. "Bacteriophage-Encoded Bacterial Virulence Factors and Phage-Pathogenicity Island Interactions." [In eng]. *Adv Virus Res* 82 (2012): 91-118.
- Shivaswamy, V. C., S. B. Kalasuramath, C. K. Sadanand, A. K. Basavaraju, V. Ginnavaram, S. Bille, S. S. Ukken, and U. N. Pushparaj. "Ability of Bacteriophage in Resolving Wound Infection Caused by Multidrug-Resistant Acinetobacter Baumannii in Uncontrolled Diabetic Rats." [In eng]. *Microb Drug Resist* 21, no. 2 (Apr 2015): 171-7.

- Sulakvelidze, A. "Phage Therapy: An Attractive Option for Dealing with Antibiotic-Resistant Bacterial Infections." [In eng]. *Drug Discov Today* 10, no. 12 (Jun 15 2005): 807-9.
- 15. Zwet TVD, Keil HL. Fireblight: A Bacterial Disease of Rosaceous Plants. 1979.
- 16. SV, Thomson. *Epidemiology of Fire Blight*. Fire Blight; the Disease and Its Causative Agent, Erwinia Amylovora. Edited by Vanneste JL. Wallingford, United Kingdom: CABI Publishing, 2000.
- 17. Esplin, I. N. D., J. A. Berg, R. Sharma, R. C. Allen, D. K. Arens, C. R. Ashcroft, S. R. Bairett, *et al.* "Genome Sequences of 19 Novel Erwinia Amylovora Bacteriophages." [In eng]. *Genome Announc* 5, no. 46 (Nov 16 2017).
- 18. Sharma R, Berg JA, Beatty NJ, Choi MC, Cowger AE, Cozzens BJR, Duncan SG, Fajardo CP, Ferguson HP, Galbraith T, Herring JA, Hoj TR, Durrant JL, Hyde JR, Jensen GL, Ke SY, Killpack S, Kruger JL, Lawrence EEK, Nwosu IO, Tam TC, Thompson DW, Tueller JA, Ward MEH, Webb CJ, Wood ME, Yeates EL, Baltrus DA, Breakwell DP, Hope S, Grose JH. "Genome Sequences of Nine Erwinia Amylovora Bacteriophages." *Microbiology Resource Announcements* 7 (October 11, 2018 2018).
- 19. Yagubi, A. I., A. J. Castle, A. M. Kropinski, T. W. Banks, and A. M. Svircev. "Complete Genome Sequence of Erwinia Amylovora Bacteriophage Vb_Eamm_Ea35-70." [In eng]. *Genome Announc* 2, no. 4 (Aug 21 2014).
- Adams, M. J., E. J. Lefkowitz, A. M. Q. King, B. Harrach, R. L. Harrison, N. J. Knowles, A. M. Kropinski, *et al.* "Changes to Taxonomy and the International Code of Virus Classification and Nomenclature Ratified by the International Committee on Taxonomy of Viruses (2017)." [In eng]. *Arch Virol* 162, no. 8 (Aug 2017): 2505-38.
- 21. Yuan, Y., and M. Gao. "Jumbo Bacteriophages: An Overview." [In eng]. *Front Microbiol* 8 (2017): 403.
- 22. Effantin, G., R. Hamasaki, T. Kawasaki, M. Bacia, C. Moriscot, W. Weissenhorn, T. Yamada, and G. Schoehn. "Cryo-Electron Microscopy Three-Dimensional Structure of the Jumbo Phage Phirsl1 Infecting the Phytopathogen Ralstonia Solanacearum." [In eng]. *Structure* 21, no. 2 (Feb 5 2013): 298-305.
- 23. Yuan, Y., and M. Gao. "Proteomic Analysis of a Novel Bacillus Jumbo Phage Revealing Glycoside Hydrolase as Structural Component." [In eng]. *Front Microbiol* 7 (2016): 745.
- Thomas, J. A., M. R. Rolando, C. A. Carroll, P. S. Shen, D. M. Belnap, S. T. Weintraub, P. Serwer, and S. C. Hardies. "Characterization of Pseudomonas Chlororaphis Myovirus 201varphi2-1 Via Genomic Sequencing, Mass Spectrometry, and Electron Microscopy." [In eng]. *Virology* 376, no. 2 (Jul 5 2008): 330-8.

- Danis-Wlodarczyk, K., D. Vandenheuvel, H. B. Jang, Y. Briers, T. Olszak, M. Arabski, S. Wasik, *et al.* "A Proposed Integrated Approach for the Preclinical Evaluation of Phage Therapy in Pseudomonas Infections." [In eng]. *Sci Rep* 6 (Jun 15 2016): 28115.
- 26. Monson, R., I. Foulds, J. Foweraker, M. Welch, and G. P. Salmond. "The Pseudomonas Aeruginosa Generalized Transducing Phage Phipa3 Is a New Member of the Phikz-Like Group of 'Jumbo' Phages, and Infects Model Laboratory Strains and Clinical Isolates from Cystic Fibrosis Patients." [In eng]. *Microbiology* 157, no. Pt 3 (Mar 2011): 859-67.
- Bhunchoth, A., R. Blanc-Mathieu, T. Mihara, Y. Nishimura, A. Askora, N. Phironrit, C. Leksomboon, *et al.* "Two Asian Jumbo Phages, Varphirsl2 and Varphirsf1, Infect Ralstonia Solanacearum and Show Common Features of Varphikz-Related Phages." [In eng]. *Virology* 494 (Jul 2016): 56-66.
- 28. Shaburova, O. V., K. Hertveldt, D. M. de la Crus, S. V. Krylov, E. A. Pleteneva, M. V. Burkaltseva, R. Lavigne, G. Volcaert, and V. N. Krylov. "[Comparison of New Giant Bacteriophages Obp and Lu11 of Soil Pseudomonads with Bacteriophages of Phikz-Supergroup of Pseudomonas Aeruginosa]." [In rus]. *Genetika* 42, no. 8 (Aug 2006): 1065-74.
- 29. Sokolova, O. S., O. V. Shaburova, E. V. Pechnikova, A. K. Shaytan, S. V. Krylov, N. A. Kiselev, and V. N. Krylov. "Genome Packaging in El and Lin68, Two Giant Phikz-Like Bacteriophages of P. Aeruginosa." [In eng]. *Virology* 468-470 (Nov 2014): 472-78.
- Lecoutere, E., P. J. Ceyssens, K. A. Miroshnikov, V. V. Mesyanzhinov, V. N. Krylov, J. P. Noben, J. Robben, *et al.* "Identification and Comparative Analysis of the Structural Proteomes of Phikz and El, Two Giant Pseudomonas Aeruginosa Bacteriophages." [In eng]. *Proteomics* 9, no. 11 (Jun 2009): 3215-9.
- Yamada, T., S. Satoh, H. Ishikawa, A. Fujiwara, T. Kawasaki, M. Fujie, and H. Ogata.
 "A Jumbo Phage Infecting the Phytopathogen Ralstonia Solanacearum Defines a New Lineage of the Myoviridae Family." [In eng]. *Virology* 398, no. 1 (Mar 1 2010): 135-47.
- 32. Kurochkina, L. P., P. I. Semenyuk, N. N. Sykilinda, and K. A. Miroshnikov. "The Unique Two-Component Tail Sheath of Giant Pseudomonas Phage Pabg." [In eng]. *Virology* 515 (Feb 2018): 46-51.
- 33. Lee, J. H., J. Bai, H. Shin, Y. Kim, B. Park, S. Heu, and S. Ryu. "A Novel Bacteriophage Targeting Cronobacter Sakazakii Is a Potential Biocontrol Agent in Foods." [In eng]. *Appl Environ Microbiol* 82, no. 1 (Jan 1 2016): 192-201.
- Sullivan, M. B., M. L. Coleman, P. Weigele, F. Rohwer, and S. W. Chisholm. "Three Prochlorococcus Cyanophage Genomes: Signature Features and Ecological Interpretations." [In eng]. *PLoS Biol* 3, no. 5 (May 2005): e144.
- 35. Miller, E. S., J. F. Heidelberg, J. A. Eisen, W. C. Nelson, A. S. Durkin, A. Ciecko, T. V. Feldblyum, *et al.* "Complete Genome Sequence of the Broad-Host-Range Vibriophage

Kvp40: Comparative Genomics of a T4-Related Bacteriophage." [In eng]. *J Bacteriol* 185, no. 17 (Sep 2003): 5220-33.

- 36. Gibb, E. A., and D. R. Edgell. "Multiple Controls Regulate the Expression of Mobe, an Hnh Homing Endonuclease Gene Embedded within a Ribonucleotide Reductase Gene of Phage Aeh1." [In eng]. *J Bacteriol* 189, no. 13 (Jul 2007): 4648-61.
- Kim, J. H., J. S. Son, Y. J. Choi, C. H. Choresca, Jr., S. P. Shin, J. E. Han, J. W. Jun, and S. C. Park. "Complete Genome Sequence and Characterization of a Broad-Host Range T4-Like Bacteriophage Phias5 Infecting Aeromonas Salmonicida Subsp. Salmonicida." [In eng]. *Vet Microbiol* 157, no. 1-2 (May 25 2012): 164-71.
- Buttimer, C., H. Hendrix, H. Oliveira, A. Casey, H. Neve, O. McAuliffe, R. P. Ross, *et al.* "Things Are Getting Hairy: Enterobacteria Bacteriophage Vb_Pcam_Cbb." [In eng]. *Front Microbiol* 8 (2017): 44.
- Gill, J. J., J. D. Berry, W. K. Russell, L. Lessor, D. A. Escobar-Garcia, D. Hernandez, A. Kane, *et al.* "The Caulobacter Crescentus Phage Phicbk: Genomics of a Canonical Phage." [In eng]. *BMC Genomics* 13 (Oct 10 2012): 542.
- 40. Arens, D. K., T. S. Brady, J. L. Carter, J. A. Pape, D. M. Robinson, K. A. Russell, L. A. Staley, *et al.* "Characterization of Two Related Erwinia Myoviruses That Are Distant Relatives of the Phikz-Like Jumbo Phages." [In eng]. *PLoS One* 13, no. 7 (2018): e0200202.
- Simoliunas, E., L. Kaliniene, L. Truncaite, A. Zajanckauskaite, J. Staniulis, A. Kaupinis, M. Ger, M. Valius, and R. Meskys. "Klebsiella Phage Vb_Klem-Rak2 - a Giant Singleton Virus of the Family Myoviridae." [In eng]. *PLoS One* 8, no. 4 (2013): e60717.
- 42. Abbasifar, R., M. W. Griffiths, P. M. Sabour, H. W. Ackermann, K. Vandersteegen, R. Lavigne, J. P. Noben, *et al.* "Supersize Me: Cronobacter Sakazakii Phage Gap32." [In eng]. *Virology* 460-461 (Jul 2014): 138-46.
- 43. Thomas, J. A., S. C. Hardies, M. Rolando, S. J. Hayes, K. Lieman, C. A. Carroll, S. T. Weintraub, and P. Serwer. "Complete Genomic Sequence and Mass Spectrometric Analysis of Highly Diverse, Atypical Bacillus Thuringiensis Phage 0305phi8-36." [In eng]. *Virology* 368, no. 2 (Nov 25 2007): 405-21.
- Lavysh, D., M. Sokolova, M. Slashcheva, K. U. Forstner, and K. Severinov.
 "Transcription Profiling of Bacillus Subtilis Cells Infected with Ar9, a Giant Phage Encoding Two Multisubunit Rna Polymerases." [In eng]. *MBio* 8, no. 1 (Feb 14 2017).
- 45. Zhao, Y., and M. Qi. "Comparative Genomics of Erwinia Amylovora and Related Erwinia Species-What Do We Learn?" [In eng]. *Genes (Basel)* 2, no. 3 (Sep 15 2011): 627-39
- 46. Abramoff, M.D., P.J. Magalhaes, and S.J. Ram. "Image Processing with Imagej." no. Biophotonics International (2004).

- 47. Delbruck, M. "The Burst Size Distribution in the Growth of Bacterial Viruses (Bacteriophages)." [In eng]. *J Bacteriol* 50, no. 2 (Aug 1945): 131-5.
- 48. Hockett, K. L., and D. A. Baltrus. "Use of the Soft-Agar Overlay Technique to Screen for Bacterially Produced Inhibitory Compounds." [In eng]. *J Vis Exp*, no. 119 (Jan 14 2017).
- 49. Ritchie, D.F , and Klos E. J. "Isolation of Erwinia Amylovora Bacteriophage from Aerial Parts of Apple Trees." *Phytopathology* 67 (1976): 101-04.
- 50. McGhee, G. C., and G. W. Sundin. "Erwinia Amylovora Crispr Elements Provide New Tools for Evaluating Strain Diversity and for Microbial Source Tracking." [In eng]. *PLoS One* 7, no. 7 (2012): e41706.
- Sebaihia, M., A. M. Bocsanczy, B. S. Biehl, M. A. Quail, N. T. Perna, J. D. Glasner, G. A. DeClerck, *et al.* "Complete Genome Sequence of the Plant Pathogen Erwinia Amylovora Strain Atcc 49946." [In eng]. *J Bacteriol* 192, no. 7 (Apr 2010): 2020-1.
- 52. Pusey, P. L. "Crab Apple Blossoms as a Model for Research on Biological Control of Fire Blight." [In eng]. *Phytopathology* 87, no. 11 (Nov 1997): 1096-102.
- 53. Ishimaru, C.A, E. J. Klos, and R. R. Brubaker. "Multiple Antibiotic Production by Erwinia Herbicola." *Phytopathology* 78 (1987): 746-50.
- Smits, T. H., F. Rezzonico, T. Kamber, A. Goesmann, C. A. Ishimaru, V. O. Stockwell, J. E. Frey, and B. Duffy. "Genome Sequence of the Biocontrol Agent Pantoea Vagans Strain C9-1." [In eng]. *J Bacteriol* 192, no. 24 (Dec 2010): 6486-7.
- 55. Datsenko, K. A., and B. L. Wanner. "One-Step Inactivation of Chromosomal Genes in Escherichia Coli K-12 Using Pcr Products." *Proc Natl Acad Sci U S A* 97, no. 12 (Jun 6 2000): 6640-5.
- Gong, S., S. W. Bearden, V. A. Geoffroy, J. D. Fetherston, and R. D. Perry. "Characterization of the Yersinia Pestis Yfu Abc Inorganic Iron Transport System." [In eng]. *Infect Immun* 69, no. 5 (May 2001): 2829-37.
- 57. Fetherston, J. D., P. Schuetze, and R. D. Perry. "Loss of the Pigmentation Phenotype in Yersinia Pestis Is Due to the Spontaneous Deletion of 102 Kb of Chromosomal DNA Which Is Flanked by a Repetitive Element." [In eng]. *Mol Microbiol* 6, no. 18 (Sep 1992): 2693-704.
- Ren, Y., Y. Ren, Z. Zhou, X. Guo, Y. Li, L. Feng, and L. Wang. "Complete Genome Sequence of Enterobacter Cloacae Subsp. Cloacae Type Strain Atcc 13047." [In eng]. J Bacteriol 192, no. 9 (May 2010): 2463-4.
- 59. Otman, J, M.E. Perugini, M.C.B. Tognim, and M.C. Vidotto. "Atypical Phenotypic Characteristics of Klebsiella Pneumoniae Isolates from an Outbreak in a Neonatal Intensive Care Unit in Brazil." *Brazilian journal of microbiology* 38 (2007): 273-77.

- Nakamura, L. K., M. S. Roberts, and F. M. Cohan. "Relationship of Bacillus Subtilis Clades Associated with Strains 168 and W23: A Proposal for Bacillus Subtilis Subsp. Subtilis Subsp. Nov. And Bacillus Subtilis Subsp. Spizizenii Subsp. Nov." [In eng]. *Int J* Syst Bacteriol 49 Pt 3 (Jul 1999): 1211-5
- Gicova, A., M. Orieskova, L. Oslanecova, H. Drahovska, and E. Kaclikova.
 "Identification and Characterization of Cronobacter Strains Isolated from Powdered Infant Foods." [In eng]. *Lett Appl Microbiol* 58, no. 3 (Mar 2014): 242-7.
- 62. Iversen, C., A. Lehner, N. Mullane, E. Bidlas, I. Cleenwerck, J. Marugg, S. Fanning, R. Stephan, and H. Joosten. "The Taxonomy of Enterobacter Sakazakii: Proposal of a New Genus Cronobacter Gen. Nov. And Descriptions of Cronobacter Sakazakii Comb. Nov. Cronobacter Sakazakii Subsp. Sakazakii, Comb. Nov., Cronobacter Sakazakii Subsp. Malonaticus Subsp. Nov., Cronobacter Turicensis Sp. Nov., Cronobacter Muytjensii Sp. Nov., Cronobacter Dublinensis Sp. Nov. And Cronobacter Genomospecies 1." [In eng]. BMC Evol Biol 7 (Apr 17 2007): 64.
- 63. Cartagena, E., O. A. Colom, A. Neske, J. C. Valdez, and A. Bardon. "Effects of Plant Lactones on the Production of Biofilm of Pseudomonas Aeruginosa." [In eng]. *Chem Pharm Bull (Tokyo)* 55, no. 1 (Jan 2007): 22-5.
- Conway, H. F., W. C. Haynes, R. W. Jackson, J. M. Locke, T. G. Pridham, V. E. Sohns, and F. H. Stodola. "Pseudomonas Aureofaciens Kluyver and Phenazine Alpha-Carboxylic Acid, Its Characteristic Pigment." [In eng]. *J Bacteriol* 72, no. 3 (Sep 1956): 412-7.
- 65. Altschul, S. F., W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. "Basic Local Alignment Search Tool." [In eng]. *J Mol Biol* 215, no. 3 (Oct 5 1990): 403-10.
- 66. Gish, W., and D. J. States. "Identification of Protein Coding Regions by Database Similarity Search." [In eng]. *Nat Genet* 3, no. 3 (Mar 1993): 266-72.
- 67. Madden, T. L., R. L. Tatusov, and J. Zhang. "Applications of Network Blast Server." [In eng]. *Methods Enzymol* 266 (1996): 131-41.
- 68. Krumsiek, J., R. Arnold, and T. Rattei. "Gepard: A Rapid and Sensitive Tool for Creating Dotplots on Genome Scale." [In eng]. *Bioinformatics* 23, no. 8 (Apr 15 2007): 1026-8.
- Lamine, J. G., R. J. DeJong, and S. M. Nelesen. "Phamdb: A Web-Based Application for Building Phamerator Databases." [In eng]. *Bioinformatics* 32, no. 13 (Jul 1 2016): 2026-8.
- Cresawn, S. G., M. Bogel, N. Day, D. Jacobs-Sera, R. W. Hendrix, and G. F. Hatfull. "Phamerator: A Bioinformatic Tool for Comparative Bacteriophage Genomics." [In eng]. *BMC Bioinformatics* 12 (Oct 12 2011): 395.
- 71. Hauser, M., C. E. Mayer, and J. Soding. "Kclust: Fast and Sensitive Clustering of Large Protein Sequence Databases." [In eng]. *BMC Bioinformatics* 14 (Aug 15 2013): 248.

- 72. Huson, D. H., and D. Bryant. "Application of Phylogenetic Networks in Evolutionary Studies." [In eng]. *Mol Biol Evol* 23, no. 2 (Feb 2006): 254-67.
- 73. Katoh, K., K. Misawa, K. Kuma, and T. Miyata. "Mafft: A Novel Method for Rapid Multiple Sequence Alignment Based on Fast Fourier Transform." [In eng]. *Nucleic Acids Res* 30, no. 14 (Jul 15 2002): 3059-66.
- 74. Kearse, M., R. Moir, A. Wilson, S. Stones-Havas, M. Cheung, S. Sturrock, S. Buxton, *et al.* "Geneious Basic: An Integrated and Extendable Desktop Software Platform for the Organization and Analysis of Sequence Data." [In eng]. *Bioinformatics* 28, no. 12 (Jun 15 2012): 1647-9.
- 75. Zuckerkandl E ; Pauling, L. *Evolutionary Divergence and Convergence in Proteins*. *Edited in Evolving Genes and Proteins*. Evolving Genes and Proteins. Edited by V. Bryson and H.J. Vogel. New York: Academic Press, 1965.
- 76. Felsenstein, J. "Confidence Limits on Phylogenies: An Approach Using the Bootstrap." [In eng]. *Evolution* 39, no. 4 (Jul 1985): 783-91.
- Kumar, S., G. Stecher, M. Li, C. Knyaz, and K. Tamura. "Mega X: Molecular Evolutionary Genetics Analysis across Computing Platforms." [In eng]. *Mol Biol Evol* 35, no. 6 (Jun 1 2018): 1547-49.
- 78. Guttman, M., G. N. Betts, H. Barnes, M. Ghassemian, P. van der Geer, and E. A. Komives. "Interactions of the Npxy Microdomains of the Low Density Lipoprotein Receptor-Related Protein 1." [In eng]. *Proteomics* 9, no. 22 (Nov 2009): 5016-28.
- 79. McCormack, A. L., D. M. Schieltz, B. Goode, S. Yang, G. Barnes, D. Drubin, and J. R. Yates, 3rd. "Direct Analysis and Identification of Proteins in Mixtures by Lc/Ms/Ms and Database Searching at the Low-Femtomole Level." [In eng]. *Anal Chem* 69, no. 4 (Feb15 1997): 767-76.
- yuayuy, T. L., M. Boden, F. A. Buske, M. Frith, C. E. Grant, L. Clementi, J. Ren, W. W. Li, and W. S. Noble. "Meme Suite: Tools for Motif Discovery and Searching." [In eng]. *Nucleic Acids Res* 37, no. Web Server issue (Jul 2009): W202-8.
- 81. Grant, C. E., T. L. Bailey, and W. S. Noble. "Fimo: Scanning for Occurrences of a Given Motif." [In eng]. *Bioinformatics* 27, no. 7 (Apr 1 2011): 1017-8.
- 82. Berg, J. A., B. D. Merrill, J. T. Crockett, K. P. Esplin, M. R. Evans, K. E. Heaton, J. A. Hilton, *et al.* "Characterization of Five Novel Brevibacillus Bacteriophages and Genomic Comparison of Brevibacillus Phages." [In eng]. *PLoS One* 11, no. 6 (2016): e0156838.
- Lowe, T. M., and P. P. Chan. "Trnascan-Se on-Line: Integrating Search and Context for Analysis of Transfer Rna Genes." [In eng]. *Nucleic Acids Res* 44, no. W1 (Jul 8 2016): W54-7.

- Beletoile, A., D. Decre, S. Courant, V. Passet, J. Audo, P. Grimont, G. Arlet, and S. Brisse. "Phylogeny and Identification of Pantoea Species and Typing of Pantoea Agglomerans Strains by Multilocus Gene Sequencing." [In eng]. *J Clin Microbiol* 47, no. 2 (Feb 2009): 300-10.
- 85. Palmer, M., P. de Maayer, M. Poulsen, E. T. Steenkamp, E. van Zyl, T. A. Coutinho, and S. N. Venter. "Draft Genome Sequences of Pantoea Agglomerans and Pantoea Vagans Isolates Associated with Termites." [In eng]. *Stand Genomic Sci* 11 (2016): 23.
- 86. Lassmann, T., and E. L. Sonnhammer. "Kalign--an Accurate and Fast Multiple Sequence Alignment Algorithm." [In eng]. *BMC Bioinformatics* 6 (Dec 12 2005): 298.
- Smith, K. C., E. Castro-Nallar, J. N. Fisher, D. P. Breakwell, J. H. Grose, and S. H. Burnett. "Phage Cluster Relationships Identified through Single Gene Analysis." [In eng]. BMC Genomics 14 (Jun 19 2013): 410.
- Kuebler, D., and V. B. Rao. "Functional Analysis of the DNA-Packaging/Terminase Protein Gp17 from Bacteriophage T4." [In eng]. *J Mol Biol* 281, no. 5 (Sep 4 1998): 803-14.
- Mesyanzhinov, V. V., J. Robben, B. Grymonprez, V. A. Kostyuchenko, M. V. Bourkaltseva, N. N. Sykilinda, V. N. Krylov, and G. Volckaert. "The Genome of Bacteriophage Phikz of Pseudomonas Aeruginosa." [In eng]. *J Mol Biol* 317, no. 1 (Mar 15 2002): 1-19.
- 90. Merrill, B. D., A. T. Ward, J. H. Grose, and S. Hope. "Software-Based Analysis of Bacteriophage Genomes, Physical Ends, and Packaging Strategies." [In eng]. *BMC Genomics* 17 (Aug 26 2016): 679.
- 91. Garneau, Julian R, Florence Depardieu, Louis-Charles Fortier, David Bikard, and Marc Monot. "Phageterm: A Fast and User-Friendly Software to Determine Bacteriophage Termini and Packaging Mode Using Randomly Fragmented Ngs Data." *bioRxiv* (2017).
- 92. Hatfull, G. F. "Dark Matter of the Biosphere: The Amazing World of Bacteriophage Diversity." [In eng]. *J Virol* 89, no. 16 (Aug 2015): 8107-10.
- Chevalier, B. S., and B. L. Stoddard. "Homing Endonucleases: Structural and Functional Insight into the Catalysts of Intron/Intein Mobility." [In eng]. *Nucleic Acids Res* 29, no. 18 (Sep 15 2001): 3757-74.
- 94. Hertveldt, K., R. Lavigne, E. Pleteneva, N. Sernova, L. Kurochkina, R. Korchevskii, J. Robben, *et al.* "Genome Comparison of Pseudomonas Aeruginosa Large Phages." [In eng]. *J Mol Biol* 354, no. 3 (Dec 2 2005): 536-45.
- 95. Kim, W. S., and K. Geider. "Characterization of a Viral Eps-Depolymerase, a Potential Tool for Control of Fire Blight." [In eng]. *Phytopathology* 90, no. 11 (Nov 2000): 1263-8.

- 96. Emrich, J., and G. Streisinger. "The Role of Phage Lysozyme in the Life Cycle of Phage T4." [In eng]. *Virology* 36, no. 3 (Nov 1968): 387-91.
- 97. Cornelissen, A., P. J. Ceyssens, V. N. Krylov, J. P. Noben, G. Volckaert, and R. Lavigne. "Identification of Eps-Degrading Activity within the Tail Spikes of the Novel Pseudomonas Putida Phage Af." [In eng]. *Virology* 434, no. 2 (Dec 20 2012): 251-6.
- 98. Majkowska-Skrobek, G., A. Latka, R. Berisio, B. Maciejewska, F. Squeglia, M. Romano, R. Lavigne, C. Struve, and Z. Drulis-Kawa. "Capsule-Targeting Depolymerase, Derived from Klebsiella Kp36 Phage, as a Tool for the Development of Anti-Virulent Strategy." [In eng]. Viruses 8, no. 12 (Dec 1 2016).
- 99. Connelly, J. C., L. A. Kirkham, and D. R. Leach. "The Sbccd Nuclease of Escherichia Coli Is a Structural Maintenance of Chromosomes (Smc) Family Protein That Cleaves Hairpin DNA." [In eng]. *Proc Natl Acad Sci U S A* 95, no. 14 (Jul 7 1998): 7969-74.
- Leach, D. R., E. A. Okely, and D. J. Pinder. "Repair by Recombination of DNA Containing a Palindromic Sequence." [In eng]. Mol Microbiol 26, no. 3 (Nov 1997): 597-606.
- 101. Joseph, J. W., and R. Kolodner. "Exonuclease Viii of Escherichia Coli. I. Purification and Physical Properties." [In eng]. *J Biol Chem* 258, no. 17 (Sep 10 1983): 10411-7
- 102. Kolodner, R., S. D. Hall, and C. Luisi-DeLuca. "Homologous Pairing Proteins Encoded by the Escherichia Coli Rece and Rect Genes." [In eng]. *Mol Microbiol* 11, no. 1 (Jan 1994): 23-30.
- 103. Kokoris, M. S., and M. E. Black. "Characterization of Herpes Simplex Virus Type 1 Thymidine Kinase Mutants Engineered for Improved Ganciclovir or Acyclovir Activity." [In eng]. Protein Sci 11, no. 9 (Sep 2002): 2267-72.
- 104. Doharey, P. K., S. K. Singh, P. Verma, A. Verma, S. Rathaur, and J. K. Saxena. "Insights into the Structure-Function Relationship of Brugia Malayi Thymidylate Kinase (Bmtmk)." [In eng]. *Int J Biol Macromol* 88 (Jul 2016): 565-71.
- 105. Chaudhary, S. K., J. Jeyakanthan, and K. Sekar. "Cloning, Expression, Purification, Crystallization and Preliminary X-Ray Crystallographic Study of Thymidylate Kinase (Ttha1607) from Thermus Thermophilus Hb8." [In eng]. Acta Crystallogr Sect F Struct Biol Cryst Commun 69, no. Pt 2 (Feb 1 2013): 118-21.
- 106. Cui, Q., W. S. Shin, Y. Luo, J. Tian, H. Cui, and D. Yin. "Thymidylate Kinase: An Old Topic Brings New Perspectives." [In eng]. *Curr Med Chem* 20, no. 10 (2013): 1286-305.
- 107. Gajewski, S., M. R. Webb, V. Galkin, E. H. Egelman, K. N. Kreuzer, and S. W. White. "Crystal Structure of the Phage T4 Recombinase Uvsx and Its Functional Interaction with the T4 Sf2 Helicase Uvsw." [In eng]. *J Mol Biol* 405, no. 1 (Jan 7 2011): 65-76.

- 108. Madej, T., J. F. Gibrat, and S. H. Bryant. "Threading a Database of Protein Cores." [In eng]. *Proteins* 23, no. 3 (Nov 1995): 356-69.
- 109. Maher, R. L., and S. W. Morrical. "Coordinated Binding of Single-Stranded and Double-Stranded DNA by Uvsx Recombinase." [In eng]. *PLoS One* 8, no. 6 (2013): e66654.
- 110. Kadyrov, F. A., and J. W. Drake. "Uvsx Recombinase and Dda Helicase Rescue Stalled Bacteriophage T4 DNA Replication Forks in Vitro." [In eng]. *J Biol Chem* 279, no. 34 (Aug 20 2004): 35735-40.
- 111. Krylov, V., E. Pleteneva, M. Bourkaltseva, O. Shaburova, G. Volckaert, N. Sykilinda, L. Kurochkina, and V. Mesyanzhinov. "Myoviridae Bacteriophages of Pseudomonas Aeruginosa: A Long and Complex Evolutionary Pathway." [In eng]. *Res Microbiol* 154, no. 4 (May 2003): 269-75.
- 112. Campbell, J.I.A, M Albrechtsen, and J Sorensen. "Large Pseudomonas Phages Isolated from Barley Rhizosphere." *FEMS Microbiol Ecology* 18 (1995): 63-74.
- 113. Botstein, D. "A Theory of Modular Evolution for Bacteriophages." [In eng]. *Ann N Y Acad Sci* 354 (1980): 484-90.

CHAPTER 4: Classification and Proteomic Analysis of *Enterobacteriales* Bacteriophages 4.1 Abstract

The *Enterobacteriaceae* family of bacteria contain many well characterized pathogens including *E. coli, Salmonella, Klebsiella* and *Shigella*. Bacteriophages that infect this family were many of the first identified and remain some of the best characterized such as T4, T7, Lambda and P22. Due to the sheer number of bacteriophages and their ability to transfer genetic material, bacteriophages play a central role in the evolution of bacteria, including pathogenic strains. Thus, analysis of bacteriophage genomes and proteomes can provide insight into specific host/phage interactions as well as the evolution of pathogenic strains. Herein we analyze and compare 1041 bacteriophage genomes from phages known to infect the *Enterobacteriaceae*. These bacteriophages fall into 92 clusters including 24 singletons of related phages. The proteomes of 597 lytic phages were examined further, revealing the highly unstudied nature of bacteriophages, with 84% of the proteins having unknown function.

4.2 Introduction

Phages are viruses that infect bacteria. With an estimated 10^{31} bacteriophages in the biosphere, they are the most abundant and diverse biological entities on the planet (1). Despite the astounding number and ubiquitous nature of bacteriophages, they have yet to be well characterized due in part to the eclectic nature of their diverse genetic makeup (2, 3). Insights into the tremendous impact that bacteriophages have in shaping microbial evolution and ecology has, in recent years, piqued an interest in bacteriophage as a method for vicariously studying their bacterial hosts (4). The development of many practical applications of phage, including the development of phage therapies to combat antibiotic resistant bacteria, has likewise contributed to what has been referred to as the renaissance of phage research (5, 6).

The *Enterobacteriaceae* phages were many of the first identified and remain some of the best characterized. These phages infect such well characterized hosts as *Salmonella* and *E. coli*, and their contributions to the evolution of the pathogenic members of the *Enterobacteriaceae are* poorly understood. Large scale analysis of bacteriophage nucleotides and proteomes may reveal unique host/phage interactions which may contribute heavily to the evolution and speciation of various strains, including pathogenic strains. As new phages continue to be isolated and sequenced, the need for bioinformatic analysis and a succinct form of phage classification and comparison becomes increasingly urgent (7).

This study builds upon the methods set forth by Graham Hatfull and coworkers for analyzing mycobacteriophage relationships (8-10). In 2014, we used similar methods to analyze and compare 337 *Enterobacteriaceae* infecting phages by genomic analysis, which divided convincingly into 56 distinct clusters based on >50% syntenic similarity. Within the established clusters, phages could be further segregated into 132 subclusters based on higher degrees of genomic homology. Having been studied in both Gram positive (*Mycobacteria*) and Gram negative (*Enterobacteriaceae*) hosts, these findings suggested that genomic comparison was a viable method for phage identification despite the mosaic nature of bacteriophage genome composition (11).

Since 2014, hundreds of additional *Enterobacteriaceae* phages have been isolated and sequenced making over a thousand available in GenBank. Here we discuss the classification and comparison of 1041 *Enterobacteriaceae* phage by whole genome nucleotide dot plot analysis (see supplementary figure S.41 for the phages analyzed). The cluster and subcluster classifications established in 2014 by Grose and Casjens are conserved and expanded. In addition to the nucleotide-based classifications, phage comparison is also considered by observing

similarities in the phage proteomes between and among cluster and subcluster groupings. The phage proteasome is also analyzed on a broader level, by identifying and categorizing all proteins found in 597 of the lytic *Enterobacteriaceae* phages based on known function. 4.3 Materials and methods

4.3.1 Comparative genomic nucleotide analysis using Gepard dot plots

All phages known to infect the bacterial family *Enterobacteriaceae* that had complete genomic sequences recorded on the National Center of Biotechnology Information (NCBI) website as of March 25, 2019 were recorded and preliminarily sorted into previously established clusters based on major capsid protein similarities by Julianne Grose and Sherwood Casjens. The correlation between MCP type and cluster membership was established by Julianne Grose and Sherwood Casjens in their publication: *Understanding the enormous diversity of bacteriophages: the tailed phages that infect the bacterial family Enterobacteriaceae* (10).

For simplicity, granted the vast number of *Enterobacteriaceae* infecting phages and in order to facilitate a more detailed analysis of specific clusters, 7 of the 49 lytic phage clusters were the focus of this study and none of the temperate clusters were selected for subsequent exploration. Those chosen clusters included: Lytic 1, Lytic 3, Lytic 4, Lytic 13, Lytic 14, Lytic 15, and Lytic 16. FASTA files were obtained for each phage from the NCBI website, and the program Gepard (12) was used to create homology dot plots, compared with a Gepard word size of 10. Upon confirmation of the initial MCP cluster classification, phages were subsequently rearranged within the clusters, according to the nucleotide homology, to reveal neatly organized subclusters of higher nucleotide homology within each cluster.

4.3.2 Comparative proteome analysis of clusters and subclusters.

Proteomic similarities among the distinct clusters were then determined. This was achieved by first obtaining GenMark files from the NCBI website for one representative phage from each of the seven clusters and performing the necessary annotation corrections using the program DNAmaster (http://cobamide2.bio.pitt.edu/). Those phages that required annotation corrections are recorded in the table found in supplementary table 4.S3. A database was then created using PhamDB (13) containing these phages and run through the program Phamerator (14) to generate a pham map of the genomes, which compares nucleotide and protein similarities in a representative dot plot. This bioinformatic tool presents the unique proteins of each phage as multicolored boxes along the genome to create a simple and aesthetically pleasing way to facilitate the visual identification of proteins conserved among the distinct clusters. A similar process was also performed to compare the subclusters of Lytic 1 phages, by selecting one representative phage from each subcluster for comparison. To determine protein conservation within a subcluster, all phages pertaining to subcluster B of the Lytic 1 cluster were likewise compared in the same manner.

4.3.3 Genomic and proteome comparison of Lytic 1 cluster.

The average nucleotide identity (ANI) was obtained using MAFFT (15) plugin in Geneious (16) for all 74 phages of the Lytic 1 cluster. Similar to the Gepard dot plot, ANI is a tool for nucleotide comparison, but in addition to visually representing homology through shading, it also provides a numerical value for percent homology between genomes. Previous publications had determined that clusters should be identified by >50% syntenic homology. To facilitate comparison to the Lytic 1 whole genome pham maps (showing nucleotide and protein conservation) and a Gepard dot plot were constructed with one phage from each of the 9 subclusters. The nucleotide homology represented in the Gepard dot plot and the proteomic homology shown in the pham map were then compared.

4.3.4 Proteome analysis among all Enterobacteriaceae infecting phages

On a much broader scale of proteomic comparison, all proteins from *Enterobacteriaceae* phages that had full genomic sequences recorded on the NCBI website as of March 25, 2019 were characterized, totaling 1041 lytic phages. Those that required annotation corrections are noted in the table found in supplementary table 4.S3. The program Phamerator (14) was then used to identify the proteins of each individual phage. Protein were separated into 14 categories based on function and protein conservation was identified. Those categories include: Phage structural proteins, bacterial structural proteins, proteases, chaperones, terminases, DNA metabolism, DNA recombination and repair, DNA binding proteins, CRISPR, virulence factors, cell lysis, unidentified proteins and other functions. The portion of the phage proteins pertaining to each category was noted. Those proteins conserved among 25 or more phage were also recorded.

4.3.5 SplitsTree analysis of singletons with one phage from each lytic cluster

SplitsTree (17) protein analysis was produced from the exported pham table of conserved proteins converted to a Nexus file using Janus (<u>http://cobamide2.bio.pitt.edu</u>). 49 phages (14 singletons and 1 phage each from remaining lytic clusters), were used in this analysis. The list of phages used in this analysis is provided in supplementary table 4.S4.

4.4 Results

4.4.1 Comparative genomic nucleotide analysis using Gepard dot plots

All phages known to infect the bacterial family *Enterobacteriaceae* that had complete genomic sequences recorded on the NCBI website as of March 25, 2019 were sorted initially into preliminary clusters based on homology found in the major capsid protein of each phage. MCP sequence comparison suggested 49 lytic phage clusters and 39 temperate phage clusters pertaining to the bacterial family *Enterobacteriaceae*. These preliminary clusters were subsequently confirmed by Gepard dot plot comparison, with a Gepard word size of ten. The preliminary cluster allocations that were performed based on MCP similarity were found to be remarkably accurate, with only 5 (0.4%) phages misclassified by MCP. These rare examples appear to be recent exchanges of MCP with phage from other clusters. A complete list of clusters and subclusters is provided in supplementary table 4.S1.

4.4.2 Comparative proteome analysis of clusters and sub clusters

As would be expected, a high degree of both proteomic and nucleotide similarity was displayed in the pham map comparing phages of Lytic 1 subcluster B (Figure 4.2). Shading indicates nucleotide sequence similarity determined by BLASTN, with purple shading indicated the highest level of genomic similarity and red shading indicating lower level of homology. Proteins are depicted as uniquely colored boxes. It can be visually noted that, while the alignment of the genomes may vary, they share a great deal of protein homology. In contrast to the strikingly similar genomes within the subcluster, the diversity between clusters of the *Enterobacteriaceae* infecting phages is quite different (Figure 4.3). Here, virtually no nucleotide homology is detected by BLASTN and a visual inspection of the proteins present reveals few

Figure 4.1 Panels I-VII display the Gepard dot plots of the seven clusters chosen to represent the 88 identified. Subcluster delineations, demarking closer relationships of phages, are seen in red. Blue lines help to visually distinguish homology between subcluster. (I) Lytic 1(T1-like) divided neatly into nine subclusters with three singletons. (II)Lytic3-(ViO1-like) divided neatly into five clusters. (III) Lytic 4 (T5-like) divided into five total subclusters, with subcluster E being a singleton and subcluster A containing the vast majority of phages. (IV) Lytic 13 (Chi-like) divided into five subclusters with two singletons, C and D.(V) Lytic 14 (Eco32-like) divided into three subclusters, with C being a singleton with homology to subcluster B. (VI) Lytic 15 (Felix-O1-like) divided into two subclusters, with A containing the majority of the phages. (VII) Lytic 16 (SETP3-like) divided into four subclusters, with D being a singleton. if any common proteins among any two phages. Due to great variety in lengths, genomes have

been broken into three section. Each section is labeled accordingly on the left side of the figure.

As is clearly demonstrated in figure 4.3, there is a great deal of diversity that exists between

phages not of the same cluster. Comparing figures 4.2 and 4.3 further emphasizes how

remarkably similar phages are within a subcluster and solidifies the logic in categorizing them as

such.

The most peculiar of the pham maps was that done for representative phages from each

subcluster within the Lytic 1 cluster (Figure 4.4). These phages notably display less BLASTN

identified nucleotide homology than phages within a subcluster. Most interesting, however, is

that a visual inspection of the proteins reveals a protein homology similar to that shared within

the subcluster. This figured called for confirmation as to the lower than expected level of nucleotide homology experienced within this cluster.

Previous publications have established that, clusters should display genomic similarity over at least 50% of the genome. The lack of BLASTN homology displayed in the Lytic 1 pham map (figure 4.4) was supported by a Gepard dot plot comparison between the 7 representative Lytic 1 phages included in the pham map (Figure 4.5). An ANI was performed to calculate percent similarity between all 74 phages of the Lytic 1 cluster. The ANI revealed that, while there remained a high degree of nucleotide homology among subclusters, similarity between phages of distinct subclusters was on average found to be significantly lower than 50%. This figure can be found in supplementary table 4.S2. It would appear that the average nucleotide similarity within a cluster had been reduced with the addition of more phages. Proteomic similarity within a cluster, however, remained higher. Approximately 50% of all proteins were shared in \geq 6 of the 9 representative phages, with 32% being conserved in all 9.

4.4.3 Proteome analysis among all *Enterobacteriaceae* infecting phages:

We now consider a much broader view of the bacteriophage proteome. The sequencing of many bacteriophage genomes has revealed remarkable diversity, including many novel proteins. It has been well noted that the phage genome is comprised of very few non-coding regions, but the function and essentiality of most phage proteins have yet to be identified [18]. In order to better quantify the wealth of diversity contained within phage proteomes, all proteins identified among 597 lytic *Enterobacteriaceae* infecting phages were categorized based on known function. Among this group, there was found to be a total of 11923 protein, 84 percent (1904 proteins) of which have functions yet to be discovered (Figure 4.6). Their categorization can be seen more clearly in Figure 4.7

Figure 4.2 Lytic 1 subcluster B Pham Map. Comparison of all phages of Lytic 1 subcluster B. From top to bottom: C119, e4/1c, AKS96, AHS24, AHP42, AHP24, KP26, Rogue1, JK06, JLA23, EB49. Proteins are indicated by colored markers with homologous proteins being the same color, while conserved domains are indicated by yellow boxes within the shaded protein box. Protein homologs are defined as having either 35% similarity or an e-value less than e-7 according to clustal omega alignment. Shading indicates nucleotide sequence similarity determined by BLASTN, purple shading indicated the highest level of genomic similarity, red shading indicating the lowest

Lytic 1	
Lytic 3	
Lytic 4	
Lutic 13	
	<mark>ala a serie de la constante de la consta</mark>
Lytic 14	
Lytic 15	
Lytic 16	
Lytic 1	
Lytic 3	
Lytic 4	
Lutic 13	
Lytic 14	
Lytic 15	ng mang ng mang ng mgang ng mgang ng mgang ng mga ng mg
Lytic 16	to part of the second
Tutic 1	
Lytic 3	
Lytic 4	
1.0.13	
LYBC 15	
Lytic 14	land As The Land As Th
Lytic 15	
Lytic 16	

Figure 4.3 Pham Map of *Enterobacteriaceae* infecting 7 Lytic Clusters. Lytic 1, Lytic3, Lytic4, Lytic13, Lytic14, Lytic15 and Lytic16 are seven clusters displaying no nucleotide homology and very low level of protein homology only seen in conderved domains. Proteins are indicated by boxes with homologous proteins being the same color, while conserved domains are indicated by yellow boxes within the shaded protein box. Protein homologs are defined as having either 35% similarity or an e-value less than e-7 according to clustal omega alignment. Shading between genomes indicates nucleotide sequence similarity determined by BLASTN, purple shading indicated the highest level of genomic similarity, red shading indicating the lowest.

Figure 4.4 Lytic 1 Pham Map. Vertical letters on the left indicate which subcluster of cluster Lytic 1 each phage represents. Proteins are indicated by colored markers with homologous proteins being the same color, while conserved domains are indicated by yellow boxes within the shaded protein box. Protein homologs are defined as having either 35% similarity or an e-value less than e-7 according to clustal omega alignment. Shading indicates nucleotide sequence similarity determined by BLASTN, purple shading indicated the highest level of genomic similarity, red shading indicating the lowest

Figure 4.5 Gepard dot plot of phages representative of each subcluster within the Lytic 1 cluster

Of additional interest in this study was the number of proteins common among the *Enterobacteriaceae* infecting phages. Nearly 60 percent of the 11923 proteins were found to be unique among 1 or 2 phages. While it is possible that such proteins contribute to the fitness of these phages, it is more likely that these proteins are transitive and unessential. This is much less likely to be the case, however, with more commonly shared proteins. Found to be conserved among \geq 25 phages were 614 of the 11923 proteins (Figure 4.8). Those common among \geq 100 phages were 243, with the most common protein being found in 299 unique phages. Of the proteins conserved among \geq 25 phages, more than half (325) have no known function. While their functions have yet to be revealed, the prevalence of these proteins serves as an indication as to their importance in phage proliferation. Discovery as to their function would contribute to our

Figure 4.6 Categorization of 11923 unique proteins. Among the complete genomes of 597 *Enterobacteriaceae* infecting lytic phages, 11923 unique proteins were identified using the program Phamerator. Of those proteins, 84% (10019 proteins) have yet to be characterized.

Figure 4.7 Distribution of all categorized proteins identified among 597 lytic *Enterobacteriaceae* infecting phages based on known function. Of the 1904 characterized proteins, the majority were found to be involved in DNA metabolism

Figure 4.8 Identifying conserved proteins in 597 Lytic phages. Of the 11923 protein identified among 597 lytic *Enterobacteriaceae* infecting phages, 614 were found to be conserved among \geq 25 phages. 325 of these have unknown function

understanding of the phage lifecycle and the ways in which phage interact with their bacterial hosts.

4.4.4 Cluster assignment confirmed by SplitsTree

5531 phams (protein families) from 49 phages were used to analyze the protein conservation between singleton and lytic clusters. A SplitsTree was inferred using the pham table created from Phamerator. The SplitsTree agrees with our current assignment of superclusters and clusters by putting phages of the same cluster closer to each other. Phages SETP3, Scapp, SO1, vB_PagS_MED16 and vB_Kp3 of supercluster SETP3 are seen much closer to each other than to other phages. Like wise phages from supercluster T7 (Peat1, KP34, vB_CskP_GAP227, SP6 and T7), rV5 (V5 and phi92) and N4 (N4 and vB_PatP_CB1) are seen branching of the same nodes. The most interesting thing is minimal number of conserved proteins. The most conserved of them was (number 2788) "bifunctional glutaredoxin", found only in 8 phages out of 49 followed by (pham number 1729) "nicotinamide phosphoribosyl transferase", found in 7 phages.

Figure 4.9 Protein conservation of 49 phages confirms the supercluster assignment by comparing their protein families. The singletons and supercluster of 2 or more phages are highlighted.

4.5 Conclusion

The initial cluster/subcluster classification pertaining to 1041 lytic phages that infect the bacterial family *Enterobacteriaceae* were initially performed using MCP comparison and then confirmed through Gepard dot plot analysis. Compared with the 337 phages analyzed in 2014 which fell into 53 clusters, these 1303 (1041 lytic and 262 temperate) form 88 new clusters. Thus a 3-fold increase in phages produces a 1.5-fold increase in clusters, suggesting we have in no way begun to tap the reservoir of phage diversity within the *Enterobacteriaceae family*. In

addition, the ability to expand those previously established clusters with newly sequenced phage supports such analyses as a viable method for categorizing bacteriophage. With the addition of more phage, it was noted that nucleotide similarity within a cluster fell below 50% genomic similarity between some phages, however nucleotide similarity remained 50% or greater with at least one other phage within a cluster. Nevertheless, proteomic similarity remained high (40% or greater), suggesting that protein similarity may be a significant factor to consider when making cluster/subcluster assignations. Several examples are provided with cases of phages having little nucleotide similarity, and overall proteomic conservation (>80%). With larger sample sizes, hallmark proteins of specific clusters may be identified and used to facilitate the categorization process.

The proteomic diversity displayed among *Enterobacteriaceae* infecting phage is impressive. While the bacteriophage genome is certainly eclectic, there are a high number of proteins (614 proteins or ~5%) commonly found to be conserved among a large number of phages (more than 25 phages). The frequency with which these proteins appear may be viewed as an indication of their importance in phage proliferation. Focusing research efforts on those most conserved proteins may prove revelatory in further explaining phage-host relationships.

4.6 Supplementary data

Supplementary Table 4.S1 Table containing all phages from the seven selected cluster. Corresponds with figures 4.1 panels I-VII.

CLUSTE	SubClust	Member phage	Host species	Accession number	Sequence publication	Genome size (bp)	Bacterial host family
Lytic1: T1-like	A	т1	Escherichia coli	AY216660	Virology 318:245	48836	Enterobacteriaceae
	A	Shfl1	Shigella flexneri	NC_015456		50661	Enterobacteriaceae
	A	ADB-2	Escherichia coli	JX912252	GenomeA 1:e00043-13	50552	Enterobacteriaceae
	A	BIFF	Escherichia coli	MH285980		49372	Enterobacteriaceae
	A	SH2	Escherichia coli	KY985004 MH051911		49088	Enterobacteriaceae
	A	IME167	Escherichia coli	MH051912		49794	Enterobacteriaceae
	A	ISF001	Shigella sonnei	MG049919	J Food Sci Tech 55:550	50552	Enterobacteriaceae
	A	ISF002	Shigella sonnei	MF093736	JMedMico jan 2018 in press	50564	Enterobacteriaceae
	A	JMPW1	Escherichia coli	KU194206		49628	Enterobacteriaceae
	A 	JMPW2	Escherichia coli Shigella flexperi	KU194205 MH017279		50298	Enterobacteriaceae
	A	Sfin-1	Escherichia coli/Shigella	MF468274		50403	Enterobacteriaceae
	A	SH6	Shigella sp.	KX828710	SciRep 7:40349	50552	Enterobacteriaceae
	A	pSf-2	Shigella flexneri	KP085586		50109	Enterobacteriaceae
	A	SRT8	Escherichia coli	MF996376	ID-sishianshiel 0040 Aug 00	49579	Enterobacteriaceae
	A B	IME347	Escherichia coli	MH051918	JBasicMicrobiol.2018Aug 26 Virol L9:207	45805	Enterobacteriaceae
	В	Sd1	Shigella dysenteriae	MF158042	JVirol 92:e02117-17	48262	Enterobacteriaceae
	в	Sf12	Shigella flexneri	MF158039	JVirol 92:e02117-17	47647	Enterobacteriaceae
	В	øKP26	Escherichia coli/S. enterica	KC579452	ArchVirol 158:2395	47285	Enterobacteriaceae
	В	JK06 (KP26?)	Escherichia coli	DQ121662	-	46072	Enterobacteriaceae
	B	ØJLA23	Escherichia coli	KC333879	GenAnn 1:e00219-12	43017	Enterobacteriaceae
	B	ØED49 ØC119	Escherichia coli	KT825490	Peer l:e2423	47160	Enterobacteriaceae
	B	AHS24	Escherichia coli	KF771238	PLoSOne 9:100426	46440	Enterobacteriaceae
	В	AHP42	Escherichia coli	KF771237	PLoSOne 9:100426	46847	Enterobacteriaceae
	В	AHP24	Escherichia coli	KF771236	PLoSOne 9:100426	46719	Enterobacteriaceae
	B	AKS96	Escherichia coli	KF771239	PLoSOne 9:100426	45746	Enterobacteriaceae
	B	C119 e4/1c	Escherichia coli	K 1825490	_	47319	Enterobacteriaceae
	C	Rtp	Escherichia coli	AM156809	JBACT 188:1419	46219	Enterobacteriaceae
	С	EC3a	Escherichia coli	KY398841		44234	Enterobacteriaceae
	С	IMM-001#	Escherichia coli	MF630922		32486	Enterobacteriaceae
	C	IME253	Escherichia coli	KX130960		46717	Enterobacteriaceae
	C C	ACG-M12	Escherichia coli	NC_019404 MG050172	Viruses 4:471	46054	Enterobacteriaceae
	D	F20#	Enterobacter aerogenes	JN67284	JGenVirol 93:2310	51543	Enterobacteriaceae
	D	GML-KpCol1	Klebsiella pneumoniae	MG552615		50249	Enterobacteriaceae
	D	JY917	Klebsiella pneumoniae	MG894052		37655	Enterobacteriaceae
	D	KP36	Klebsiella pneumoniae	NC_019781	VirolJ 10:100	49818	Enterobacteriaceae
	D	KPN N141 KnV522	Klebsiella preumoniae	KX237515		49090 51099	Enterobacteriaceae
	D	MezzoGao	Klebsiella pneumoniae	MF612072		49807	Enterobacteriaceae
	D	NJR15	Klebsiella pneumoniae	MH633487		49468	Enterobacteriaceae
	D	NJS1	Klebsiella pneumoniae	MH445453		49292	Enterobacteriaceae
	D	NJS2	Klebsiella pneumoniae	MH633485		50132	Enterobacteriaceae
	D	NJS3 PKP126	Klebsiella pneumoniae	MH033480	Park Arch\/riol in press	49387	Enterobacteriaceae
	D	1513	Klebsiella pneumoniae	KP658157		49462	Enterobacteriaceae
	D	Sushi	Klebsiella pneumoniae	KR262148		49037	Enterobacteriaceae
	D	TAH8	Klebsiella pneumoniae	MH633484		49344	Enterobacteriaceae
	D	KLPN1	Klebsiella pneumoniae	K1001920	PeerJ 3:e1061	48754	Enterobacteriaceae
	F	TLS	Escherichia coli	AY308796	JMolBiol 308:579	49902	Enterobacteriaceae
	E	FSL_SP-126 #	Salmonella enterica	KC139521	BMCgenomics 14:481	51092	Enterobacteriaceae
	E	YSP2	Salmonella enterica Pullorum	MG241338		50316	Enterobacteriaceae
	E	GJL01	Salmonella enterica Pullorum	KY657202		50407	Enterobacteriaceae
	E		Escherichia coli	MH102284		49788	Enterobacteriaceae
		PHB07	Salmonella enterica	MH102284		21818 49167	Enterobacteriaceae
	E	phSE-5	Salmonella enterica	KX015771		49178	Enterobacteriaceae
	E	Sazh	Citrobacter freundii	MH729819		49665	Enterobacteriaceae
	E	Stevie	Citrobacter freundii	KM236241	GenomeA 3:e01434-14	49816	Enterobacteriaceae
	E	36#	Salmonella enterica	KR296690		41085	Enterobacteriaceae
	F	CF-1 DK-2017	Citrobacter freundli	KY694971		50339	Enteropacteriaceae
	E	pSf-1	Shigella flexneri	KC710998	ResMicro 164:979	51821	Enterobacteriaceae
	E	swan01	Escherichia coli	LT841304	GenomeA5:300501-17	50865	Enterobacteriaceae
	F	ESP2949-1	Cronobacter sakazakii	JF912400	ArchVirol 157:199	49116	Enterobacteriaceae
	F	CS01	Cronobacter sakazakii	MH845412		48195	Enterobacteriaceae
	Ч	NBD2 ESCO41	Escherichia coli	KX619305	ArchVirol2917 in press	50800	Enterobacteriaceae
	1	E30041	Enterobacter cloacae	MG732930	Alon along a long a	51894	Enterobacteriaceae

Lytic3:							
Vi01-liko	Δ	28	Salmonella enterica	KR296692	VirusGenes 52:117	156833	Enterohacteriaceae
VIUT-like	~	30		111230032		100000	Enterobacteriaceae
	Δ	BSD101	Salmonella enterica Typhimurium	KV787213		157665	Enterohacteriaceae
	Δ	CRA120	Samonena entenca Typhimunum	INI503240	Virol 1 8:430	157304	Enterobacteriaceae
	Δ	Dot7	Salmonolla ontorica Typhimurium	KD707073		157/08	Enterobacteriaceae
	^	ECML 4		12120257		157200	Enterobacteriaceae
	A A	ECIVIL-4		JA 120237		157300	Enterobacteriaceae
	A	EP/5		MG740347		100140	Enterobacteriaceae
	A	FEC14		MG383452	DMO	158639	Enterobacteriaceae
	A	FSL_SP-029 #	Salmonella enterica	KC139566+other	BIVICgenomics 14:481		Enterobacteriaceae
	A	FSL_SP-063 #	Salmonella enterica	KC139524+other	BMCgenomics 14:481		Enterobacteriaceae
	A	GG32	Salmonella enterica	KX245012	GenomeA 2016 Dec	157855	Enterobacteriaceae
	A	Marshall	Salmonella enterica	KF669653	GenomeA 1:e00867	156338	Enterobacteriaceae
	A	Maynard	Salmonella enterica	KF669654	GenomeA 1:e00866	154701	Enterobacteriaceae
	A	Mooltan	Salmonella enterica Enteritidis	MH688040		156882	Enterobacteriaceae
	A	Mutine	Salmonella enterica Typhimurium	MG428992		161502	Enterobacteriaceae
	A	øSH19	Salmonella enterica	JN126049	VirolJ 8:498	157785	Enterobacteriaceae
	A	Phaxl	Escherichia coli	JN673056	Microbiology 159:1629	156628	Enterobacteriaceae
	A	PM10	Salmonella enterica	KX438380		158081	Enterobacteriaceae
	A	PS5	Salmonella enterica Typhimurium	MH940212		158400	Enterobacteriaceae
	А	S8	Salmonella enterica Gallinarum	KY630163		158432	Enterobacteriaceae
	A	S115	Salmonella enterica Enteritidis	MH370368		157946	Enterobacteriaceae
		6117	Salmanalla antorias Tumbimunium	MU270270		150440	Entorobactoriago
	A	5117	Samonena enterica Typhimunum	MH370370		158110	Enteropacteriaceae
	A	S118	Salmonella enterica Dublin	MH370371		157013	Enterobacteriaceae
	A	Sa157w	Escherichia coli	MH939183		155887	Enterobacteriaceae
	A	SeLz-1	Salmonella enterica	MH709121		154811	Enterobacteriaceae
	A	SeSz-3	Salmonella enterica	MH709120		157630	Enterobacteriaceae
	A	SenM-2	Salmonella sp.	KX171211		158986	Enterobacteriaceae
	A	SFP10	Salmonella enterica	HQ259103	ApplEnvMicro 78:58	157950	Enterobacteriaceae
	A	SJ2	Salmonella enterica	KJ174317	FoodbornePahDis2016	152460	Enterobacteriaceae
	A	SJ3	Salmonella enterica	KJ174318	_	162910	Enterobacteriaceae
	A	SKML-39	Salmonella enterica	JX181829	_	159624	Enterobacteriaceae
	A	SP1	Salmonella enterica	MF001362		156585	Enterobacteriaceae
	А	STP07	Salmonella entericaTyphimurium	KY000003		160342	Enterobacteriaceae
	A	STML-13-1#	Salmonella enterica	JX181828	_	157235	Enterobacteriaceae
	A	Vi01 (Vil)	Salmonella enterica	FQ312032	JBact 192:5746	157061	Enterobacteriaceae
	B	øD3	Dickeva sp	KM209228	Stand Genomic Sci fall2015	152308	Pectobacteriaceae
	B	Coodle	Dickeya Solani	MH807820		152515	Pectohacteriaceae
	B	1415	Dickeya solani	KY942056	Front Microbiol 8:1654	153757	Pectobacteriaceae
	B	Kamild	Dickeya Solani	MH807812		152612	Pectobacteriaceae
	B	øFM4	Enterobacter ashuriae	I C373201		160766	Enterohacteriaceae
	B	ØPD10.3 #	Dickeya solani et al	KM209270	PLoS One March 24, 2015	192291	Pectobacteriaceae
	B	øPD23.1 #	Dickeya solani et al	KM209320	PLoS One March 24, 2015	188540	Pectobacteriaceae
	B	BC 2014 (gD5)	Dickeya sn	K.I716335	ArchVirol in press 2014	155346	Pectohacteriaceae
	B	XE4	Dickeya solani	KY942057	Front Microbiol 9:1654	151510	Pectobacteriaceae
	B	LIMEstono1	Dickeya solani	HE600015	PL osOne 7:e33227	152472	Pectobacteriaceac
	B	PP35	Dickeya solani	MG266157		152048	Pectobacteriaceae
	B	aShoM_AG2	Shigella boydii	E 1373804	Virol L 8:242	158006	Enterobactoriococo
	C	0507 KN2 4		AP707245	VII 01J 0.242	150000	Enterobacteriaceae
	0	K-6440		MC770270		159991	Enterobacteriaceae
	0	Manlaw		MG/70379		150801	Enterobacteriaceae
	0	Meniow	Klebsielle meumoniae	MC420990		157281	Enterobacteriaceae
		мау	Kiepsiella pneumoniae	MG428991		159631	Enterobacteriaceae
		INIE250	Serratia rubidaea	NY073123		154938	Yersiniaceae
	D	JIVI	Serratia marcescens	NH929319		129398	Yersiniaceae
	D	CMAM1	Serratia plymuthica	12979406	- \/irol 96:12972	157924	Versiniaceae
	D			JA078490	3 101 80: 13872	15/634	Versiniaceae
	E	2050H1 Ruo1	Serralia marcescens	MC073020		164027	Fruipicceae
	L E	øEa2809	Erwinia amylovora	KD037007	EEMS Microl ett 262-fm/024	162160	Erwiniaceae
1	L	SE42003	Li winita antigiovola	111-03/00/		102100	Liwinaceae

Lytic4:							
T5-like	A	100268_sal2	Salmonella enterica Enteritidis	KU927497	GenomeA.00943-16	125114	Enterobacteriaceae
	A		Salmonella enterica Enteritidis	KX017521		114180	Enterobacteriaceae
	A	AKFV33	Escherichia coli	NC 017969	PLoSONE e34585	108853	Enterobacteriaceae
	A	APCEo03	Escherichia coli	 KR422353		103737	Enterobacteriaceae
	А	BSP22A	Salmonella enterica Typhimurium	KY787212		110741	Enterobacteriaceae
	A	CEV-2 #	Escherichia coli	HQ661859			Enterobacteriaceae
	Α	DT571/2	Escherichia coli	KM979355	Arch\/irol160:3133	108418	Enterobacteriaceae
	Α	DT57C	Escherichia coli	KM979354	Arch//irol160:3133	108065	Enterobacteriaceae
	A	EPS7	Salmonella enterica	CP000917	FemsMicrol ett 289:202	111382	Enterobacteriaceae
	A	EFH1	Escherichia coli	K.I190157		108483	Enterobacteriaceae
	Α	Gostva9	Escherichia coli	MH203051		101665	Enterobacteriaceae
	٨	SDC25	Solmonollo/Ecoborichio coli	HO406778	ApplEnvMicro 77:2042	118351	Enterebecteriesee
	Δ	SF035 602	Salmonella/Eschenchia coli	MG387042		100306	Enterobacteriaceae
	Δ	SP01	Salmonella enterica Enteritidis	KY114934		117842	Enterobacteriaceae
	^	0004	Samonena emerica Emericais	KY062424		117042	Enterobacteriaceae
	A .	55P1		K1903424		113299	Enterobacteriaceae
	A	STG2	Salmonella enterica Typhimurium	MK005300		114275	Enterobacteriaceae
	A	H8#	Salmonella enterica	AC1/1169	JBact 189:5658	104373	Enterobacteriaceae
	A	LVR16A	Salmonella enterica Kentucky	MF681663		111601	Enterobacteriaceae
	A	mar003J3	Escherichia coli	LR027389		115471	Enterobacteriaceae
	A	NR01	Salmonella enterica	KR233164	5	111325	Enterobacteriaceae
	A	ØLLS	Escherichia coli	KY677846	FrontMicro 8:in press	107263	Enterobacteriaceae
	A	ØR201	Yersinia enterocolítica	HE956708	-	112795	Yersiniaceae
	A	OSYSP	Escherichia coli 0157:H7	MF402939		110901	Enterobacteriaceae
	A	PHB06#	Salmonella enterica Enteritidis	MH102285		84406#	Enterobacteriaceae
	A	S113	Salmonella enterica Typhimurium	MH370366		112582	Enterobacteriaceae
	A	S114	Salmonella enterica	MH370367		110926	Enterobacteriaceae
	A	S124	Salmonella enterica Derby	MH370375		112564	Enterobacteriaceae
	A	S126	Salmonella enterica Dublin	MH370376		111999	Enterobacteriaceae
	A	S130	Salmonella enterica Enteritidis	MH370377		110091	Enterobacteriaceae
	A	S131	Salmonella enterica Enteritidis	MH370378		110091	Enterobacteriaceae
	A	S132	Salmonella enterica	MH370379		110832	Enterobacteriaceae
	A	5133	Saimonella enterica	IVI II 37 0 3 00		110920	Enteropacternaceae
	A	S147	Salmonella enterica Typhimurium	MH370386		111447	Enterobacteriaceae
	A	SH9	Salmonella enterica Hadar	MF001363		111607	Enterobacteriaceae
	A	Stitch	Salmonella enterica	KM236244	GenomeA 3:e01435-14	123475	Enterobacteriaceae
				10/775450			
	A	Stp1 #	Salmonella enterica Typnimurium	KY775453			Enterobacteriaceae
	A	Sw2	Salmonella enterica Kentucky	MH631454		114274	Enterobacteriaceae
	A	Shivani	Salmonella enterica	KP143763	GenomeA 3:e01443-14	120098	Enterobacteriaceae
	A	SHSML-45	Shigella sonnei	KX130863		108050	Enterobacteriaceae
	A	slur09	Escherichia coli	LN887948		111751	Enterobacteriaceae
	A	Т5	Escherichia coli	AY543070	Virology 332:45	121752	Enterobacteriaceae
	A	chee24	cow milk cheese	MF431730	FrontMicrobiol2018In press	120622	unknown host
	A	pork27	raw pork meat	MF431731	FrontMicrobiol2018In press	120618	unknown host
	A	pork29	raw pork meat	MF431732	FrontMicrobiol2018In press	120622	unknown host
	A	saus47N	pork sausage	MF431733	FrontMicrobiol2018In press	120622	unknown host
	A	saus111K	pork sausage	MF431734	FrontMicrobiol2018In press	120620	unknown host
	A	poul124	poultry meat	MF431735	FrontMicrobiol2018In press	120629	unknown host
	A	chee130_1	cheese	MF431736	FrontMicrobiol2018In press	121986	unknown host
	A	saus132	pork sausage	MF431737	FrontMicrobiol2018In press	121986	unknown host
<u> </u>	A	poul149	poultry meat	MF431738	FrontMicrobiol2018In press	121986	unknown host
<u> </u>	A	chee158	?	MF431739	FrontMicrobiol2018In press	121986	unknown host
<u> </u>	A	cott162	?	MF431740	FrontMicrobiol2018In press	121986	unknown host
	А	saus176N	pork sausage	MF431741	FrontMicrobiol2018In press	121986	unknown host
	В	My1	Pectobacterium carotovorum	JX195166	JVirol 86:11410	122024	Pectobacteriaceae
	В	DU_PP_V	Pectobacterium sp.	MF979564		106185	Pectobacteriaceae
	С	IME260	Klebsiella pneumoniae	KX845404		123490	Enterobacteriaceae
	С	Sugarland	Klebsiella pneumoniae	MG459987		111103	Enterobacteriaceae
	D	Stubb	Proteus mirabilis	MH830339		104410	
	D	PM135	Proteus mirabilis	MG030347		104329	Morganellaceae
	E	PreS_PR1	Providencia sp.	KY 363465		118537	Morganellaceae

Lytic13:							
Chi-like	А	37	Salmonella enterica	KR296691		60216	Enterobacteriaceae
	А	"Chi-DT104"	Salmonella enterica	CVKM01000024		60058	Enterobacteriaceae
	А	118970_sal1	Salmonella enterica	KU927500		59518	Enterobacteriaceae
	А	FSL_SP-030	Salmonella enterica	KC139519	BMCgenomic 14:481	59746	Enterobacteriaceae
	А	FSL_SP-039	Salmonella enterica	KC139514	BMCgenomic 14:481	59815	Enterobacteriaceae
	А	FSL_SP-088	Salmonella enterica	KC139512	BMCgenomic 14:481	59454	Enterobacteriaceae
	А	FSL_SP-124	Salmonella enterica	KC139515	BMCgenomic 14:481	59245	Enterobacteriaceae
	А	iEPS5	Salmonella enterica	KC677662	ApplEnvMicro 79:4829	59214	Enterobacteriaceae
	А	Siskin	Salmonella enterica	MH631453		58476	Enterobacteriaceae
	А	SPN19	Salmonella enterica	JN871591	-	59203	Enterobacteriaceae
	А	Utah	Escherichia coli	KY014601	GenomeA5:e01494-16	59024	Enterobacteriaceae
	А	35#	Salmonella enterica	KR296689		55391	Enterobacteriaceae
	А	BSPM4	Salmonella enterica	KY620117		59097	Enterobacteriaceae
				JX094499;	ArchVirol 158:2179;		
	А	Chi (X)	Salmonella enterica	KM458633	GenomeA 3:e01229-14	59578	Enterobacteriaceae
	В	KPN N137	Klebsiella pneumoniae	MF415410		59100	Enterobacteriaceae
	В	KPN N54	Klebsiella pneumoniae	MF415413		59100	Enterobacteriaceae
	В	KPN N98	Klebsiella pneumoniae	MG835858			Enterobacteriaceae
	В	KPN U2874	Klebsiella pneumoniae	MF415411		59087	Enterobacteriaceae
	В	Seifer	Klebsiella pneumoniae	MH817999		58197	Enterobacteriaceae
	В	YMC15/11/N53_KP N_BP	Klebsiella pneumoniae	MF476924		59100	Enterobacteriaceae
	С	Enc34	Enterobacter cancerogenus	JQ340774	JVirol 86:11403	60364	Enterobacteriaceae
	D	RedJac	Providencia stewartii	NC_018832	PLoS One 8:e61762	58104	Morganellaceae
	E	PM87	Proteus mirabilis	MG030346		59128	Morganellaceae
	E	pPM_01	Proteus mirabilis	KP063118	Intervirology 59:243	58546	Morganellaceae

Lytic14:							
øEco32-like	А	172-1	Escherichia coli	KP308307		77266	Enterobacteriaceae
	А	ECBP2 (KBNP135)	Escherichia coli	JX415536	JVirol 86:12439	77315	Enterobacteriaceae
	А	KBNP1711	Escherichia coli	KF981730	_	76184	Enterobacteriaceae
	А	NJ01	Escherichia coli	JX867715	JVirol 86:13874	77448	Enterobacteriaceae
	А	øEco32	Escherichia coli	EU330206	JMolBiol 377:774	77554	Enterobacteriaceae
	А	LAMP	Escherichia coli	MG673519		68521	Enterobacteriaceae
	А	SU10	Escherichia coli	KM044272	PLoS One 9:e116294	77327	Enterobacteriaceae
	А	myPSH1131	Escherichia coli	MG983840	PLosOne 13:e0206278	76163	Enterobacteriaceae
	В	7-11	Salmonella enterica	HM997019	ArchVirol156:149	89916	Enterobacteriaceae
	В	SE131	Salmonella enterica (Enteritidis)	MG873442		89910	Enterobacteriaceae
	С	GAP52	Cronobacter sakazakii	JN882286	-	76631	Enterobacteriaceae

Lvtic15:							
Felix-O1-like	А	Alf5	Escherichia coli	KX377933	GenomeA 5:e00315-17	87662	Enterobacteriaceae
	A	AYO145A	Escherichia coli	KR014248		87372	Enterobacteriaceae
	A	BPS15Q2	Salmonella enterica Heidelberg	KX405003	CurrBiol Dec 2016	89817	Enterobacteriaceae
	A	BPS15S6	Salmonella enterica Heidelberg	MG646670		87609	Enterobacteriaceae
	A	BPS17L1	Salmonella enterica Shubra	MG646672		84916	Enterobacteriaceae
	A	BPS17W1	Salmonella enterica Shubra	MG646669		87609	Enterobacteriaceae
	A	BPS17S6	Salmonella enterica Shubra	MG646671		87628	Enterobacteriaceae
	A	Felix-O1	Salmonella enterica	AF320576	Viruses 2:710	86155	Enterobacteriaceae
	A	UAB_Phi87	Salmonella enterica	JN225449	FrontMicro 7:545	87603	Enterobacteriaceae
	A	FO1a	Salmonella enterica	JF461087	_	88331	Enterobacteriaceae
	A	FSL-SP-010#	Salmonella enterica	KC139527+other	BMCgenomics 14:481	-	Enterobacteriaceae
	A	FSL-SP-012#	Salmonella enterica	KC139543+other	BMCgenomics 14:481	-	Enterobacteriaceae
	A	FSL-SP-107#	Salmonella enterica	KC139640+other	BMCgenomics 14:481	-	Enterobacteriaceae
	A	EC6	Escherichia coli	JX560968	GenomeA 1: e00085-12	86231	Enterobacteriaceae
	А	HY02	Escherichia coli	KM092515		86252	Enterobacteriaceae
	А	IME338	"Enterobacteria"	MH051914		85675	Enterobacteriaceae
	А	wV8	Escherichia coli	EU877232	VirolJ 6:41	88487	Enterobacteriaceae
	А	XTG1	Escherichia coli	KT184316		89635	Enterobacteriaceae
	А	JH2	Escherichia coli	KF055347	-	87721	Enterobacteriaceae
	A	KhF1	Escherichia coli	KT184313		88356	Enterobacteriaceae
	А	KhF2	Escherichia coli	KT184314		88309	Enterobacteriaceae
	А	KhF3	Escherichia coli	KT184315		88016	Enterobacteriaceae
	А	Vpa-E1	Escherichia coli	KM657822	_	88403	Enterobacteriaceae
	А	VSe11	Salmonella enterica (Enteritidis)	MG251391	GenomeA 6:e00398-18	86360	Enterobacteriaceae
	А	VSe102	Salmonella enterica (Enteritidis)	MG251392	GenomeA 6:e00398-18	86365	Enterobacteriaceae
	A	Mushroom	Salmonella sp.	KP143762	GenomeA 3:e00154	87709	Enterobacteriaceae
	А	SBA-1781 #	Salmonella enterica	JX181814			Enterobacteriaceae
	А	Si3	Salmonella enterica Infantis	KY626162		84419	Enterobacteriaceae
	А	SP116	Salmonella enterica Typhimurium	KP010413		87510	Enterobacteriaceae
	А	SPT-1#	Salmonella sp.	JX181822			Enterobacteriaceae
	A	ST11	Salmonella enterica Pullorum	MF370225		82101	Enterobacteriaceae
	A	TP1	Escherichia coli	KP869100	BMCGenom 16:271	88531	Enterobacteriaceae
	A	TP8	Escherichia coli	KP869106	BMCGenom 16:271	88998	Enterobacteriaceae
	A	TP11	Escherichia coli	KP869109	BMCGenom 16:271	88771	Enterobacteriaceae
	A	TP12	Escherichia coli	KP869110	BMCGenom 16:271	88632	Enterobacteriaceae
	A	TP15	Escherichia coli	KP869113	BMCGenom 16:271	92632	Enterobacteriaceae
	A	SUSP1	Escherichia coli	KT454805		90743	Enterobacteriaceae
	A	SUSP2	Escherichia coli	KT454806		88698	Enterobacteriaceae
	A	Mijalis	Citrobacter freundii	KY654690	GenomeA :5:e00228-17	87998	Enterobacteriaceae
	A	Mordin	Citrobacter freundii	KT363872	GenomeA 3:e01203-15	89596	Enterobacteriaceae
	A	Moogle	Citrobacter freundii	KM236239	GenomeA :3:e01426-14	87999	Enterobacteriaceae
	A	Maleficent	Citrobacter freundii	MH920362		89570	Enterobacteriaceae
	A	Michonne	Citrobacter freundii	KT001916	GenomeA 3:e01134-15	90000	Enterobacteriaceae
	А	Sf13	Shigella	MF158040	.IVirol 92 e02117-17	87570	Enterobacteriaceae
	Δ	Sf14	Shigella	ME327003	IVirol 92:e02117-17	87575	Enterobacteriaceae
	^	Sf15	Shigella	ME158041	Wirel 02:002117-17	00474	Enterobacteriaceae
	^	Sf16	Shigella	ME159042	Vitol 92.e02117-17	004/4	Enterobacteriaceae
	A	647		ME 130043	JVIIOI 92:002117-17	08086	Enteropacteriaceae
	A	0(10	Snigella	NF327004	JVIrol 92:e02117-17	90092	Enterobacteriaceae
	A	St18	Shigella	MF158044	JVirol 92:e02117-17	90270	Enterobacteriaceae
	A	Sf19	Shigella	MF327005	JVirol 92:e02117-17	90375	Enterobacteriaceae
	В	M7	Erwinia amylovora	HQ728263	ApplEnvMicro 77:5945	84694	Erwiniaceae
	В	øEa104	Erwinia amylovora	FQ482083	JBact 193:795	84565	Erwiniaceae
	В	øEa116#	Erwinia amylovora	FQ857195			Erwiniaceae
	В	øEa21-4	Erwinia amylovora +others	EU710883	ApplEnvMicro 75:2139	84567	Erwiniaceae

Lytic16:							
SETD3-liko	Δ	VB cone AG11	Salmonella enterica	12297445		41546	Enterohacteriaceae
SETFS-like	~	VD_Selis_AGTT	Samonena entenca	0/20/ 440		+10+0	Linerobacienaceae
	Δ	BPS1103	Salmonella enterica	KX405002	CurrBiol Dec 2016	43788	Enterohacteriaceae
	Δ	BPS11T2	Salmonella enterica (Enteritidis)	MG646668		43797	Enterobacteriaceae
	A	BF31112	(Collingrium)	ME001356		33010#	Enterobacteriaceae
	^	UB Sant Entd	(Gaimanum)	UE775250	IC on\/irol 02:2046	42201	Enterobacteriaceae
	A	VB_Sens-Entr			JGenviloi 93.2040	42091	Enterobacteriaceae
	A	VB_SenS-Ent2	Salmonella enterica	HG934469		42093	Enterobacteriaceae
	A	vB_SenS-Ent3	Salmonella enterica	HG934470	-	42764	Enterobacteriaceae
	A	SE2	Salmonella enterica	JQ007353	JVirol 86:7712	43221	Enterobacteriaceae
	A	SS3e (KS7)	Salmonella enterica	AY730274	-	40794	Enterobacteriaceae
	A	ST1	Salmonella enterica	MF001366		42285	Enterobacteriaceae
	A	ST3	Salmonella enterica	MF001364		42266	Enterobacteriaceae
	A	ST4	Salmonella enterica	JX233783			Enterobacteriaceae
	A	SE40#	Salmonella enterica (Enteritidis)	KY626163			Enterobacteriaceae
	A	SETP13	Salmonella enterica	KF562864	_	42665	Enterobacteriaceae
	A	SETP3	Salmonella enterica	EF177456	JMedMicro 58:86	42572	Enterobacteriaceae
	Δ	SETP7	Salmonella enterica	KE562865	_	42789	Enterohacteriaceae
	Δ	wkol2	Salmonella enterica	11202565	ApplEnvMicro 70:1058	42633	Enterobactoriaceae
	^	ECL CD 404		KC120511	PMC gopomios 14:491	42000	Enterobacteriaceae
	A	FSL_SP-101	Salmonella enterica	KC139511	Biviogenomics 14.461	410/3	Enterobacteriaceae
	A	Jersey	Salmonella enterica	KF148055	-	43447	Enterobacteriaceae
	A	STP03	(Typhimurium)	KY176369		43428	Enterobacteriaceae
	A	VSe103	Salmonella enterica (Enteritidis)	MH424443		42262	Enterobacteriaceae
	A	VSt10	(Typhimurium)	MH424445		41581	Enterobacteriaceae
	A	fSE1C	Salmonella enterica (Enteritidis)	KT962832	StdGenomSci12:1	41720	Enterobacteriaceae
	A	fSE4S	Salmonella enterica (Enteritidis)	KT881477	StdGenomSci12:1	41768	Enterobacteriaceae
	A	f18SE	Salmonella enterica (Pullorum)	KR270151	GenomeA 3:00600-215	41868	Enterobacteriaceae
	A	f2SE	Salmonella enterica (Enteritidis)	KU951146		41865	Enterobacteriaceae
	А	f3SE	Salmonella enterica (Enteritidis)	KU951147		41867	Enterobacteriaceae
	A	L13	Salmonella enterica	KC832325			Enterobacteriaceae
	Δ		Salmonella enterica Paratyphi A	KM272358	GenomeA 3:01011-14	41880	Enterobacteriaceae
	Δ	LOF AT	Salmonella enterica (Enteritidis)	KV370853		41854	Enterobacteriaceae
	^		Salmonella enterica (Enteritidia)		hastorial ganama project	41004	Enterobacteriaceae
	A	L3HG-39		LSHG01000059		41004	Enterobacteriaceae
	A	MA12		KX245013	GenomeA e00810-16	41224	Enterobacteriaceae
	A	phi135	Salmonella enterica (Enteritidis)	MH992509		43142	Enterobacteriaceae
	A	PVP_SE2	Salmonella enterica (Enteritidis)	MF431252		42425	Enterobacteriaceae
	A	S100	Salmonella enterica Typhimurium	MH370358		43468	Enterobacteriaceae
	A	S101	Salmonella enterica Typhimurium	MH370359		42621	Enterobacteriaceae
	A	S102	Salmonella enterica (Enteritidis)	MH370360		42439	Enterobacteriaceae
	A	S103	Salmonella enterica (Enteritidis)	MH370361		42441	Enterobacteriaceae
	A	S104	Salmonella enterica (Enteritidis)	MH370362		43118	Enterobacteriaceae
	A	S106	Salmonella enterica (Enteritidis)	MH370363		42976	Enterobacteriaceae
	А	S111	Salmonella enterica (Enteritidis)	MH370365		43421	Enterobacteriaceae
	A	S119	Salmonella enterica (Enteritidis)	MH370372		43876	Enterobacteriaceae
	Δ	\$120	Salmonella enterica Typhimurium	MH370373		43467	Enterohacteriaceae
	A	6120	Salmonella enterica (Enteritidia)	MH370374		13/67	Enterobactoriaceae
	^	0424		MI 137 0374		40407	Enterobacteriaceae
	A	5134	Salmonella enterica (Enteritidis)	MIN370301		43110	Enterobacteriaceae
	A	5138	Salmonella enterica (Enteritidis)	MH370384		43119	Enterobacteriaceae
	A	5142	Saimonella enterica (Enteritídis)	NH370385		43119	Enterobacteriaceae
	В	K1-dep(4) / (K1G)	Escherichia coli	GU196277	Virology 398:79	43587	Enterobacteriaceae
	В	K1-dep(1) / (K1H)	Escherichia coli	GU196278	Virology 398:79	41632	Enterobacteriaceae
	В	K1-ind(1)	Escherichia coli	GU196279	Virology 398:79	42292	Enterobacteriaceae
	В	K1-ind(2)	Escherichia coli	GU196280	Virology 398:79	42765	Enterobacteriaceae
	В	K1-ind(3)	Escherichia coli	GU196281ß	Virology 398:79	43461	Enterobacteriaceae
	В	L AB-2017	Escherichia coli	KY295896		41039	Enterobacteriaceae
	В	P AB-2017	Escherichia coli	KY295898		41184	Enterobacteriaceae
	В	EcoS MY	Escherichia coli	MG099933		44829	Enterobacteriaceae
	В	ST2	Escherichia coli	ME153391		44517	Enterobacteriaceae
	B	Golestan	Escherichia coli	MG099933		44820	Enterobacteriaceac
	B	C AR 2017		KV205805		41640	Enterobacteriacede
	6	G AD-2017		ME150026	N/irol 02:000447.47 40.004	41319	Enterobacteriaceae
	0	04400	Saimonella typnimurium	IVIE 108030	JVIIOI 92:002117-17 - 10-2017	29178#	Enteropacteriaceae
		5(162	Saimonella typhimurium	IVIF158037	JVIrol 92:e02117-17	43701	Enterobacteriaceae
	С	VSIP	Salmonella enterica (Infantis)	MH424444		43110	Enterobacteriaceae
	С	FSL_SP-031#	Salmonella enterica	KC139518	BMCgenomics 14:481		Enterobacteriaceae
	С	FSL_SP-038#	Salmonella enterica	KC139652-66	BMCgenomics 14:481		Enterobacteriaceae
	С	FSL_SP-049#	Salmonella enterica	KC139557-59	BMCgenomics 14:481		Enterobacteriaceae
	С	øEap-2	Enterobacter aerogenes	KT287080	SciRep 6:28338	40491	Enterobacteriaceae
	D	Eta (n)	Serraitia marcescens	KC460990	VirolJ 11:6	42724	Yersiniaceae

Supplementary Table 4.S2 ANI chart comparing all 74 phages of Lytic 1 (T1-like) cluster
1 1	1	5H61	408-2	iff:	5:2	MELE	ME167	157001	67002	MPN1	DMRWG	66125477	5fin-1	15%6	055-2	SRTE	IME347	Roquel	541	ie12 0	shikP26	1806 1	billA23	ohiEB48	eNC119	47534	AH#42	AHP24	4/595
T4	975	72.0	80.0	71	17.1	31	115	26.0	F			29.5	H	81.8	3.7	10.10	120		17.0	15.1	16.0	44.1	14.0	110	313		36.3		35.6
SHRS		100	- 44.2	26	-		100.000	80.7	023			82.4	-	84.7			512	30	28.1	29.5	34.6	34.2	22.1	33.1	20.0	311	34.5	24.2	30.7
406-3	513		tan		84.1	211				10-1	162.4	Ad 4	27.0		2812	46.7	24		98.1	29.3	241	121	12.4	33	364	10	1	542	147
877	1944		75.6	10	12.2	741	100	23	821					30.6		375	511	351		30	48.2	25.2	343	342	51		75.6	35.7	357
6-5	1	392	141	82.4	100	202					100	82.9		-		15.1		261	22.4	25.6	321	39	10.5	921	43.3	28.0		92.0	22.1
LIPIR I	16.3	11			100	120			M.			25.3	81.1	38	81.2	1	121	63	32	50.0	57.6	51	11.5	36.2	- 31.6	27.6	- 217	10.2	10.8
1.0127	127.4	1 21.1	12.1	-	100	-	105		12.7	36.4	27.1	122.7	1 111		211	47.1	30.1	201	22.4	81	30.1	30	20.5	38.5	22.2	780	33.0	19.0	20.1
1300	100	8.0.1	10.1		34.1	A11	100	100	-		82.0	182.0		34.2		- 10.1	- 31	41.8	201	18 2		10.5		384	310	411	- 0.0		
CENTO 1	35.5		32.4		22.0			00.0	100			30.0		22.0					20.2	21.0			10.0		202				
A CAN		=		- 2	334			-		100			24.4	84.8	84.0		300		2022	24-10		20.5	20.2	50.2	38.3	22.5	- 28.4	20.0	30.7
1.047	100		100	-	100		211	11.4	100	100	VIO	20.0	- 11	31	141			16.7	32.8	11.5	30.4	10.1	38.6	32.5			30.4	30.5	121
AL 190 1977		-	204	-	200	-	-	21.7	100			100		25.5	40.1		210	38.0	35.4	20.0	22.0	10.0	12 1	001	22.1	201	30 1	20.0	20.2
(F. 4	1				340		54.2	4		- 24.2						40.2	340	- 26.2	200	20.7	503	0.95	20.2	20-2	22.4	32.0	30.0	- 29.6	
545	40.6			-	26.1			14.4	and a		-	10.2		100	40 1	181			33.5	30.7		12.7	37.4	27.1	32.7	34.2		49.7	314
21.7	-				30.0	100			21.2														24.4	- 27	271				be s
1.772	100	121			42.4				512		32.1	125	310	42.1	52.4	5/0	44.1	- 45.4	202		24.5	23.5	12.2	201			16.8		43.0
100.00			11.0	- 27								42.0				100	1070	bg t	201.1	264.9	21.7	30.4	27.0	27.8	21.0	201	37.0	20.1	50 2
Dec. 1	323	24.	22.0	- 24	20	201	20.1	- 24	20,6	22.3	223	12.5	261	20	22.7		20.5	- 20.2	201	24.4	2/./	4.40	20.8	- 24	- 24.2	201	2/.9	201	- 26.2
2.41	204	29	201	20.3	22.4	27.1	22.4	10.8	80.8		22.0	20.9	401	25.4	20	- 37.8	921	102.1	1000	87.6	42.0	85 7	10.3	8	37.4	40.7	27.7	20.1	671
7.00		28.4			30.0		20.0		-2414		24.5	2010			- 22		20.4						+7,4						100,0
20124	22/	20.3	24.2		260	23.7	21.4	21.4	31.0		24,2	24.9	200.0	20.7	- 24	- 44	20.3	-		22.0	-	113				245	-	100	100
2111/20 1/20	22.9	24.5	34.3	201		36.0	25.4		4.5	201	28,0	2017		39.2	20.4		20.7		36.3	2010		100	88.1		34.5	-	20.4	44.4	201
2760C	201	24.	24.3	200		24.3	24.2	-	94.2	20.5	22.2	20.0	20.2	20.3	20.2	44.4	2011		20.4	22.4	100.0	- 100	1.00				- 22.3		
CLEEKS	242	22.4	20.1	- 31	- 20.2	214	26.2		44.12		20.0	26.4	34.3	21.4	- 284	44.4	21.0		224	20.0	32.4	84.4	100	100		- 23			144
2116048	243	22,4	30.1	29.		244	36.3		MLD		35.6	20,4	32.5	4	24.4	46.6	26.0		24	22.0		55 (4) 94 (2)							
phic 122	:913		72.5	- 51	222	11.0	20.2	21	345	20.2	34	301		24.7	201	30	201	dir.	21	54-1 E # 4	-	21		(P)	240	171		100	-
AT524	30	24.	24	20.2	20.2	22.0	26.2	44.4	-	20.5	270	26.0	26.9	20.4	20		20.1		203	240	20.0		- 2.2	144		150		-	24
ATT C	203	26.1	24.4	200	36.5	24.4	20.0	4/1		20.7	20	20.0	- 2	20.1	20.1		22.9	04.3	30.4	20.3			-901	0/1	: 120	20	100	- 20.7	202
ACK S	20	0 243	34.4	20/	36.9	341	368	414	44	36.9	- 20	36.0	- 20	36.4	20.3	1.	201		282	24.3			72.5	701			10		A
A3030	200	24.4	26.2		28.3	32.5	224	9.21	41.2		423	284	201	26.7	20.2	41.5	202	D4.2	224	20.4			10.0	2.14					200
CTTA.	:91.6				- 202	24.0	20.2	20.5	24.2	20.4		20.1		26.0	20.4	20	242	011	-			27		- 27	2.0	171	100		
e%/2c	33.4	223	554	24.1	281	565	2	39.1	28.5	3/3	583	3/4		322	24.4	38.3		22.0		21	- 15	1 11:3		1 12.4		-142	100.0	19.2	1224
107 107	349	25.0	24	- 22.1	345		38.2	28.3	403	36.5	<u> </u>	36.3	253	362	34.6				2.	~~~	-411			4		- 23	-20.3	- 493	- 27
CLIE	- 25.4	- 14.4	241	24,0	2	- 24	204	20./	- 20.4	36.4	20.0	201	- 49.3	252	24.8	34.8	20.2	446.0	44.1	44,0	455	47.2	+2	- 44	-	- 42.5	47.3	60	44
SWIMPOULS	20.2	40.5			44.0	243	24.5	201	20.0	24,2		342	24.3	242	20.2	20.4	24.5	37.7	20.5	34.9	3/12	3.6	20,4	26.4	31.0	2/ 4	30.0	5/2	3/
PHEADO	24.9	2	27.1	20.	20/	21,0	20.0	21.4	24.1	20.0	22,2	34	20.4	- 20/	- 24	24/6	20.1			20.4		24				42.1			24.2
AGG-MIZ	201		32.1	- 24	202		20.	264	28.1	- 22/	31.3	- 36/	21.4	2	52.4	385	200	47.2	42.5	41.8		40	42.9		- 21.9			424	48.0
252	34.2		34.5		22.9	34.4	24	24	20.9		200	24		341		22/	22.5	42.3		22	(46./	24	44.0		-443	41.0	301	-	
F242	28.5	25.5	~~4	- 96		20-4	432		49.		- 24		36.3	400			64,0	21.3	- 225	60.2	243	24.2	24.1	201		24.4	24.3	- 204	26.4
GML-Ipu				- 44			41.5	- 24.4	451		40.0	#1.4		44.5		222	4.72	32.1	2/2	21.5			21.4	2/,4	31.3	3/3	38.1	2/2	365
1991/	- 40.5					23			~ ~ ~	40.1		+14	463				47.5	- 38.3	54.D	34.4	20	26,2	37.4	5/4	344	3(3		5/,2	38,4
19:30	:524	41,1	40.5	295	40,0	363	-42/	- 40.1	40.9			40.0		44.1	41.0	40.5	- 41	34.4	34.8	20	528	22.4	31,3	21.2	- 2/3		34.3	- 50	34.8
1473		10		-	410		4.1	22.5	20.2					44		24.0		30.2		40.2	20.4	244	28.1	201	- 24/2	20.1	25.4	26.1	30.0
PV362	30.0	20.5	36.4			34.9	4.7		//HE-8		4,12		33.4	9444		300		- 20.4	343	- 44	34.4	24.0	34.3	243	-48	- 34.7	34.8		20.4
1902042	244	20.0	32.4	20.1	22/	242	- 21	224	30	243	222	28.5		24.0	20.4	302	37.4		- 2/3	22.1			47.0	- 443	224		21	4	- 41
10845					42.3			96.9	42.0	- 163				464				- 20.1	24.9		20.0	20.0	20.0	20.0	24.6	- 20.2	20.2	302	20.7
1631	427	- 7		-70	44.3		-10	44.4	*	414		410	- 33	41	40.0			20.4	34.4	28.5	- 201	20	30.2	20.4	200		30.1		20.2
1602		85.3	1			341		42.6	44.4	419	- 14			41.5		36.5	42.5	30.0	31.4	21.4	363	30.3	30.5	20,0		214	324	264	30.8
7022	44.2	40.5	40.1			201	44.3	20.1	942.4	41.5	1 14.1	141.0	- ++4.1 27.2	44.2	27.3	20.3	21.0	20.0	244	201.2	20.3	20.4	20.7	202	344	202	30.4	20.3	20.5
2040	345	24.3	22.4				30.7	201.5	20.0	23.0	444	220	- 11			20.0	24.0	44.8	30.0	41.5		10.7	24.4			122	121	147.1	421
1013	38.6		28.0	38.			444.2		40.5		99.3	84.2			44.3	42.1	41.5	24.3	204	41.7	34.4	34.3	26.4	351	28.3	34.5	20	26.5	35
7110	201		46.6			20.5							-				~				22.1	2014	30.2		10.2				
1878	20.0	423	20.0		-	-1.	-	46.9	-	146.3	14.7	100		-	-	26.2	11	20.0	214	24.0	- 201	20.2	20.0	0	24	- 20.2	201	20,2	20.9
NULL I	20.0		20.0	22.4	.44.3	201		- 12	40.5		40.0	44.1	201	40.5	405	-	94.2	21.5	20.0			21.2	20.2	23.1	10.2	24.0	21.7	26.7	21.2
the state	249		144.14	- 101		303	-	110 4	400						-			89.4		14	24	23,9				20.0	24	24.7	24.0
100	14.2		. 91.2		-			40.9		46.5	96.4		942.3	40.0	40.2	21.2		- 20.3	20.7	38/3	200	22.2	22.4	22.4	21.9	202	20.1		20.2
VC 01	- 23 3		12.0			- 27 - 46	0.1	.42.3	40		25.0	42.2	40.0	2.49.2		27.6	10.5		- 222		27.2	24.9	26.5	- 22	201	27.6	27.0	22	27.7
1252						44					96.9		98.4		442.9	20.4		1.00		62.0		21.2	100					20.0	
112	24.4	2	20.5	- 21	- 43	30.7	40	100	~			+1.9	20 %	220	20.4	34.4	20.0		401	41.4				<u>د</u> م مرد	- 492		40.4	200	
200					46.0		- 44.5	46.7	427	-			+0	41.0		- 3	44.4		20.4	20.5	- 2/2	20.6	31.3		36.4	3(3	30.0	2/2	20.4
ATEG/	400	40.	44.2		41		4	405	41.0	410	41,1	<	40.0	41.0	401	50		30.1	302	32.2	38	34,9	27.7	20.1	344		3/.8	281	38.4
202-1	-44.5		-	-										42.4	24.0			20.2	20.5	41	243	20.5	247	- 21	2017	200	20.2	20.0	20.1
P100-2	242	40.3	- 20.7		4.2	27.2	44.0		100	44.9	-	44.0		420		-	300	61.0	37.7	42.4		10.4	20.0		2/10		37.5		67.0
A SET	415		42.7	- 21		-		41				42.4			4.1	- 212		37.5	224	20.4	- 201	20.5	24/	- 34	24.0	2014	30.2	90.5	
200916	46.0	-	40.3		4/9	16.4		2014	10-4	20.5	#13 55.5					26.3		200	205	44.5		20.2	26.0	26,0	211	20/	20.0		20.
30	-				442	22	38.9	27.9	20.7	24.7	27.4	28.9		35.5		21	38.0	20.4	202		20.2	20.0	30.3	26.3	210	- 303	36.1	20.3	20.5
12	38.2			-	403				445			40.9	-	44.5		1. 300	42.6	21.8		- <u>8</u> .5	34.3	21.0	30		24	217	21.6	31.8	31.8
47.7	26.4	1			-			40.7	220	-	44.3			44.0	41.1	2.0		24.8	30	20.9	- 22	21.2	2	- 20		26.1	31.0	21.5	24.8
and a state of the	28.0	15	24.0	-		277	261	20.0	31.0	2:3	42	20.0		20.4	-		20/	36.7	1915		20	24.9	24		42	201	24.9	20.4	20
PC035at 4	36.2	24.4	34.5	-	45.4	205	-		0.5		44.0	400	30,5	44.0	30.9	3/3	20.0	42.4		34.7	40.5	24.5				103		20.2	47.5
200		~		~	-	44.0		44.4	100				443		-		30.6			A 4	201	20.4	36.4	4,27	14.0	201			100
NEDO I	239		44	44		20.4	44.2		12.1	24.3		44.4	- 2	24.9		24/		103	42.4		36.4	10.2	14.2		21.2			- #/	200
FSCO.tt		1	25.7		40,4					20.7		35.0	21	40		26.9		57	21.5		203	20.7	20.3		34.5	207	30.3	20.7	50
Ce / I	24.7		36.7			201	20	38.0	14.6	20.0	22/	200	22.5			30	20.2		74.5	20.2	27.2	21.2	21.0		- 204	21.2	21.7	- 21.2	44.2
Inter Inter	1000			207	1 225	2011	1000	-	00.0	1.	683	6.5.5	23.9	1 2 2 2 2	34		- 242	10.00		44.0	21.0	21.7	2010			26.2			

C113	e4/1c	R10	5(3e	1.0.4000	NE253	4CGM11	170	F20	GML-K#C:	N917	1736	120	Kev522	Mezolas)	6415	11.51	N/55	NIS5	PKP126	1515	100	7445	KIPN1	1000	715	FIL SP-12	1525	Sint	13
31.2	35.2	340	35.	27.2	38.9	33.6	38.5	383	4.1	453	35.4	45.4	35.1	344	445	23	443	44.3	30.6	38.6	38.6	- 44.4	36.3	38.9	405	39	- 44	32.2	***
22.4	38.9	33.9	52.3	16.9	321	12	55.5	38.9	4.3	47.8	414	475	56.9	35.6	27	44.9	-63	-556	31.9	43.5	-41	55	40.5	412	123	408	215	34.9	45
295	354	- 3	12	27.1	371	32.1	38.6	1944 1944	47,8	453	40.6	44.9	364	354	100	44	4	福油	314	39.8	45.8	Æ1	19.9	396	41.5	403	446	35.9	16. i
31	543	35.	1 320	26 5	387	325	38.8	38.1	£.:	-46	35.6	£4	365	351	415	444		44.4	307	31	24		20	38.5	. Q1	#27	03	351	- 475
33.3	38.1	33	5 36.	24.3	33.7	36.8	33.9	85	41	\$2.2	45.8	406	- 409	397	R.8	41.5	417	42.7	35.9	44.3	45.8	27	44.5			5	41.5	Q 3	- 421
31.6	33.5	33.	51.	343	37.6	34.1	38.4	352	£.	123	35.5	41	349	365	344	- 44	411	44.2	32.3	43.1	39.9	441	39.4	363	457	39	- 44	25.7	- 差1
55.3	36	52	5 36.	343	33.8	36.7	34	33	41.5	423	45.7	40.9	103	367	427	41.6		41.9	51.9	44.3	45.8	25	44.4	41.0	27	44.3	-	43	43
35.8	39.1	35	36	36.1	31.2	37,4	35.4	44.9	38.4	4	紙1	33.5	£17	382	22	411	41.6	41.6	35.2	44.8	45	- 21	44.5	\$3	23	5	48.3	48.3	28
545	39.8		57.	16.6	317	38.1	33.0	57	32.5	400	15.4	56.5		2	183	1	C 4	5.	75.6	25.8	45.0	5	12.4	4.5			441	30 4	15.7
53.2	37.4	58	36.1	14.1	33.6	367	34		41.1	17.5	5.6	377	201	30.5	42.6	41.4	21.0	41.8	33.3	416	45.7	24	122.5	413	2 44	615	12	47.4	£1
1		100	15	24.1	22.1	37.5	11.6	257	40.6	457	151	40.8	1	39.5	21		21.4	414	314	44.4	45.3	114	- 11 1	411	10	417	41.8	40.6	11.5
23.1	27.4		36	24.7	30	367	3.0	21.6		£7.1	2.5	11	105	30.5	103	17.2	21.7	417	22.4	44.6	15.6		41.7	217	0		40.2	21.4	0.1
1 30		23	1 11	34.5	38.2	84		200	45	100		AFE	38.3	31.2		21.7	414	417	27.8	45.1		44.9	10.1	201	21.1	31	22	ार दे	
			35.0	14.3	33.7		411	10.0			44.1		2014	28.2	153		21.2		12.2		40.0		10.5	304	10.0		- Ti	30.7	
50.3	20.0				21.7			100				15.4	201	26.4	49.5	10.0	20		22.2	+4.1	100.4								
30.2	244	- 2	26.3		37.4	204	20.7		95.1	-	14,0	17.6		204		25.1		201	26.4			222	41.7		404		96.6	20 1	27
			340	10.0	302	20.0					-	32.0	22.0	362	26.7		304		34.2				4						
24,2	204					20.2	30.0	24	64,2	20.4		- 20 1		31.4	34.7	10.0	34.5	94.4	268	21.57		34.3	46.2	24.5			94.0	39.9	
	- 20		40.	201		- 41.7	40.5	20.1	20.1	20.5	24.4	36.3	20.4	204	20.7	20.4	20.5	36.0	22.1	22.2	22.4	20.0	24.1	26.2	202	24.3	27.5	10.1	20
22.4	014				-0.7				42,8	24.0	- 75		- 22.3	- 2011	21.7	28.2	24.4	34.4		20.0	- 24.1	22.8	20.0	2942	- 20/	30,2			22.4
21.	203	363		2.3	304	41.6	29.2	1/3	38.0	544	- 22	26.7		- 21	23		224	29.2	111	- 12	100.0	- 23	22.2	- 26		101	233	- 11.4	20.2
	10		-404	2.3	- 41	- 61		- 213	- 58	2	244	- 26.4	- 44	22.5	- 300	30.1	26.5	38.5	21	- 24	- 20.3	202	- 52.2	- 22	- 50.5	2.5	- 23	-47	229
01	146.	145	- 423	27,0	30.2	相	-81	- 34	- 58.2	21	24.4	29.2	- 321	-487	200	2	205	- 25,4	40.5	24,2	- 20,2	83	32.5	- 520	21.5	543	- 3/2	- 23	263
1.00		4	-	38,4	-62	- 29	-28	301	- 52.4	57.4	51.3	391	323	213	35,6	35.2	355	23	343	51.2	31.9	35,6	31.1	304	32.4	319	363	3	57.3
100	72.2	4	1	24	- 4 2	\$2	42.5	301	37,4	37.4	313	39.1	- 225	22.5	356	35.2	35.6	36.5	713	31.7	51.9	35.6	31.1	30.4	32,4	319	2.5	33	223
200	02.5	. 4	4	31.6	386	428	2	22	513	52.2	D,9	30,5	- 25	254	31,2	30.6	- 31	511	149	29.3	25.6		28.5	17.2	. 269	26.4	- 史1	26.3	12.4
31	TAS	- 43	- 42.7	21	42.2	@3	21	31.2	2.8	37.9	51.4	38.1	32.9	28.9	365	36	364	36.5	25.5	32.8	55.1	36.5	31.6	31,5	33.5	29	2.6	76.6	27.8
1 233	20	503	363	36,8	- 464	48.8	30.1	313	38.1	38	52.5	38.4	32.6	291	385	36.1	364	364	357	35	35.3	33	12.8	31.7	353	518	373	362	37.7
25.4	743		12	22.2	基本	17,0	- 427	31.4	- 1 7.8	57.9	515	58.1	- 327	29	36.5	36	364	553	257	52.9	55.2	355	52.7	317	33.6	33	576	26.0	37,9
		調整	1	57	42	着き	486	ŝ	38.5	35.4	31.6	38.8	35.2	351	36.9	36.5	36.6	36,8	37	33	35.5	369	27	355	335	32.9	新花	259	32.1
100	- 24	4	4	31.6	386	429	23	12	<u>11</u> 3	92.2	27,9	30.5	- 28	224	31,2	30.8	51	31.1	143	293	25.6	11	24.5	17.2	289	184	- 東1	26.3	그 것 4
64.5	100	4B3	48.3	36.8	42.5	01	-44.8	30.5	36.8	37	31.6	367	32.4	28	35.7	35.2	35.6	35.5	24.9	31.8	32.4	35.6	31.6	30.9	32.6	319	365	164	37
- 42	1	10	-61	32.6		51.0	-85	315		37.6	24	373	211	251	38.2	35.9	362	363	15.8	116	35.1	363	52.6	24	345	355	- 38	5.81	12,4
- 21	48.2		10	- 401	- 21	-	575	26.9	347	38.2	30.6	34.9	35	217	541	25.6	342	34	241	20.6	51.1	342	30.4	301	318	317	35.6	72.6	38
BLE	36.6		40.	100	-0	35.4	455	白油	25.3	26	24.7	38	22.3	203	25.2	22.4	22.5	72.9	307	25.6	34 8	- 23	23.6	29.7	-251	243	27	23	241
5	453		41.1		100		27	25.6	22.5	36.5	14.1	21.7	12.7	34	23.1	11	12.5	-127	30.6	15.6	36.5	28.1	11.9	36.6	- 38.5	325	54.4	415	344
- 274	17.0	851		33.4		130	67.6	30.2	36.7	36.9	32.1	37	32.3	283	35.5	38	35.4	35.3	349	31	31.7	38.4	31	305	314	35.3	361	35.1	365
21	16		27.5		40.1	116	100	347	16.1	317	13.0		- 21	31.5	12.6		30.5	101	311	54.6	95.5	228	14.5	35.5	11.1	368	112	36.7	14.2
27	305	35.4	. 244	- E4	35.6	30.2	347	500	1000	75.4	1 10	75.0		517	77.1	74.0	763	775	25.4	-	-	714	5	714		75.0	404	28.1	- D1
24.2	26.0	- 2			30.0	317	11.2		100	Art			- 21		911	192.9	947.7	100.0	44.1	=	2019	22.1	-		211	212	21.7	17.3	27.4
100			1 101		34.4	36.0	457		1.00	100		343		141	-				- 161	111		20.1	1.0	-					
	- 24.6			24.7	35.6	21.1	200	37.5		_		-		41.0			200		100	-				-	20.3			22.0	
6/.2	- 244	- 2	200		30.1	29.4	- 20.9		21		200	100		- 18-	-						-					- 367	96.0	- 22.9	- K
	20.0	20	343		20.7	202	22	201	2			_		121	14.1		36.7		19-2				-	24.6	24.5	242	27.0		21.2
	36.4		-				24.4							122										1				44.1	2.3
	12		47.		21	18.5	31.3	4	-	- 22		-91		200	- 211			12.1	40.3			- 20	10.4		343	54	264	31.2	20.2
26.4	20.7	- 29	944		25.1	202	2.1		22.11	1000		875	- 12	- 3	- 200		-	01	문		20.0		32.4	- 21	42.4	28.8	38.1	24.4	20.0
30,8	35.4		35.	44.8	34,1	13	34		194.1					84.1		2.0	-		355		_		-		. 41.2	287	56.1	42.1	20.4
	52.5	- 25	- 54	441	25	- 24	23	102				48.5			100	8			223		24.1		45.7	17.0	44	411	- 52.4	40.2	20.2
	- 20.5	2.	3	22.9	- 27	20.2	2.1		E 1	154		- 47.5			201	100	2.1	100	223		38.7	944	-	242	44.4	283	26	36.1	27,9
24.9	143		24.	307	30.0	24.9	501	0.4		52 5	- 40,0	:035	- 81	-05	- 224	28		223	m	40.0	- 4		40.5	- 22	254	355	313	21.6	- 23
293	31.8	- 24	5 30.1	23.6	358	31	348	- 2 1	E 4	17.9		- 54.0	<u> 5</u> 7	776	10.0	- 21			48.2	100	12.4		16.9		37	36.1	-443	54.5	4.1
28.6	32.4	33.	31.1	348	365	2.7	35.5	5				(E)	52.	102	-			E	2	0.0	100	1 21	35.7		30.6	366	41.7	32.8	41.5
- 31	22.0	36.	5 341	8	- 331	25.4	21		- C	5.7	di di		171	124	23	1 1	613	56.1	54	=#	F. 1	100	22.4	31	- 41.8	E	32.7	39.6	568
283	32.5	- 324	30-	23.6	35.3	韩	34.5	W)	2	363		-38.2	5.7	241	22.0	311	£.7	(E)	48.9	121	10.1		. 800	111	323	364	43	33.6	41
27.2	30.9	<u> </u>	32	12.7	365	325	26	109	25	302	1	78.5	71.5	. 14.2	79.2	1		14.8	513	10.0		1	75.9	500	318	362	41.1	32.8	4
28.9	32,6	34	31.1	15.8	32.6	31.9	38.3	37	45,5	444	5.55	-84	349	32.9	314	413	21.7	44.4	324	37	37.6	446	\$7,5	37.6	106	111	2	75	1 M.
28.4	315	35	51.31	24,6	221	31.3	36.8	35.9	41.6	2	56,7	-41.4	343	32	399	527	401	38,9	28.6	56.1	36.6	- 40	34.4	36.2	305	100	100		72.0
32.1	36.5	- 3	3 354	87	34.4	361	34.7	201	27	447	21	37.5	- 2 4	36.4	38.7	36.1	36.4	38	315	41.5	- 20.7	387	41.5	41	1 1 1 1 1 1 1	108	220	24	21
363	264	IB;	222	23	- 44.5	31	35.7	33.1	41,5	453	35.9	461	22.1	31.5	39.4	42.1	402	39.3	22.8	54.5	32.8	394	33	328	23	1000	. (2.4	\$35	() ()
114	12	- 72-	4 34	141	344	365	342	401	104	- 44	4	57.5	23	362	38.6	34.1 2	523	1 1 2 2 9	313	411	- 455	3.5	.414	#	븼	78.5		14	100
52.4	37.1	383	15	243	32.4	38.1	32.7	403	35.8	423	2.42	15.2	571	35.9	385	37.7	37.5	37.5	31.1	108	342.4	383	-41	1417	343	543	141	8	1
50.7	34.6		1 35.	2.6	368	541	36.4	391	41	143	40.5	453	362	322	454		402	334	31	20	-451			385	50.0	79.5		14.5	
27.8	17.5	291	24.	7.4	38	25.9	33.3	32.4	38.5	38.4	32.7	32.2	27.6	31.4	36.6	37.2	37.3	367	23.5	34.7	32.5	- 37	33.4	31.8		10.2	5	ŧ	= (
推荐	35.9	36	351	24		35.5	12 2	37.7	95.F	1.4.4 1	18.7	35.7	27.6	34.2	10	25.5	38.9	58.4	29.2	39	39.4	390	39.1	38.4		34.8	E	41	100
29.1	32.7	34	21 9	163	34.7	32.1	38.4	37.9	41 7	415	- 20	49.5	55.1	25	0.0		£ 1	47.4	302	38.5	38.4	25	32.3	38.3	6	·		-	
205	32.3	gr.	1 3	24.2	23.5	365	38.7	101	32	(D) 1	11 A	30.7	35.4	35.6	25.8	35	35.4	257	307	125	41.1	35.2	410	13.0	2	10	1 21	2	10.0
	312	12	704	21.3	37.5	200	54	15.6	53	15	54	41.7	E E	34.0	1	127	203	101	70	56.1	15.0		14.0		71.0	31	8	1	
21	31.5	5	1 30	30.3	43.5	20-0	17.6	36.6	47.5	32		24.7		340	00	45.1	45.7	101		87	25.0	5	36.0	311	78.2	26.5	=	-	
1	37	32	1 10	30 8	28.1	300	22.4		20.0	41.6		70.4	207	315	511	34.1	30.0		114	4.1		3.1 *	12.1	80	- ex		-	184	
200	38.0		26.4		201	24,9	21.4	20.1	20.9	10.1	20.4	62.0		24.2	241				386	24.5	20.0	34.1	20.2	20.9	49.5	48.4	23.0		
10.5	21 5	40	6 2	1 10 1		243	34.4	011	36 1	27.0	24.3	37.0	84-1 34-1		35.1	36.0	~	100 1	30.5	- 20			32.5	300	210	91	44.0		20.4
c2.5							24.4	10.2		10.0		1274		71.0		40.2	10.1		367		30.0							10.7	
413	1	1		1 1			10	12.0		14.2		201		212	22.4	100.2	- 124	124	12.0	412	42.5	124	241	22.5	24			-	-
21-2	50.9	36,1	12.1		35.5	20.5	20.1		942.7	12.4			36.9	3(3)	41.4	423	44.3	4.15	51.4	41.2		41.5	34.2	46.4	44.5		28	228	27
	+1.9		-	- <u>m</u>		44.5		34.5	120	41.9	- 23		- 31	403	243		345	28.1	10.0		34.1	343	34.1	343	343	341		24.7	
- 22	203	2	1	218	- 22.1	303	2	55	50.6	267	26.5	29.5		389	308	49	- 31	318	- 44,6	35	- 264	303	25,4	. 363	3/3	- 353	23	- 21	27

1. · · · · · · · ·				·		-		·		. :			•	
:	·		: :				<u> </u>		<u> </u>	· .		. :		
je 141		<u> </u>		-,	- F						·=			
; <u> </u>												-	·	
			:·											
·	<u> </u>			<u> </u>	,					<u> </u>			H	- 18
<u></u>				<u> </u>						:				고대
:		1:					<u></u>					<u> </u>		
<u>;</u>	<u> </u>	:	<u> </u>		·							<u> </u>	·	
					1.1									
		<u></u>	·	;						<u>··</u> ;		÷	<u> </u>	
	— — —	;	— — — "					—		— - :				· <u> </u>
: — <u>-</u>					- 11 s									1723
i. 11		. <u>44</u> .2				.; _			12.2			_		
1. <u>- 1</u> 1		· <u>·</u> ·				· · · -	. <u>.</u>							إيطاع ال
:		·····			—÷-,							- 11 - 11 - 11 - 11 - 11 - 11 - 11 - 1		ст. "т.н
					<u> </u>									
					- : -		·					<u> </u>	<u> </u>	- 24
÷		· <u> </u>			1		÷ —			÷.		1.1		1.11
4. E.		. 358					Г <u>1</u> 4							
<u>بن</u> ے		· <u> </u>	<u></u> ;		و به ا	<u> </u>		<u> </u>		<u> </u>			<u> </u>	. <u> </u>
:	;;;	<u> </u>			- 11		<u> </u>						<u> </u>	
		i												
a. (c.)		. 11			. : :		:				1			. L-P
j		· • •		<u>.</u>	<u>.</u>				·				لبن	
· · · · ·		·	:			<u> </u>						;	·	
						<u> </u>					·			II.21
;. <u></u>			· — :	4							. <u>–</u>	·	· <u> </u>	t
t di		πŤ												
: <u> </u>										<u> </u>				. Te
<u>;</u> .	÷ .	<u> </u>		1.5	·;			<u> </u>	<u> </u>	<u> </u>	<u></u>	21.	<u> </u>	
: - <u>-</u> -			— t.:			<u> </u>					<u> </u>		— <u>.</u> ; -	- <u> </u>
		;;;				<u> </u>								
							·:						. 11	. 1
<u></u>			-		·	. in:			·	17			· +++	
÷		<u>;</u>					i — .		<u> </u>	<u> </u>	- 55			i ta i
<u> </u>												- 2,2		
		· #-		le dang	<u>i</u>	- 14					- igr		· ÷÷,	e des
					·		- 19-			÷.,				
:												1.1		<u> </u>
ji					:					<u> </u>	<u> </u>			. <u>_ 1</u> 1
·												-		- 141
<u>.</u>										- 1				
÷			·									22.2		
· - ·			-						·	: - <u>;</u>		1241		
		<u> </u>			Ξ.		· · · ·							
							!		<u> </u>	· .!		:		
;;=.	1.4		=	—	·		: <u>.</u>		. <u> </u>	=:				1
	-:-		27.5				: · · · · .			;				n til
			_											
· · · ·							i. — .	- 1		_ !				
· · ·		·					1. T	-		17.7				
:														
;							· i							<u></u>
						· - ·	- <u>-</u>	_						
		<u>.</u>				197								
								i					s.,	

Supplementary Table 4.S3 List of phages used in genomic and proteomic analysis that needed annotation corrections . (Updated September 15, 2017)

			Accession	Corrections
CLUSTER	PHAGE NAME	HOST	number	made?
Lytic 1	ADB-2	Escherichia coli	JX912252	
	EcoS_SH2	Escherichia coli	KY985004	
	JMPW1	Escherichia coli	KU194206	
	JMPW2	Escherichia coli	KU194205	
	pSf-2	Shigella flexneri	KP085586	
	SH6	Shigella sp.	KX828710	
	Shfl1	Shigella flexneri	NC_015456	
	SsoS-ISF002	Shigella sonnei	MF093736	
	<i>T1</i>	Escherichia coli	AY216660	
	AHP24	Escherichia coli	KF771236	
	AHP42	Escherichia coli	KF771237	
	AHS24	Escherichia coli	KF771238	
	AKS96	Escherichia coli	KF771239	
	<i>C119</i>	Escherichia coli	KT825490	
	<i>e4/1c</i>	Escherichia coli	KJ668713	
	JK06	Escherichia coli	DQ121662	Yes
	øC119	Escherichia coli	KT825490	
	øEB49	Escherichia coli	JF770475	
	øJLA23	Escherichia coli	KC333879	

øKP26	Escherichia coli/S. enterica	KC579452	Yes
Roguel	Escherichia coli	JQ182736	Yes
ACG-M12	Escherichia coli	NC_019404	
1513	Klebsiella pneumoniae	KP658157	
KLPN1	Klebsiella pneumoniae	KT001920	
KOX1	Klebsiella pneumoniae	KY780482	
KPN N141	Klebsiella pneumoniae	MF415412	
КрV522	Klebsiella pneumoniae	KX237515	
MezzoGao	Klebsiella pneumoniae	MF612072	
<i>PKP126</i>	Klebsiella pneumoniae	KR269719	
Sushi	Klebsiella pneumoniae	KR262148	
CF-1	Citrobacter freundii	KY694971	
GJL01	Salmonella enterica	KY657202	
	Pullorum		
phSE-2	Salmonella enterica	KX015770	
phSE-5	Salmonella enterica	KX015771	
Stevie	Citrobacter freundii	KM236241	
TLS	Escherichia coli	AY308796	
ESP2949-1	Cronobacter sakazakii	JF912400	Yes
pSf-1	Shigella flexneri	KC710998	
swan01	Escherichia coli	LT841304	
36#	Salmonella enterica	KR296690	
FSL_SP-126 #	Salmonella enterica	KC139521	

	NBD2	Escherichia coli	KX130668	
	ESCO_41	Escherichia coli	KY619305	
	EcoS_CEB_EC3a	Escherichia coli	KY398841	
	EcoS-IME253	Escherichia coli	KX130960	
Lytic2	7 (TP7)	Escherichia coli O157	KP869105	
	ACG-C40	Escherichia coli	JN986846	Yes
	ARI	Escherichia coli	AP011113	
	CF2	Escherichia coli	KY608967	Yes
	<i>e11/2</i>	Escherichia coli	NC_024125	
	(EcoM_112)			
	ECML-134	Escherichia coli	JX128259	
	НҮ01	Escherichia coli	KF925357	
	НҮ03	Escherichia coli	KR269718	
	IME09	Escherichia coli	JN202312	
	PE37	Escherichia coli	KU925172	
	PEC04	Escherichia coli	KR233165	Yes
	RB10	Escherichia coli	KM606999	
	RB14	Escherichia coli	NC_012638	
	<i>RB27</i>	Escherichia coli	KM607000	Yes
	RB3	Escherichia coli	KM606994	
	<i>RB32</i>	Escherichia coli	NC_008515	
	<i>RB33</i>	Escherichia coli	KM607001	
	RB5	Escherichia coli	KM606995	

	RB51	Escherichia coli	NC_012635	
	RB55	Escherichia coli	KM607002	
	RB59	Escherichia coli	KM607003	
	RB6	Escherichia coli	KM606996	
	RB68	Escherichia coli	KM607003	
	RB7	Escherichia coli	KM606997	
	RB9	Escherichia coli	KM606998	
	slur02	Escherichia coli	LN881726	Yes
	slur03	Escherichia coli	LN881728	Yes
	slur04	Escherichia coli	LN881729	Yes
	slur07	Escherichia coli	LN881732	Yes
	slur08	Escherichia coli	LN881733	Yes
	slur11	Escherichia coli	LN881734	Yes
	slur13	Escherichia coli	LN881737	Yes
	slur14	Escherichia coli	LN881736	Yes
	<i>T4</i>	Escherichia coli	AY318471	Yes
			/AF158101	
	UFV-AREG1	Escherichia coli	KX009778	Yes
	UFV13	Escherichia coli	KU867876	
	wV7	Escherichia coli	HM997020	
	YUEEL01	Escherichia coli	KY290975	
	pSs-1	Shigella sonnei	KM501444	
	SH7	Shigella sp.	KX828711	

	SHBML-50-1	Shigella sonnei	KX130864	
	Shfl2	Shigella flexneri	NC_015457	
	SHFML-11	Shigella sonnei	KX130861	
	SHFML-26	Shigella sonnei	KX130862	
	øD1	Yersinia pestis	HE956711	Yes
	PST	Yersinia pestis	KF208315	
	13 (TP13)	Escherichia coli O157	KP869111	
	3 (TP3)	Escherichia coli O157	KP869101	
	6 (TP6)	Escherichia coli O157	KP869104	
	APCEc01	Escherichia coli	KR422352	
	HX01	Escherichia coli	JX536493	
	JS09	Escherichia coli	NC_024124	
	øC120	Escherichia coli	KY703222	
	øE142#	Escherichia coli (&	KU255730	
		salmonella?)		
	PhAPEC2	Escherichia coli	KF562341	
	RB69	Escherichia coli	NC_004928	
	ST0	Escherichia coli	MF044457	
	SHBML-52-1	Shigella sonnei	KX130865	
	Shf125875	Shigella flexneri	<i>KM407600.</i>	
<u> </u>	<i>Bp7</i>	Escherichia coli	HQ829472	
	IME08	Escherichia coli	NC_014260	Yes
	JS10	Escherichia coli	EU863409	
				1

JS98	Escherichia coli	EF469154	
MX01	Escherichia coli	KU878969	
QL01	Escherichia coli	KT176190	Yes
VR5	Escherichia coli	KP007359	
WG01	Escherichia coli	KU878968	
VR20	Escherichia coli	KP007360	
VR25	Escherichia coli	KP007361	
VR26	Escherichia coli	KP007362	
VR7	Escherichia coli	HM563683	
SP18	Shigella sonnei	GQ981382	
CGG4-1	Salmonella enterica	NC_031065	
	Newport		
S16 (SenMS16)	Salmonella enterica	HQ331142	Yes
STML_198	Salmonella enterica	JX181825	
STP4-a	Salmonella enterica	KJ000058	
fHe-Yen9-01	Yersinia enterocolitica	KY593455	
øR1-RT	Yersinia enterocolitica	HE956709	
TG1	Yersinia enterocolitica	KP202158	
Pet-CM3-4	Cronobacter malonaticus	LT614807	
PG7	Enterobacter cloacae	KJ101592	
CC31	Escherichia coli	GU323318	
ECD7	Escherichia coli	KY683735	
GEC-3S	Escherichia coli	HE978309	

	JSE	Escherichia coli	EU863408	
	øl	Escherichia coli	NC_009821	
	<i>RB49</i>	Escherichia coli	NC_005066	
	CfP1	Citrobacter freundii	KX245890	
	IME-CF2	Citrobacter freundii	KR869820	
	Margaery	Citrobacter freundii	KT381880	
	Miller	Citrobacter freundii	KM236237	
	GAP161	Cronobacter sakazakii	JN882287	Yes
	leB	Cronobacter	KX443552	
	leE	Cronobacter	KX431559	
	leN	Cronobacter	KX431560	
	Lw1	Escherichia coli	NC_021344	
	RB16	Escherichia coli	HM134276	
	<i>RB43</i>	Escherichia coli	NC_007023	
	PS2	Serratia marcescens	KJ025957	
	JD18	Klebsiella pneumoniae	KT239446	
	KpV477	Klebsiella pneumoniae	KX258185	
	РКО111	Klebiella oxytoca	KR269720	
	KPV15	Klebsiella pneumoniae	KY000080	
	MP1	Morganella sp.	KX078569	Yes
<u> </u>	Merlin	Citrobacter freundii	KT001915	Yes
	Moon	Citrobacter freundii	KM236240	
	øEap-3	Enterobacter aerogenes	KT321315	Yes

	phT4A#	Escherichia coli	KX130727	Yes
	KP15	Klebsiella pneumoniae	GU295964	Yes
	KP27	Klebsiella pneumoniae	HQ918180	Yes
	Matisse	Klebsiella pneumoniae	KT001918	
	Miro	Klebsiella pneumoniae	KT001919	
	PMBT1	Klebsiella pneumoniae	LT607758	
	PmiM_Pm5461	Proteus mirabilis	NC_028762	
	<i>S13</i>	Cronobacter sakazakii	KC954775	
	PEi20	Edwardsiella ictaluri	AP014714	
	PEi26	Edwardsiella ictaluri	AP014715	
	PM2	Pectobacterium	KF835987	
		corotovforum		
	СВН8	Serratia sp. ATCC 39006	MF036691	
	CHI14	Serratia sp. ATCC 39006	MF036690	
	X20	Serratia sp. ATCC 39006	MF036692	
Lytic3	38	Salmonella enterica	KR296692	
	CBA120	Escherichia coli	JN593240	
	Det7	Salmonella enterica	KP797973	
	ECML-4	Escherichia coli	JX128257	Yes
	FSL_SP-029 #	Salmonella enterica	KC139566+ot	Yes
			her	
	FSL_SP-063 #	Salmonella enterica	KC139524+ot	
			her	

GG32	Salmonella enterica	KX245012	Yes
Marshall	Salmonella enterica	KF669653	
Maynard	Salmonella enterica	KF669654	
øSH19	Salmonella enterica	JN126049	
PhaxI	Escherichia coli	JN673056	
PM10	Salmonella enterica	KX438380	
\$8	Salmonella enterica	KY630163	
	Gallinarum		
SenM-2	Salmonella sp.	KX171211	
SFP10	Salmonella enterica	HQ259103	
SJ2	Salmonella enterica	KJ174317	
SJ3	Salmonella enterica	KJ174318	
SKML-39	Salmonella enterica	JX181829	
SPT07	Salmonella	KY000003	
	entericaTyphimurium		
STML-13-1#	Salmonella enterica	JX181828	
Vi01 (Vil)	Salmonella enterica	FQ312032	
JA15	Dickeya solani	KY942056	
LIMEstonel	Dickeya solani	HE600015	Yes
øD3	Dickeya sp.	KM209228	
øPD10.3 #	Dickeya solani et al.	KM209270	Yes
øPD23.1 #	Dickeya solani et al.	KM209320	Yes
øSboM-AG3	Shigella boydii	FJ373894	Yes

	RC_2014 (øD5)	Dickeya sp.	KJ716335	
	XF4	Dickeya solani	KY942057	
	0507-KN2-1	Klebsiella pneumoniae	AB797215	
	KSP90#	Serratia plymuthica	AB452990	Yes
	øMAM1	Serratia plymuthica	JX878496	
	Sru_IME250	Serratia rubidaea	KY073123	
	øEa2809	Erwinia amylovora	KP037007	
Lytic4	100268_sal2	Salmonella enterica	KU927497	
		Enteritidis		
	118970_sal2	Salmonella enterica	KX017521	
		Enteritidis		
	AKFV33	Escherichia coli	NC_017969	Yes
	APCEo03	Escherichia coli	KR422353	
	DT571/2	Escherichia coli	KM979355	
	DT57C	Escherichia coli	KM979354	
	EPS7	Salmonella enterica	CP000917	
	FFH1	Escherichia coli	KJ190157	
	H8#	Salmonella enterica	AC171169	Yes
	NR01	Salmonella enterica	KR233164	
	øLLS	Escherichia coli	KY677846	
	øR201	Yersinia enterocolitica	HE956708	
	OSYSP	Escherichia coli O157:H7	MF402939	
	Shivani	Salmonella enterica	KP143763	

	SHSML-45	Shigella sonnei	KX130863	
	slur09 #	Escherichia coli	LN887948	
	SPC35	Salmonella/Escherichia	HQ406778	
		coli		
	Stitch	Salmonella enterica	KM236244	Yes
	Stp1 #	Salmonella enterica	КҮ775453	Yes
		Typhimurium		
	<i>T5</i>	Escherichia coli	AY543070	
	My1	Pectobacterium	JX195166	
		carotovorum		
	IME260	Klebsiella pneumoniae	KX845404	
	PreS_PR1	Providencia sp.	KY363465	
Lytic5	64795_ec1	Escherichia coli	KU927499	
	CICC 80001	Escherichia coli	KM242061	
	øA1122	Yersinia pestis	AY247822	
	R	Yersinia pestis	JX000007	
	<i>T7</i>	Escherichia coli	V01146	Yes
	Vi VI (V106)	Salmonella enterica	FR667955	Yes
	Y	Yersinia pestis	JQ957925	
	YpP-R	Yersinia pestis	JQ965701	
	<i>ҮрР-Ү</i>	Yersinia pestis	JQ965700	
	YpsP-G	Yersinia pestis	JQ965703	
	AP5	Yersinia enterocolitica	KM253764	

<i>E-2</i>	Enterobacter cloacae	KP791805	
E-3 #	Enterobacter cloacae	KP791806	
<i>E-4</i>	Enterobacter cloacae	KP791807	
ECA2	Escherichia coli	KX130726	
øCFP-1	Citrobacter freundii	KP313531	
øSG-JL2	Salmonella enterica	EU547803	
øYe-F10	Yersinia enterocolitica	KT008108	
øYeO3-12	Yersinia enterocolitica	AJ251805	Yes
SH1	Citrobacter freundii	KU687347	
SH2	Citrobacter freundii	KU687348	
SM9-3Y	Serratia marcescens	KX778611	
ТЗ	Escherichia coli	AJ318471	
285p	Escherichia coli	GQ468526	
BA14	Escherichia coli	NC_011040	
Berlin	Yersinia pestis	NC_008694	
BP12A	Salmonella enterica Hadar	KM366096	
<i>FE44</i>	Erwinia (sp?)	NC_022744	
Kvp1	Kluyvera cryocrescens	FJ194439	
P483	Escherichia coli	KP090453	
P694	Escherichia coli	KP090454	
<i>PP74</i>	Pectobacterium wasabiae	KY084243	Yes
Yep-ø	Yersinia pestis	HQ333270	
Yepe2	Yersinia pestis	NC_011038	

YpP-G	Yersinia pestis	JQ965702	Yes
BIS33	Klebsiella pneumoniae	KY652725	
IL33	Klebsiella pneumoniae	KY652724	
IME205	Klebsiella(sp?)	KU183006	
K11	Klebsiella sp. 390	EU734173	
K30	Escherichia coli	HM480846	Yes
K5	Klebsiella pneumoniae	KR149291	
K5-2	Klebsiella pneumoniae	KY389315	
K5-4	Klebsiella pneumoniae	KY389316	
Kpl	Klebsiella pneumoniae	KT367885	
KP32	Klebsiella pneumoniae	GQ413937	
KpV289	Klebsiella pneumoniae	LN866626	
КрV763	Klebsiella pneumoniae	KX591654	
КрV766	Klebsiella pneumoniae	KX712071	
КрV767	Klebsiella pneumoniae	KX712070	
PRA33	Klebsiella pneumoniae	KY652723	
L1	Erwinia amylovora	HQ728265	
MmP1	Morganella morganii	EU652770	
MP2	Morganella sp.	KX078568	
 Dev2	Cronobacter turicensis	HG813241	
 EcoDS1	Escherichia coli	NC_011042	
F AB-2017	Escherichia coli	KY295894	
GA2A	Escherichia coli	КТ990215	Yes

	JSS1	Escherichia coli	KX689784
	K1F	Escherichia coli	AM084414
	LM33_P1	Escherichia coli	LT594300
	PE3-1	Escherichia coli	KJ748011
	SH3	Citrobacter freundii	KU687349
	SH4	Citrobacter freundii	KU687350
	SH5	Citrobacter freundii	KU687351
	ST31	Escherichia coli	KY962008
	ZG49	Escherichia coli	KX669227
	AP10	Yersinia enterocolitica	KT852574
	øEAP-1	Enterobacter aerogenes	KT321314
	<i>PP47</i>	Pectobacterium	KY250035
		carotovorum	
	PP81	Pectobacterium	KY124276
		carotovorum	
	PPWS4	Pectobacterium	LC216347
		carotovorum	
Lytic6	AAPEc6	Escherichia coli	KX279892
	ACG-C91	Escherichia coli	NC_019403
	<i>B AB-2017</i>	Escherichia coli	KY295891
	BP12B	Salmonella entericaHadar	KM366097
	C AB-2017	Escherichia coli	KY295892
	D AB-2017	Escherichia coli	KY295893

	K AB-2017	Escherichia coli	KY295897	
	K1-5 (K1-dep(3))	Escherichia coli	AY370674	
	K1E (K1dep(2))	Escherichia coli	AM084415	
	R AB-2017	Escherichia coli	KY295899	
	SP6	Salmonella enterica	AY288927;	
			AY370673	
	UAB_Phi78	Salmonella enterica	GU595417	
	PP1	Pectobacterium	JQ837901	
		carotovorum		
	ERA103	Erwinia amylovora	EF160123	
	øEa100	Erwinia amylovora	FQ482086	
	øEa1h	Erwinia amylovora	FQ482084	
	PM5460	Proteus mirabilis	KP890822	
	PM85	Proteus mirabilis	KM819695	
	PM93	Proteus mirabilis	KM819696	
	phD2B	Lelliottia (was	KM370384	
		Enterobacter?)		
	ECBP5	Escherichia coli	KJ749827	
Lytic7	AltoGau	Klebsiella pneumoniae	MF612071	
	F19	Klebsiella pneumoniae	KF765493	
	KP-Rio/2015	Klebsiella pneumoniae	KX856662	Yes
	Kp2	Klebsiella pneumoniae	KT367886	
	KP34	Klebsiella pneumoniae	NC_013649	Yes

	KpV41	Klebsiella pneumoniae	KT964103	
	KpV475	Klebsiella pneumoniae	KX211991	
	KpV48	Klebsiella pneumoniae	KX237514	
	KpV71	Klebsiella pneumoniae	KU666550	
	KpV74	Klebsiella pneumoniae	KY385423	
	KPV811	Klebsiella pneumoniae	KY000081	
	NTUH-K2044-	Klebsiella {sp?}	AB716666	
	K1-1			
	øBO1E	Klebsiella pneumoniae	KM576124	
	SU503	Klebsiella pneumoniae	KP708985	
	SU552A	Klebsiella pneumoniae	KP708986	
	LIMElight	Pantoea agglomerans	FR687252	
	øKDA1	Enterobacter cloacae	JQ267518	
	PM16	Proteus mirabilis	KF319020	
	PM75	Proteus mirabilis	KM819694	
Lytic8	LIMEzero	Pantoea agglomerans	FR751545	Yes
	J8-65	Escherichia coli	NC_025445	
Lytic9	øKT	Escherichia coli	JN882298	
Lytic10	Dev-CD-23823	Coronobacter sakazakii	LN878149	
	GAP227	Coronobacter sakazakii	NC_020078	Yes
 	ISAO8	Yersinia enterocolitica	KT184661	
	øR8-01	Yersinia entericolytica	HE956707	
	fHe-Yen3-01	Yersinia enterocolitica	KY318515	

ø80-18	Yersinia entericolaytica	HE956710	
PP2	Pectobacterium	KX756572	
	carotovorum		
Peatl	Pectobacterium	KR604693	
	atrosepticum		
<i>PP90</i>	Pectobacterium	KX278419	
	atrosepticum		
øM1	Pectobacterium	JX290549	
	atrosepticum		
PP16	Pectobacterium	KX278418	
	carotovorum		
PPWS1	Pectobacterium	LC063634	
	carotovorum		
BF25/12	Dickeya sp. B16	KT240186	
Bp4	Escherichia coli	KJ135004	
EC1-UPM	Escherichia coli	KC206276.2	
ECBP1	Escherichia coli	JX415535	
(KNBP21?)			
<i>G7C</i>	Escherichia coli	NC_015933	Yes
IME11	Escherichia coli	NC_019423	
N4	Escherichia coli	EF056009	
PhAPEC5	Escherichia coli	KF192075	
PhAPEC7	Escherichia coli	KF562340	
	Ø80-18 PP2 Peat1 PP90 øM1 øM1 PP16 PPWS1 BF25/12 Bp4 EC1-UPM EC8P1 (KNBP21?) G7C IME11 N4 PhAPEC5 PhAPEC7	ø80-18Yersinia entericolayticaPP2Pectobacterium carotovorumPeat1Pectobacterium atrosepticumPP90Pectobacterium atrosepticumøM1Pectobacterium carotovorumPP16Pectobacterium carotovorumPPWS1Pectobacterium carotovorumBF25/12Dickeya sp. B16Bp4Escherichia coliECBP1Escherichia coli(KNBP21?)Escherichia coliIME11Escherichia coliN4Escherichia coliPhAPEC5Escherichia coliPhAPEC7Escherichia coli	ø80-18Yersinia entericolayticaHE956/10PP2Pectobacterium carotovorumKX756572Peat1Pectobacterium atrosepticumKR604693PP90Pectobacterium atrosepticumKX278419øM1Pectobacterium atrosepticumJX290549øM1Pectobacterium carotovorumJX290549PP16Pectobacterium carotovorumKX278418PPWS1Pectobacterium carotovorumLC063634BF25/12Dickeya sp. B16KT240186Bp4Escherichia coliKC206276.2ECBP1Escherichia coliKC206276.2G7CEscherichia coliNC_015933IME11Escherichia coliNC_019423N4Escherichia coliKF192075PhAPEC5Escherichia coliKF562340

	pSb-1	Shigella boydii	KF620435	
	FSL_SP-058	Salmonella enterica	KC139517	
	FSL_SP-076	Salmonella enterica	KC139520	
	Pollock	Escherichia coli	KM236242	Yes
	EcP1	Enterobacter cloacae	NC_019485	
	Ea9-2	Erwinia amylovora	KF806588	
	Frozen	Erwinia amylovora	KX098389	
	Gutmeister	Erwinia amylovora	KX098390	
	<i>S6</i>	Erwinia amylovora	HQ728266	
Lytic12	9NA	Salmonella enterica	KJ802832	
	Sasha	Salmonella enterica	KX987158	
	Sergiei	Salmonella enterica	KY002061	
Lytic13	37	Salmonella enterica	KR296691	
	"Chi-DT104"	Salmonella enterica	CVKM010000	
			24	
	118970_sal1	Salmonella enterica	KU927500	
	35#	Salmonella enterica	KR296689	
	BP12C	Salmonella enterica	AIT13784	Yes
	Chi (X)	Salmonella enterica	KM458633	
	FSL_SP-030	Salmonella enterica	KC139519	
	FSL_SP-039	Salmonella enterica	KC139514	
	FSL_SP-088	Salmonella enterica	KC139512	
	FSL_SP-124	Salmonella enterica	KC139515	

	iEPS5	Salmonella enterica	KC677662	Yes
	SPN19	Salmonella enterica	JN871591	Yes
	pPM_01	Proteus mirabilis	KP063118	Yes
	KPN N137	Klebsiella pneumoniae	MF415410	
	KPN N54	Klebsiella pneumoniae	MF415413	
	KPN U2874	Klebsiella pneumoniae	MF415411	
	YMC15/11/N53_	Klebsiella pneumoniae	MF476924	
	KPN_BP			
Lytic14	172-1	Escherichia coli	KP308307	
	ECBP2	Escherichia coli	JX415536	Yes
	(KBNP135)			
	Eco32	Escherichia coli	EU330206	Yes
	KBNP1711	Escherichia coli	KF981730	Yes
	NJ01	Escherichia coli	JX867715	Yes
	SU10	Escherichia coli	KM044272	Yes
	7-11	Salmonella enterica	HM997019	Yes
	GAP52	Cronobacter sakazakii	JN882286	
Lytic15	Alf5	Escherichia coli	KX377933	Yes
	AYO145A	Escherichia coli	KR014248	
	BPS15Q2	Salmonella enterica	KX405003	
		Heidelberg		
	EC6	Escherichia coli	JX560968	
	Felix-O1	Salmonella enterica	AF320576	

FOla	,	Salmonella enterica	JF461087	
НҮ02		Escherichia coli	KM092515	
JH2		Escherichia coli	KF055347	
Mushr	room	Salmonella sp.	KP143762	
SBA-1	781 #	Salmonella enterica	JX181814	
Si3	,	Salmonella enterica	KY626162	
		Infantis		
SP116	5 ,	Salmonella enterica	KP010413	
		Typhimurium		
SPT-1	#	Salmonella sp.	JX181822	
ST11	,	Salmonella enterica	MF370225	
		Pullorum		
TP1		Escherichia coli	KP869100	
TP11		Escherichia coli	KP869109	
TP12		Escherichia coli	KP869110	
TP15		Escherichia coli	KP869113	
TP8		Escherichia coli	KP869106	
UAB_	Phi87	Salmonella enterica	JN225449	
Vpa-E		Escherichia coli	KM657822	
wV8		Escherichia coli	EU877232	Yes
<i>MM7</i>		Erwinia amylovora	HQ728263	
øEa10)4	Erwinia amylovora	FQ482083	
øEall		Erwinia amylovora	FQ857195	

	øEa21-4	Erwinia amylovora	EU710883	Yes
		+others		
	Michonne	Citrobacter freundii	KT001916	
	Mijalis	Citrobacter freundii	KY654690	
	Moogle	Citrobacter freundii	KM236239	
	Mordin	Citrobacter freundii	KT363872	
	øSUSP1	Escherichia coli	KT454805	
	øSUSP2	Escherichia coli	KT454806	
Lytic16	AG11	Salmonella enterica	JX297445	Yes
	BPS11Q3	Salmonella enterica	KX405002	
	Entl	Salmonella enterica	HE775250	
	Ent2	Salmonella enterica	HG934469	
	Ent3	Salmonella enterica	HG934470	
	f18SE	Salmonella enterica	KR270151	
		(Pullorum)		
	f2SE	Salmonella enterica	KU951146	
		(Enteritidis)		
	f3SE	Salmonella enterica	KU951147	
		(Enteritidis)		
	fSE1C	Salmonella enterica	KT962832	
		(Enteritidis)		
	fSE4S	Salmonella enterica	KT881477	
		(Enteritidis)		

Jersey	Salmonella enterica	KF148055	Yes
<i>L13</i> #	Salmonella enterica	KC832325	
LSPA1	Salmonella	KM272358	
	entericaParatyphi A		
LPSE1	Salmonella enterica	KY379853	
	(Enteritidis)		
LSHG-59"	Salmonella enterica	LSHG010000	Yes
	(Enteritidis)	59	
MA12	Salmonella enterica	KX245013	
	(Enteritidis)***		
PVP_SE2	Salmonella enterica	MF431252	
	(Enteritidis)		
SE2	Salmonella enterica	JQ007353	
SE40#	Salmonella enterica	KY626163	
	(Enteritidis)		
SETP13	Salmonella enterica	KF562864	
SETP3	Salmonella enterica	EF177456	
SETP7	Salmonella enterica	KF562865	
SSe3 (KS7)	Salmonella enterica	AY730274	
<i>ST4</i> #	Salmonella enterica	JX233783	
STP03	Salmonella enterica	KY176369	
	(Typhimurium)		
wksl3	Salmonella enterica	JX202565	

	FSL_SP-031#	Salmonella enterica	KC139518	
	FSL_SP-038#	Salmonella enterica	KC139652-66	Yes
	FSL_SP-049#	Salmonella enterica	KC139557-59	
	G AB-2017	Escherichia coli	KY295895	
	K1-dep(1) /	Escherichia coli	GU196278	
	(K1H)			
	K1-dep(4) /	Escherichia coli	GU196277	
	(K1G)			
	K1-ind(3)	Escherichia coli	GU196281ß	
	L AB-2017	Escherichia coli	KY295896	
	P AB-2017	Escherichia coli	KY295898	
	ST2	Escherichia coli	MF153391	
	Eta (h)	Serraitia marcescens	KC460990	Yes
	øEap-2	Enterobacter aerogenes	KT287080	
Lytic17	EK99P-1	Escherichia coli	KM233151	
	Envy	Escherichia coli	KX534335	
	EP23	Shigella sonnei	JN984867	
	Gluttony	Escherichia coli	KX534336	
	HK578	Escherichia coli	JQ086375	Yes
	JL1	Escherichia coli	JX865427	
	Lust	Escherichia coli	KX534338	
	Pride	Escherichia coli	KX534341	
	Sloth	Escherichia coli	KX534339	

	slur05	Escherichia coli	LN881730	Yes
	slur06	Escherichia coli	LN881731	
	SO-1	Sodalis glossinidius	GQ502199	Yes
	XSSL-	Escherichia coli	FJ750948	
	2009a(EEP)			
	YD-2008.s	Escherichia coli	KM896878	
	eiAu-183	Edwardsiella ictaluri	KF772234	
Lytic40	КрЗ	Klebsiella pneumoniae	KT367887	
Lytic18	ECO1230-10	Escherichia coli	GU903191	
	EcoM_ECOO78	Escherichia coli	KY705409	
	ерЗ	Escherichia coli	<i>KM360178</i>	
	AyrA	Enterobacter sp. CT7	KX231828	
Lytic19	Gj1 (øEcoM-Gj1)	Escherichia coli	<i>EF460875</i>	Yes
	PM1	Pectobacterium	KF534715	
		carotovorum		
	PP101	Pectobacterium	KY087898	
		carotovorum		
	Y2	Erwinia amylovora	HQ728264	
Lytic20	PY100	Yersinia enterocolitica	AM076770	Yes
Lytic21	ECGD1	Escherichia coli &	KU522583	
		Salmonella		
	ø92	Escherichia coli	FR775895	
	ESCO13	Escherichia coli	KX552041	Yes

	ESCO5	Escherichia coli	KX664695	Yes
	phAPEC8	Escherichia coli	JX561091	Yes
Lytic22	2_JES-2013	Escherichia coli	NC_022323	Yes
	APCEc02	Escherichia coli	KR698074	
	FFH2	Escherichia coli	KJ190158	
	FV3	Escherichia coli	JQ031132	
	Murica	Escherichia coli	KT001917	
	rV5	Escherichia coli	NC_011041	Yes
	slur12	Escherichia coli	LN881735	Yes
	slur16	Escherichia coli	LN881727	Yes
	TP14	Escherichia coli	KP869112	
	TP5	Escherichia coli	KP869103	
	V18	Escherichia coli	KY683736	
	4MG	Escherichia coli	KF550303	
	GAP31	Cronobacter sakazakii	JN882284	Yes
	PVP-SE1	Salmonella enterica	GU070616	Yes
	SSE-121	Salmonella enterica	JX181824	
	CR3	Cronobacter sakazakii	JQ691612	
	CR8	Cronobacter sakazakii	KC954774	
	CR9	Cronobacter sakazakii	JQ691611	
	øTE	Pectobacterium	NC_020201	
		atrosepticum		
	PBES 02	Cronobacter sakazakii	KT353109	
			1	

BIS47	Klebsiella pneumoniae	KY652726	
KB57	Klebsiella pneumoniae	KT934943	
19 #	Salmonella enterica	KR296684	
41 #	Salmonella enterica	KR296695	
Av-05	Escherichia coli	KM190144	
NAFV-136	Escherichia coli	NAFV010001	Yes
		36	
SEGD1	Salmonella enterica	KU726251	
SPN3US	Salmonella enterica	JN641803	
Asesino	Erwinia amylovora	KX397364	
øEaH2	Erwinia amylovora	JX316028	
Stratton	Erwinia amylovora	KX397373	
CR5	Cronobacter sakazakii	NC_021531	
EarlPhillipIV	Erwinia amylovora	KX397367	
Phobos	Erwinia amylovora	KX397372	
Kwan	Erwinia amylovora	KX397369	
Huxley	Erwinia amylovora	KX397368	
Machina	Erwinia amylovora	KX397370	
Parshik	Erwinia amylovora	KX397371	
Caitlin	Erwinia amylovora	KX397365	
ChrisDB	Erwinia amylovora	KX397366	
K64-1	Klebsiella pneumoniae	AB897757	
RaK2	Klebsiella sp. KV-3	JQ513383	
	BIS47 KB57 19 # 41 # Av-05 NAFV-136 SEGD1 SPN3US Asesino øEaH2 Stratton CR5 EarlPhillipIV Phobos Kwan Huxley Machina Parshik Caitlin ChrisDB K64-1 RaK2	BIS47Klebsiella pneumoniaeKB57Klebsiella pneumoniae19 #Salmonella enterica41 #Salmonella entericaAv-05Escherichia coliNAFV-136Escherichia coliSEGD1Salmonella entericaSPN3USSalmonella entericaAsesinoErwinia amylovoraøEaH2Erwinia amylovoraStrattonErwinia amylovoraCR5Cronobacter sakazakiiEarlPhillipIVErwinia amylovoraPhobosErwinia amylovoraKwanErwinia amylovoraMachinaErwinia amylovoraParshikErwinia amylovoraChrisDBErwinia amylovoraK64-1Klebsiella pneumoniaeRaK2Klebsiella sp. KV-3	BIS47Klebsiella pneumoniaeKY652726KB57Klebsiella pneumoniaeKT93494319 #Salmonella entericaKR29668441 #Salmonella entericaKR296695Av-05Escherichia coliKM190144NAFV-136Escherichia coliNAFV01000136SEGD1Salmonella entericaKU726251SPN3USSalmonella entericaJN641803AsesinoErwinia amylovoraKX397364øEal12Erwinia amylovoraKX397373CR5Cronobacter sakazakiiNC_021531EarlPhillipIVErwinia amylovoraKX397367PhobosErwinia amylovoraKX397372KwanErwinia amylovoraKX397370HuxleyErwinia amylovoraKX397370ParshikErwinia amylovoraKX397371CaitlinErwinia amylovoraKX397365ChrisDBErwinia amylovoraKX397366K64-1Klebsiella pneumoniaeAB897757RaK2Klebsiella sp. KV-3JQ513383

	BF	Seratia marcescens	KY630187	
	CBB	Pectobacterium(Erwinia+	KU574722	
		Cronobacter)		
	GAP32	Cronobacter sakazakii	JN882285	Yes
	121Q	Escherichia coli	KM507819	
	PBECO4	Escherichia coli	KC295538	
	slurp01	Escherichia coli	LT603033	
Lytic25	øR1-37	Yersinia entericolytica	AJ972879	Yes
Lytic26	E1	Salmonella enterica	AM491472	
	64795_sal3	Salmonella enterica	KX017520	
		(Typhimurium)		
	LPST10	Salmonella enterica	KY860935	
		(Typhimurium)		
	IME207	Klebsiella pneumoniae	KX523699	
Lytic27	ECML-117	Escherichia coli	JX128258	
	øFenriz	E. coli and Pseudomonas!	KT254133	
	øHabibi	E. coli and Pseudomonas!	KT254132	
	øMoody	E. coli and Pseudomonas!	KT254131	
	øVader	E. coli and Pseudomonas!	KT254130	
Lytic28	K1-F	Edwardsiella tarda	AB757800	
	IW-1	Edwardsiella tarda	AB757801	
Lytic29	MSW-3	Edwardsiella tarda	AB767244	
	PEi2	Edwardsiella ictaluri	NC_021342	

	JD001	Klebsiella pneumoniae	JX866719	
	Kpn112 #	Klebsiella pneumoniae	KJ021043	Yes
	КрV52	Klebsiella pneumoniae	KX237516	
Lytic30	Deimos-Minion	Erwinia amylovora	KU886225	
	Ea35-70	Erwinia amylovora	KF806589	Yes
	RAY	Erwinia amylovora	KU886224	
	Simmy50	Erwinia amylovora	KU886223	
	Special G	Erwinia amylovora	KU886222	
Lytic31	øEaH1	Erwinia amylovora	KF623294	
Lytic32	9g	Escherichia coli	NC_024146.1	Yes
	JenK1	Escherichia coli	KP719134	
	JenP1	Escherichia coli	KP719132	
	JenP2	Escherichia coli	KP719133	
	SE1	Salmonella enteritidis	KY926791	
	CAjan	Escherichia coli	KP064094	
	Greed	Bladder microbiota	KX534337	
		assembly		
	Seurat	Escherichia coli	KM236243	
	slur01	Escherichia coli	LN881725	
Lytic33	IME-EC2	Escherichia coli	KF591601	
Lytic34	Ss1	Cronobacter sakazakii	KM058087	
Lytic35	CTV22	Citrobacter sp.	KP774835	

Lytic36	BP63	Salmonella enterica	KM366099	
		Infaantis		
	UPF_BP2	Salmonella enterica	KX826077	
		Bredney		
	øEC1	Escherichia coli	KY608966	Yes
Lytic37	<i>pEP-14</i>	Erwinia pyrifoliae	JN585957	
	SopranoGao	Klebsiella pneumoniae	MF612073	
Lytic38	Yoloswag	Erwinia amylovora	KY448244	

	lugeo usee	i in oreating .	opiliorree	
			Accession	changes made to
Supercluster	Cluster	Phage name	number	annotation
T1	Lytic1	T1	AY216660	
Т4	Lytic2	Т4	AY318471	YES
Vi01	Lytic3	Vi01	FQ312032	
Т5	Lytic4	Т5	AY543070	
	Lytic5	т7	V01146	YES
	Lytic6	SP6	AY288927	
	Lytic7	КР34	NC_013649	YES
T7	Lytic10	GAP227	NC_020078	YES
N4	Lytic11	N4	EF056009	
9NA	Lytic12	9NA	KJ802832	
Chi	Lytic13	Chi	JX094499	
phiECO32	Lytic14	øECO32	EU330206	YES
Felix01	Lytic15	Felix01	AF320576	
	Lytic16	SETP3	EF177456	
SETP3	Lytic17	SO-1	GQ502199	YES
ECO1230	Lytic18	ECO1230	GU903191	
GJ1	Lytic19	GJ1	EF460875	YES
singleton	Lytic20	PY100	AM076770	YES
rv5	Lytic21	ø92	FR775895	
rv5	Lytic22	rv5	NC_011041	YES
SPN3US	Lytic23	SPN3US	JN641803	
Rak2	Lytic24	Rak2	JQ513383	
singleton	Lytic25	ØR1-37	AJ972879	YES
E1	Lytic26	E1	AM491472	YES
ECML-117	Lytic27	ECML-117	JX128258	
KF-1	Lytic28	KF-1	AB757800	
MSW-3	Lytic29	MSW-3	AB767244	
Ea35-70	Lytic30	Ea35-70	KF806589	YES
PhiEaH1	Lytic31	øEaH1	KF623294	
9g	Lytic32	9g	KJ419279	
IME_EC2	Lytic33	IME_EC2	KF591601	
singleton	Lytic34	Ss1	KM058087	
singleton	Lytic35	CVT22	KP774835	
BP63	Lytic36	BP63	KM366099	
Pep14	Lytic37	Pep14	JN585957	
Yoloswag	Lytic38	Yoloswag	KY448244	
T7	Lytic39	Peat1	KR604693	
SETP3	Lytic40	КрЗ	KT367887	
Joad	Lytic41	Joad	MF459647	
singleton	Lytic42	PMBT28	MG641885	
Jello	Lytic43	Sucellus	MH059634	
singleton	Lytic44	fEV-1	LT992259	
N4	Lytic45	CB1	KY514264	
singleton	Lytic47	Halfdan	MH362766	
	Lytic48	Med16	MK095605	
SETP3	Lytic49	Scapp	MH553517	
singleton	Lytic50	LIET2	MK388689	
singleton	Lytic52	Serbin	MK608336	
singleton	Lytic53	CAjan	KP064094	

Supplementary Table 4.S4 Phages used in creating SplitsTree

REFERENCES

- 1. Keen E. C. (2015). A century of phage research: bacteriophages and the shaping of modern biology. *BioEssays: news and reviews in molecular, cellular and developmental biology*, *37*(1), 6-9.
- 2. Clokie, M. R., Millard, A. D., Letarov, A. V., & Heaphy, S. (2011). Phages in nature. *Bacteriophage*, *1*(1), 31-45.
- S.R. Casjens, P.A. Thuman-Commike. Evolution of mosaically related tailed bacteriophage genomes seen through the lens of phage P22 virion assembly. Virology, 411 (2011), pp. 393–415.
- 4. Canchaya et al., 2003C. Canchaya, G. Fournous, S. Chibani-Chennoufi, M.L. Dillmann, H. Brüssow (2003). Phage as agents of lateral gene transfer. *El Sevier: current opinion in microbiology*, 6(4), 417-424.
- 5. Potera C. (2013). Phage renaissance: new hope against antibiotic resistance. *Environmental health perspectives*, *121*(2), a48-53.
- 6. Kuchment, A. (2013). The forgotten cure: The past and future of phage therapy. 10.1007/978-1-4614-0251-0.
- 7. Nelson D. (2004). Phage taxonomy: we agree to disagree. *Journal of bacteriology*, *186*(21), 7029-31.
- 8. Hatfull G. F. (2014). Molecular Genetics of Mycobacteriophages. *Microbiology spectrum*, 2(2), 1-36.
- Hatfull, G.F., Jacobs-Sera, D., Lawrence, J.G., Pope, W.H., Russell, D.A., Ko, C.C., Weber, R.J., Patel, M.C., Germane, K.L., Edgar, R.H., Hoyte, N.N., Bowman, C.A., Tantoco, A.T., Paladin, E.C., Myers, M.S., Smith, A.L., Grace, M.S., Pham, T.T., O'Brien, M.B., Vogelsberger, A.M., Hryckowian, A.J., Wynalek, J.L., Donis-Keller, H., Bogel, M. W., Peebles, C.L., Cresawn, S.G., Hendrix, R.W. (2010). Comparative genomic analysis of 60 Mycobacteriophage genomes: genome clustering, gene acquisition, and gene size. *J. Mol. Biology*, 397: 119–143.
- Grose, J. H., Casjens, S. R. (2014). Understanding the Enormous Diversity of Bacteriophages: The Tailed Phages That Infect the Bacterial Family Enterobacteriaceae. *Virology*, 421-43.
- 11. Casjens S.R., Thuman-Commike, P.A. (2011). Evolution of mosaically related tailed bacteriophage genomes seen through the lens of phage P22 virion assembly. *Virology*.
- 12. Krumsiek, J., R. Arnold, and T. Rattei. "Gepard: A Rapid and Sensitive Tool for Creating Dotplots on Genome Scale." [In eng]. *Bioinformatics* 23, no. 8 (Apr 15 2007): 1026-8.

- Lamine, J. G., R. J. DeJong, and S. M. Nelesen. "Phamdb: A Web-Based Application for Building Phamerator Databases." [In eng]. *Bioinformatics* 32, no. 13 (Jul 1 2016): 2026-8.
- Cresawn, S. G., M. Bogel, N. Day, D. Jacobs-Sera, R. W. Hendrix, and G. F. Hatfull.
 "Phamerator: A Bioinformatic Tool for Comparative Bacteriophage Genomics." [In eng].
 BMC Bioinformatics 12 (Oct 12 2011): 395.
- 15. Katoh, K., K. Misawa, K. Kuma, and T. Miyata. "Mafft: A Novel Method for Rapid Multiple Sequence Alignment Based on Fast Fourier Transform." [In eng]. *Nucleic Acids Res* 30, no. 14 (Jul 15 2002): 3059-66.
- Kearse, M., R. Moir, A. Wilson, S. Stones-Havas, M. Cheung, S. Sturrock, S. Buxton, *et al.* "Geneious Basic: An Integrated and Extendable Desktop Software Platform for the Organization and Analysis of Sequence Data." [In eng]. *Bioinformatics* 28, no. 12 (Jun 15 2012): 1647-9.
- 17. Huson, D. H., and D. Bryant. "Application of Phylogenetic Networks in Evolutionary Studies." [In eng]. *Mol Biol Evol* 23, no. 2 (Feb 2006): 254-67.
- 18. Hatfull, G. F., & Hendrix, R. W. (2011). Bacteriophages and their genomes. *Current* opinion in virology, 1(4), 298-303

CHAPTER 5: Conclusion and Future Directions

The bacteriophages are forces of nature that drive evolution of bacterial strains. With the ability of horizontal gene transfer (1) and specialized transduction as in shiga toxin (2) they are able to share genes with bacteria which in turn can make bacteria either resistant or pathogenic. For e.g. *Vibrio cholerae* and *Cornebacterium diptheriae* would not be pathogenic if it were not for their prophages, $CTX\phi$ (3) and Beta (4). Understanding the role of lytic and temperate bacteriophages in a family is the most direct way of studying their emergence and evolution. This can be achieved in two ways: a) by characterizing the genomes and proteomes of bacteriophages, and b) by tapping into the enormous diversity of bacteriophages by studying their relationship on a broader level.

We started this process with characterization of 8 bacteriophages of a new genus *Agrican357virus* (5) and compared it with another bacteriophage from the same family Ea35-70 (6), found in Ontario, Canada. We found that the genomes of these bacteriophages are highly related to each other with >97% genomic and proteomic similarity. Out of 319-324 genes they harbor, 80% of them have no known function. They have broad host range and incredibly small burst size of 4.5-4.9 phages per bacterium, as compared to other phages of same genome size. It contains survival proteins like SbcC, SbcD, exodeoxyribonuclease VIII, UvsX, UvsW etc., that may aid in DNA repair and metabolism. We also found virulence factors like EPS depolymerase which is a biofilm degradation protein. In our analyses, it was observed that bacteriophages of *Agrican357virus* has EPS-degradation activity against *P. vagans*. This activity was not seen in *E. amylovora*.

The most curious aspect of this study would be determining the function of hypothetical proteins. In our mass spectrometry analysis, we were able to detect 32 proteins for bacteriophage

129
RAY and 27 for Deimos-Minion (including some hypothetical proteins). Although 202 hypothetical proteins with no known blast hits or 50 with blast hits considerably contribute to the viral dark matter (7) which needs to be further analyzed.

What is most interesting about this family is they share more proteomic similarity to *Pseudomonas* and *Ralstonia* phages than their *Erwinia* counterparts. This unique feature brings back the question of what drives evolution of phages, is it their hosts or ecological niche? In a recent study done on healthy blossoms it was found that *Pseudomonas* is the most prevalent bacteria after *Erwinia* and *Pantoea* found on tree blossoms (personal communication) which may indicate that it is may indeed be the ecological niche that is driving evolution, at least in case of *Agrican357virus*.

The idea of studying their evolutionary behavior laid the foundation of enhancing our current understanding of bacteriophage diversity. Our next study is built upon a previous study done by Grose and Casjens in 2014 based (8) on methods set forth by Graham Hatfull (9-11). In this study they grouped 337 tailed bacteriophages isolated on 18 genera of bacteria from *Enterobacteriaceae* into 56 diverse clusters (32 lytic and 24 temperate). We further expanded this study to 1303 tailed bacteriophages (49 lytic and 39 temperate clusters) from the order *Enterobacteriales*, submitted to GenBank as of March 25, 2019. With addition of new phages, we observed that phages with <50% genomic similarity may fall in the same cluster as long a they have >50% genomic similarity with at least one phage within the same cluster. The subclusters on the other hand, now have a more substantiated definition of having >80% proteomic similarity (12) with rest of the phages in the same subcluster. The outlined definition of superclusters remains largely unchanged.

Out of the 11923 proteins we studied, nearly 60 % of them were unique between 1 or 2 phages. We also found that 614 them were conserved between \geq 25 phages and 243 were conserved between \geq 100. Of the 614 more than half have no known function. Discovering their functions would be the next step to add more to the understanding of these bacteriophages.

REFERENCES

- Boyd, E. F., K. E. Moyer, L. Shi, and M. K. Waldor. "Infectious Ctxphi and the Vibrio Pathogenicity Island Prophage in Vibrio Mimicus: Evidence for Recent Horizontal Transfer between V. Mimicus and V. Cholerae." [In eng]. *Infect Immun* 68, no. 3 (Mar 2000): 1507-13.
- Melton-Celsa, A. R. "Shiga Toxin (Stx) Classification, Structure, and Function." [In eng]. Microbiol Spectr 2, no. 4 (Aug 2014): Ehec-0024-2013.
- 3. Faruque, S. M., and J. J. Mekalanos. "Phage-Bacterial Interactions in the Evolution of Toxigenic Vibrio Cholerae." [In eng]. *Virulence* 3, no. 7 (Nov 15 2012): 556-65.
- 4. Gill, D. M., T. Uchida, and R. A. Singer. "Expression of Diphtheria Toxin Genes Carried by Integrated and Nonintegrated Phage Beta." [In eng]. *Virology* 50, no. 3 (Dec 1972): 664-8.
- Adams, M. J., E. J. Lefkowitz, A. M. Q. King, B. Harrach, R. L. Harrison, N. J. Knowles, A. M. Kropinski, *et al.* "Changes to Taxonomy and the International Code of Virus Classification and Nomenclature Ratified by the International Committee on Taxonomy of Viruses (2017)." [In eng]. *Arch Virol* 162, no. 8 (Aug 2017): 2505-38.
- 6. Yagubi, A. I., A. J. Castle, A. M. Kropinski, T. W. Banks, and A. M. Svircev. "Complete Genome Sequence of Erwinia Amylovora Bacteriophage Vb_Eamm_Ea35-70." [In eng]. *Genome Announc* 2, no. 4 (Aug 21 2014).
- 7. Hatfull, G. F. "Dark Matter of the Biosphere: The Amazing World of Bacteriophage Diversity." [In eng]. *J Virol* 89, no. 16 (Aug 2015): 8107-10.
- 8. Grose, J. H., Casjens, S. R. (2014). Understanding the Enormous Diversity of Bacteriophages: The Tailed Phages That Infect the Bacterial Family Enterobacteriaceae. *Virology*, 421-43.
- 9. Hatfull G. F. (2014). Molecular Genetics of Mycobacteriophages. *Microbiology spectrum*, 2(2), 1-36.
- Hatfull, G.F., Jacobs-Sera, D., Lawrence, J.G., Pope, W.H., Russell, D.A., Ko, C.C., Weber, R.J., Patel, M.C., Germane, K.L., Edgar, R.H., Hoyte, N.N., Bowman, C.A., Tantoco, A.T., Paladin, E.C., Myers, M.S., Smith, A.L., Grace, M.S., Pham, T.T., O'Brien, M.B., Vogelsberger, A.M., Hryckowian, A.J., Wynalek, J.L., Donis-Keller, H., Bogel, M. W., Peebles, C.L., Cresawn, S.G., Hendrix, R.W. (2010). Comparative genomic analysis of 60 Mycobacteriophage genomes: genome clustering, gene acquisition, and gene size. *J. Mol. Biology*, 397: 119–143.
- 11. Casjens S.R., Thuman-Commike, P.A. (2011). Evolution of mosaically related tailed bacteriophage genomes seen through the lens of phage P22 virion assembly. *Virology*.

 Pope, W. H., T. N. Mavrich, R. A. Garlena, C. A. Guerrero-Bustamante, D. Jacobs-Sera, M. T. Montgomery, D. A. Russell, M. H. Warner, and G. F. Hatfull. "Bacteriophages of Gordonia Spp. Display a Spectrum of Diversity and Genetic Relationships." [In eng]. *MBio* 8, no. 4 (Aug 15 2017). APPENDIX I: Genome Sequences of 19 Novel *Erwinia amylovora* Bacteriophages The following Appendix is taken from an article submitted to Genome Announcements Journal. All content and figures have been formatted for this dissertation, but it is otherwise unchanged

I.1 Abstract

Erwinia amylovora is the causal agent of fire blight, a devastating disease affecting some plants of the *Rosaceae* family. We isolated bacteriophages from samples collected from infected apple and pear trees along the Wasatch Front in Utah. We announce 19 high-quality complete genome sequences of *E. amylovora* bacteriophages.

I.2 Discussion

Erwinia amylovora is a Gram-negative facultative anaerobic rod-shaped bacterium and the causative agent of fire blight (1), a disease that affects some members of the plant family Rosaceae and causes the infected areas of the plant to appear burnt (2, 3). E. amylovora is a member of the Enterobacteriaceae family, which includes many well-characterized pathogenic bacteria such as *Salmonella* enterica and *Escherichia coli*. Thus, understanding the evolution of this plant pathogen and the bacteriophages that infect it may provide insight into the evolution of the Enterobacteriaceae family, including other pathogenic strains. Herein, we announce the genome sequences of 19 novel *E. amylovora* bacteriophages, vB_EamP_Frozen, vB_EamP_Gutmeister, vB_EamP_Rexella, vB_EamM_Deimos-Minion, vB_EamM_RAY, vB_EamM_Simmy50, vB_EamM_Special G, vB_EamM_Caitlin,vB_EamM_ChrisDB, vB_EamM_EarlPhillipIV, vB_EamM_Huxley, vB_EamM_Kwan, vB_EamM_Machina, vB_EamM_Parshik, vB_EamM_Phobos, vB_EamM_Stratton, vB_EamM_Joad, vB_EamM_RisingSun, and vB_EamM_Yoloswag. Samples were collected from apple and pear trees bearing symptoms of fire blight infection that were found along the Wasatch Front of Utah. Phages were amplified via enrichment culture of these samples, and resulting phages were then plaque purified by a minimum of three passages. All phages reported in this announcement infect the Erwinia amylovora ATCC 29780 strain. Genomic DNA was extracted using the Phage DNA isolation kit (Norgen Biotek Corporation) and sequenced using 454 pyrosequencing (454 Life Sciences, Roche Diagnostics) or Illumina HiSeq 2500 sequencing (Illumina, 250-bp reads). Contigs were assembled using Newbler version 2.9 (Roche Diagnostics, Branford, CT) and Consed (4) for 454 pyrosequencing reads or Geneious version R8 (5) for Illumina reads. Assembled genomes were annotated using DNA Master (6) and other programs as described previously (7, 8). The 19 phages fell into five distinct clusters according to genomic analysis. The first group included the jumbo myoviruses vB EamM Deimos-Minion, vB EamM RAY, vB EamM Simmy50, and vB EamM Special G, which share a minimum of 97.2% average nucleotide identity to one another. The second group included two jumbo myoviruses, vB EamM RisingSun and vB EamM Joad, which differ by only two putative gene products. The third group included diverse jumbo myoviruses vB EamM Caitlin, vB EamM ChrisDB, vB EamM EarlPhillipIV, vB EamM Huxley, vB EamM Kwan, vB EamM Machina, vB EamM Parshik, vB EamM Phobos, and vB EamM Stratton, which share a minimum of 50.5% average nucleotide identity. An additional jumbo myovirus, vB_EamM_Yoloswag, did not have any close phage relatives. Podovirus phages vB EamP Frozen, vB EamP Gutmeister, and vB EamP Rexella share at least 97.2% average nucleotide identity. The four jumbo myovirus groups package DNA by headful packaging based on homology of their putative terminase genes to the phiKZ terminase (9). Three of these genomically permuted myovirus groups were assigned their base pair (bp) 1 by alignment to previously published genomes by use of BLASTN (10) and Gepard (11) (Ea35-70 for the Deimos-Minion group [12], EL [13, 14] for the RisingSun group, and SPN3US [15] for the Caitlin group). vB_EamM_Yoloswag shared very little DNA homology with any other phage; therefore, its bp 1 was assigned to position its putative terminase at the beginning of the genome. The podovirus group genomes were assigned bp 1 by their relation to N4, in terms of both terminase similarity and whole-genome alignment, suggesting they have small terminal repeats.

I.3 Accession number(s)

GenBank accession numbers for the 19 Erwinia bacteriophages are listed in Table II.1.

Phage Name	GenBank accession no.	Sequenc ing Type	Minimum- maximum fold coverage (avg read depth)	Genome Length (bp)	No. of ORFs	No. of tRNAs	G+C content (%)
vB_EamP_Gutmeister	KX098391	Illumina	423–2,415 (662)	71,173	84	8	46.9
vB_EamP_Frozen	KX098389	454	79–1,779 (862)	75,147	92	8	46.9
vB_EamP_Rexella	KX098390	454	69–1,780 (885)	75,448	92	7	46.9
vB_EamM_Deimos-Minion	KU886225	454	61–1,780 (873)	273,501	326	NA	49.9
vB_EamM_RAY	KU886224	Illumina	335–910 (677)	271,182	319	1	49.9
vB_EamM_Special G	KU886222	454	19–1,779 (874)	273,224	324	NA	49.8
vB_EamM_Simmy50	KU886223	Illumina	150-831 (282)	271,088	322	1	49.9
vB_EamM_Caitlin	KX397365	Illumina	84–249 (174)	241,147	271	7	52.2
vB_EamM_ChrisDB	KX397366	454	66–1,780 (874)	244,840	277	11	49.4
vB_EamM_EarlPhillipIV	KX397367	Illumina	75–243 (164)	223,935	241	NA	50.6
vB_EamM_Huxley	KX397368	454	75–1,779 (880)	240,761	271	9	51.1
vB_EamM_Kwan	KX397369	Illumina	192–554 (362)	246,390	285	8	52.1
vB_EamM_Machina	KX397370	454	65–1,780 (879)	241,654	272	9	51
vB_EamM_Parshik	KX397371	454	64–1,779 (880)	241,050	271	10	51
vB_EamM_Phobos	KX397372	454	59–1,779 (873)	229,501	247	NA	49.1
vB_EamM_Stratton	KX397373	454	64–1,779 (874)	243,953	276	12	51.3
vB_EamM_Yoloswag	KY448244	Illumina	5-265 (99.5)	259,700	334	NA	46.91
VB FamM RisingSun	ME150616	Illumina	50-293 (138.6)	235 108	243	NA	48.32

Table I.1 Properties of 19 novel *Erwinia amylovora* bacteriophage genomes . ORFs, open reading frames. NA, no tRNAS were identified

I.4 Acknowledgements

vB EamM Joad

MF459647

Illumina

We extend a special thanks to the Howard Hughes Medical Institute Science Education Alliance–Phage Hunters Advancing Genomics and Evolutionary Science (SEA-PHAGES) for

232-1,065 (522.2)

235,374

245

NA

48.29

support and training on phage analysis. We appreciate the help of Ed Wilcox (BYU DNA Sequencing Center), Michael Standing (BYU Microscopy Lab), Alisa L. Buchanan, Brett Buhler, and Brianna R. Keele.

I.5 Funding statement

This work was graciously funded by the Department of Microbiology and Molecular Biology and the College of Life Sciences at Brigham Young University, as well as by a private donor.

I.6 Conflict of interest

J.H.G. is in the process of submitting a patent for using *Erwinia* phages for the treatment of fire blight. J.H.G., S.H., and D.P.B. have a license agreement with a company for distribution of *Erwinia* phages.

REFERENCES

- 1. Khan MA, Zhao Y, Korban SS. 2012. Molecular mechanisms of pathogenesis and resistance to the bacterial pathogen Erwinia amylovora, causal agent of fire blight disease in Rosaceae. Plant Mol Biol Rep 30:247–260. https://doi.org/10.1007/s11105-011-0334-1
- Schroth MN, Thomson SV, Hildebrand DC, Moller WJ. 1974. Epidemiology and control of fire blight. Annu Rev Phytopathol 12:389 – 412. https://doi.org/10.1146/annurev.py.12.090174.002133.
- 3. Thomson SV. 2000. Epidemiology of fire blight 2, p 9–36. In Fire Blight: the disease and its causative agent Erwinia amylovora. CABI Publishing, Wallingford, United Kingdom.
- 4. Gordon D, Green P. 2013. Consed: a graphical editor for next-generation sequencing. Bioinformatics 29:2936 – 2937. https://doi.org/10.1093/ bioinformatics/btt515.
- 5. Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Meintjes P, Drummond A. 2012. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649. https://doi.org/10.1093/bioinformatics/ bts199.
- 6. Lawrence J. 2012. DNA Master, v5.0.2. http://cobamide2.bio.pitt.edu/ computer.htm.
- Grose JH, Jensen JD, Merrill BD, Fisher JN, Burnett SH, Breakwell DP. 2014. Genome sequences of three novel Bacillus cereus bacteriophages. Genome Announc 2(1):e01118-13. https://doi.org/10.1128/ genomeA.01118-13.
- Sheflo MA, Gardner AV, Merrill BD, Fisher JN, Lunt BL, Breakwell DP, Grose JH, Burnett SH. 2013. Complete genome sequences of five Paenibacillus larvae bacteriophages. Genome Announc 1(6):e00668-13. https:// doi.org/10.1128/genomeA.00668-13.
- 9. Mesyanzhinov VV, Robben J, Grymonprez B, Kostyuchenko VA, Bourkaltseva MV, Sykilinda NN, Krylov VN, Volckaert G. 2002. The genome of bacteriophage phiKZ of Pseudomonas aeruginosa. J Mol Biol 317:1–19. https://doi.org/10.1006/jmbi.2001.5396.
- 10. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. J Mol Biol 215:403–410. https://doi.org/10.1016/ S0022-2836(05)80360-2.
- 11. Krumsiek J, Arnold R, Rattei T. 2007. Gepard: a rapid and sensitive tool for creating dotplots on genome scale. Bioinformatics 23:1026–1028. https://doi.org/10.1093/bioinformatics/btm039.
- 12. Yagubi AI, Castle AJ, Kropinski AM, Banks TW, Svircev AM. 2014. Complete genome sequence of Erwinia amylovora bacteriophage vB_EamM_Ea35-70. Genome Announc 2(4):e00413-14. https://doi.org/10.1128/ genomeA.00413-14.

- Hertveldt K, Lavigne R, Pleteneva E, Sernova N, Kurochkina L, Korchevskii R, Robben J, Mesyanzhinov V, Krylov VN, Volckaert G. 2005. Genome comparison of Pseudomonas aeruginosa large phages. J Mol Biol 354: 536 –545. https://doi.org/10.1016/j.jmb.2005.08.075.
- Sokolova OS, Shaburova OV, Pechnikova EV, Shaytan AK, Krylov SV, Kiselev NA, Krylov VN. 2014. Genome packaging in EL and Lin68, two giant phiKZ-like bacteriophages of P. aeruginosa. Virology 468 – 470: 472–478. https://doi.org/10.1016/j.virol.2014.09.002.
- 15. Lee JH, Shin H, Kim H, Ryu S. 2011. Complete genome sequence of Salmonella bacteriophage SPN3US. J Virol 85:13470 –13471. https://doi.org/10.1128/JVI.06344-11.

APPENDIX II: Genomic Comparison of 60 Completely Sequenced Bacteriophages that Infect *Erwinia* and/or *Pantoea* Bacteria

The following Appendix is taken from an article submitted to Virology Journal. All content and figures have been formatted for this dissertation, but it is otherwise unchanged.

II.1 Abstract

Erwinia and *Pantoea* are closely related bacterial plant pathogens in the Gram negative *Enterobacteriales* order. Sixty tailed bacteriophages capable of infecting these pathogens have been completely sequenced by investigators around the world and are in the current databases, 30 of which were sequenced by our lab. These 60 were compared to 991 other *Enterobacteriales* bacteriophage genomes and found to be, on average, just over twice the overall average length. These *Erwinia* and *Pantoea* phages comprise 20 clusters based on nucleotide and protein sequences. Five clusters contain only phages that infect the *Erwinia* and *Pantoea* genera, the other 15 clusters are closely related to bacteriophages that infect other *Enterobacteriales*; however, within these clusters the *Erwinia* and *Pantoea* phages tend to be distinct, suggesting ecological niche may play a diversification role. The failure of many of their encoded proteins to have predicted functions highlights the need for further study of these phages.

II.2 Introduction

Bacteriophages are viruses that infect bacteria. Their virions are comprised of a protein shell containing genetic material that can be dsDNA, ssDNA, dsRNA or ssRNA. Their genomes can contain as few as 3.3 kb or as many as 500 kb (2, 3). They are the most abundant and diverse biological entities, with an estimate of about 10^{32} tailed bacteriophages on Earth (4). Since bacteriophages are parasites of bacteria, they have played an important role in the evolution of bacteria. Bacteriophages can have two alternate lifestyles when infecting a

bacterium, lytic and temperate. Lytic phages simply replicate to form progeny virions which are released to infect other host cells. Temperate phages can also propagate lytically but may instead enter a semi-dormant "prophage" state in which the phage DNA either replicates as a plasmid or integrates into the host chromosome and replicates passively as part of that replicon. Prophages can be stable indefinitely, but environmental triggers can cause their "induction" into the lytic growth cycle.

Erwinia and *Pantoea* are very closely related Gram negative bacteria in the *Erwiniaceae* family of the *Enterobacteriales* order (5) that are often plant pathogens, causing necrosis in the tissues of the infected plant. These pathogens are a large burden on the agricultural community of the United States and are currently listed as possible bio-terrorism agents. For example, *Pantoea agglomerans* is the causative agent of potato blight and has also been documented as an opportunistic human pathogen (6), and *Erwinia amylovora* is the causative agent of fruit tree fire blight, which is responsible for an average of 100 million US dollars damage annually to apple orchards in the United States (7). Fire blight infections are currently treated with antibiotics; however, up to 70% of these bacteria found in nature are resistant to the currently used antibiotics (8). Due to their ability to kill their bacterial hosts, phages are projected to provide an alternative anti-bacterial therapy for these plant diseases.

A number of bacteriophages that infect *Erwinia* or *Pantoea* (*Erwiniacea*e phages) have been isolated by a variety of investigators from several continents, and 60 of their complete genome sequences are available at the National Center for Biological Information (NCBI) GenBank database (9). Thirty of these phages were isolated and characterized in our laboratory (10, 11). Host range studies of phages that infect *Erwiniaceae* suggest relatedness between the two host genera in that several phages isolated on *Erwinia* can infect both *Erwinia* and *Pantoea*

strains including phages Joad and RisingSun (12), Y3 (13), ØEa2809 (14) and CBB (15). Herein, we compare these 60 bacteriophages and place them in 20 different clusters based on their genomic and proteomic traits. An analysis of each of these clusters is provided, along with comparisons to known phages. The purpose of our analysis is four fold: 1) to gain insight into the relationship and interaction between different bacteriophage types and their host bacterial species, 2) to further understand the relationships among members of the *Enterobacteriales* order by comparing their bacteriophages, 3) to contribute to our understanding of overall bacteriophage diversity, and 4) to provide information that will aid in the treatment of the above plant diseases by development of improved phage therapy cocktail design and safety. II.3 Materials and methods

II.3.1 Isolation, sequencing and assembly of phages

Thirty *Erwinia* phages were isolated by our laboratory at Brigham Young and 28 of these have been previously described (*10, 11*). The genomes of the two previously undescribed phages Rebecca (accession No. MK514281) and Derbicus (MK514282) were sequenced from libraries made with the Illumina TruSeq DNA Nano kit and Illumina HiSeq 2500 sequencing (250-bp paired end). Genomes were assembled with Geneious (*16*) version 8.1 using *de novo* assembly with medium-low sensitivity as described previously in Sharma *et al (11)*. Coverage depths were 527-1615 (1015.6 average) for Rebecca and 183-1758 (572.3 average) for Derbicus, both phages circularized their genomes upon assembly.

II.3.2 Genomic analysis and comparison

Gepard (17) was used to generate dot plots that compare nucleotide sequences of multiple genomes. Default settings (word size 10) were used to generate dot plots, however lower and upper color limit were increased in order to allow better image viewing.

Geneious (16) was used to align the sequences in an identity matrix using MAFFT plugin and setting parameters to auto-algorithm, a scoring matrix of 200PAM/k=2, a gap open penalty of 1.53 and an offset value of 0.123. Phamdb (18), an online version of Phamerator (19), a bioinformatic tool designed to compare bacteriophage genomes was used to visualize both nucleotide and protein similarity using kClust (20). The default settings of PhamDB were used in this comparison. The cluster file generated by Phamerator was aligned using Janus (available on the DNA-master website https://phagesdb.org/DNAMaster/) and then used to generate a phylogenetic tree of the proteins using the SPLITStree program (21). BLASTp (22, 23) was used from the NCBI website except for when accessed through Phamerator.

II.4 Results and discussion

II.4.1 Genomic and proteomic analyses separate the 60 *Erwiniaceae* bacteriophages into 20 clusters

A summary of the 60 *Erwiniaceae* phage genomes available in GenBank as of January 1, 2019 is provided in Table 1. These 60 phages were isolated in 10 countries, and 30 were isolated and characterized by our laboratory (*10, 11*). Three phages, LIMElight, LIMEzero and Vid5, were isolated on *Pantoea* hosts, and 56 were isolated on *Erwinia* hosts (*24*). One phage, CBB, was isolated on *Pectobacterium* but forms plaques on a strain of *Erwinia* (*15*). Among those with a reported isolation location, many were found in infected trees or in the soil around them. Of the 30 phages we isolated, the genomes of only two, Joad and RisingSun, have been fully discussed in the literature (*12*), 26 have been reported in only genome announcements, and two (Rebecca and Derbicus) are first reported here.

Table II.1 Sixty *Erwinia* and *Pantoea* bacteriophages. Phages are organized by clusters (see text for definition of "clusters") which are indicated by different colored cells. The clusters are listed in order of descending genome size, and this group color scheme is carried throughout this report. The first column is the cluster as defined by Grose and Casjens (25) when applicable. Pre-existing clusters are named according to the founding *Enterobacteriales* phage, and bold phage names in the second column indicate

the first *Erwiniaceae* member of that cluster. N/A (not available) indicates phage genomes in GenBank that are otherwise not published. *‡* LS-2018a has a reported genome length of 59,759 bp, but this appears to be an untrimmed partial concatemer of the true sequence; the genome length given in the table putative properly trimmed sequence.

Phage Name	Isolation Location	Isolation Source	Gene Bank Accession	Genome Length	Number of ORF's	Reference
CBB	Little Island, Ireland	Waste water sludge	KU574722	378,379	605	15
RAY	UT, USA	Leaves and Stem	KU886224	271,182	319	10
Deimos-minion	UT, USA	Branches and Blossom	KU886225	273,501	326	10
Special G	UT, USA	Branches and Blossom	KU886222	273,224	324	10
Simmy50	UT, USA	Bark	KU886223	271,088	322	10
Ea35-70	Canada	Soil	KF806589	271,084	314	76
Desertfox	UT, USA	Soil	MG655268	272,485	320	N/A
Bosolaphorus	UT, USA	Soil	MG655267	272,228	321	N/A
Rebecca	UT, USA	Tree	MK514281	273,731	320	N/A
MadMel	UT, USA	Soil	MG655269	275,000	321	N/A
Mortimer	UT, USA	Unknown	MG655270	273,914	325	N/A
Yoloswag	UT, USA	Unknown	KY448244	259,700	334	10
¥3	Sursee, Switzerland	Soil, Apple tree	KY984068	261,365	333	13
Alexandra	UT, USA	Unknown	MH248138	266,532	349	N/A
Asesino	UT, USA	Branches and Blossom	KX397364	246,291	289	N/A
phiEaH2	Hungary	Unknown	JX316028	243,050	263	41
Stratton	UT, USA	Unknown	KX397373	243,953	276	10
Huxley	UT, USA	Branches and Blossom	KX397368	240,761	271	10
Machina	UT, USA	Unknown	KX397370	241,654	272	10
Parshik	UT, USA	Unknown	KX397371	241,050	271	10
ChrisDB	UT, USA	Unknown	KX397366	244,840	277	10
Caitlin	UT, USA	Branches and Blossom	KX397365	241,147	271	10
Phobos	UT, USA	Unknown	KX397372	229,501	247	10
EarlPhilipIV	UT, USA	Apple tree	KX397367	223,935	241	10
Derbicus	UT, USA	Pear tree	MK514282	223,950	240	N/A
Wellington	UT, USA	Unknown	MH426724	244,950	295	11
Kwan	UT, USA	Unknown	KX397369	246,390	285	10
phiEaH1	NCAIM, Hungary	Aerial tissue	KF623294	218,339	244	41
Joad	UT, USA	Pear tree	MF459647	235,374	245	10
RisingSun	UT, USA	Apple tree	MF459646	235,108	243	10
Cronus	Denmark	Organic waste	MH059636	175,774	295	N/A
øEa2809	Belarus	Leaves of apple tree	KP037007	162,160	145	14
Buel	Switzerland	Soil from apple orchard	MG973030	164,037	178	N/A
øEa21-4	Canada	Unknown	EU710883	84,576	117	51
øEa104	Germany	Unknown	FQ482083	84,565	118	69
M7	Switzerland	Unknown	HQ728263	84,694	117	1
SunLiRen	USA	Unknown	MH426725	84,559	142	N/A
S6	Switzerland	Unknown	HQ728266	74,669	115	1
Frozen	UT, USA	Branches and Blossom	KX098389	75,147	92	10
Rexella	UT, USA	Branches and Blossom	KX098390	75,448	92	10
Gutmeister	UT, USA	Apple tree	KX098391	71,173	84	10
Ea9-2	Canada	Soil	KF806588	75,568	89	N/A
øEaP-8	South Korea	Unknown	MH160392	75,929	78	56
Vid5	Lithuania	Thicket shadbush	MG948468	61,437	99	72
PEp14	Korea	Unknown	JN585957	60,714	64	N/A
Pavtok	UT, USA	Unknown	MH426726	61,401	62	N/A
Faunus	Denmark	Organic waste	MH191398	54,065	78	N/A
Y2	Switzerland	Unknown	NC019504	56,621	92	55
øEt88	USA	Unknown	FQ482085	47,279	68	69
Era103	USA	Unknown	EF160123	45,445	53	33
øEa100	USA	Unknown	FQ482086	45,554	51	69
S2	Switzerland	Soil	MG736918	45,495	49	N/A
øEa1H	USA	Unknown	FQ482084	45,522	50	69
LIMElight	Merelbeke, Belgium	Soil from potato	FR687252	44,546	55	24
LIMEzero	Merelbeke, Belgium	Soil from potato	FR751545	43,032	57	24
FE44	Ukraine	T2 phage contamination	KF700371	39,860	47	N/A
Ll	Switzerland	Unknown	HQ728265	39,282	51	1
LS-2018a	MD, USA	Unknown	CP013974	31,798	N/A	N/A
ENT90	South Korea	Unknown	HQ110084	29,564	60	N/A
EtG	USA	Cucumber	MF276773	30,413	45	N/A

Figure II.1 Comparison of *Enterobacteriales* bacteriophage average genome size with the average *Erwiniaceae* phage genome reveals large *Erwiniaceae* phage genomes. Phage genome size is plotted on the y-axis for each of 1134 *Enterobacteriales* phages on the x-axis. The green dashed line represents the average genome length of all *Enterobacteriales* phages, and the red dashed line represents the average of all *Erwiniaceae* phage genome lengths. The red circles mark *Erwiniaceae* clusters.

Figure II.2 Dot plots that compare the *Erwiniaceae* tailed phages reveal 20 clusters of related phages. (A) Whole genome nucleotide sequence dot plot. Sequences were reoriented to make parallel genome alignments within each cluster; the founding phage of each cluster (bold in table 1) labels each whole cluster. (B) Major capsid protein (MCP) amino acid sequence dot plot. (C) Large terminase amino acid sequence dot plot. Horizontal and vertical black lines separate clusters, and white lines within the colored cluster boxes mark the ends of each phage genome. Dot plots were constructed using Gepard (11). Note that the phage LS-2018a sequence was not annotated, but putative MCP and terminase were identified using tBLASTn (22). The genomes of the *Erwiniaceae* phages range from 378,379 bp (phage CBB)

to 29,564 bp (phage ENT90). The average genome length of the 991 other *Enterobacteriales* tailed phage genomes currently in the NCBI database is 81,187 bp, but the *Erwiniaceae* phages have an average genome length of 162,734 bp. Thus, *Erwiniaceae* bacteriophages comprise about five percent of the sequenced *Enterobacteriales* tailed phages, and the average genome size is almost double the overall average. Figure II.1 plots the length of all the *Enterobacteriales* tailed phage genomes and indicates the locations of the *Erwiniaceae* phages. The *Erwiniaceae* phage genome lengths are within the previously known extremes, but it is not known if their large average size is the result of isolation methods used, properties of the hosts or the skew in isolation sources toward trees and the soil around them.

The 60 *Erwiniaceae* phage whole genome nucleotide sequences were compared with Genome Pair Rapid Dotter (Gepard) (17) (figure II.2A). By the criterion of diagonal line strength, these phages fall into 20 clusters that have similarity over 50% of the phage genome as previously described (26, 27). The clusters in figure 2A are indicated by the founding *Erwiniaceae* phage in the group (the first sequence released in GenBank) unless the phage belongs to a previously-described *Enterobacteriales* cluster, in which case the previously published name for that cluster is used (26). An Average Nucleotide Identity (10) matrix was also constructed using Geneious (16), and if phage clusters are defined so that each phage has \geq 50% ANI with at least one other phage in the group and \leq 24% ANI with phages from other clusters (supplementary Table II.S1), the ANI grouping matches the dot plot-defined clusters perfectly. Our clusters correspond in general to genera or subfamilies that have been defined by the International Committee on Virus Taxonomy (ICTV), but a number of our clusters have not yet been formalized by that group.

In addition to genome nucleotide sequence analysis, whole proteome and single protein analyses support these 20 clusters. Whole proteome analysis was performed using Phamerator (19) to group the phage-encoded proteins into related "Phamilies", and SPLITSTree (28) was used to infer relationships based on the Phamily content among the 59 annotated bacteriophages (figure II.3; phage LS-2018a is not included because it has not been annotated). The SPLITSTree analysis perfectly parallels the cluster assignments generated by whole genome dot plot and ANI analysis above. It also points out the previously observed distant relationship between LIMEzero and LIMElight, which have previously been assigned to separate clusters within the T7 supercluster. Superclusters are groups of related phage clusters that share genome size and synteny (genes that have similar functions and have similar orders) that is not observed at the nucleotide level (26). In addition to whole proteome analysis, single protein dot plot analysis was performed using the major capsid (MCP) (figure II.2B) and large terminase (figure II.2C) protein sequences, which have been previously used to place phages into related clusters (26, 29). Both of these plots agree with the clustering by the above methods and show similarities within each of the *Erwiniaceae* clusters and differences among them. The fact that all the above analyses give identical phage groupings demonstrates the robustness of such cluster determinations and indicates that the extent of past horizontal exchange of genetic information among these phages was not sufficient to disrupt their overall grouping. Thus, all these methods can be useful tools for determining phage relationships, but the fact that all but dot plots do not point out mosaic relationships should not be forgotten, and in situations where horizontally exchanged, mosaically related sequences occur at higher frequency an ANI comparison may be less informative. A summary of the 20 Erwiniaceae phage clusters is provided in Table II.2, which shows that they range from eight singleton clusters to two clusters that contain nine or more phages.

Figure II.3 A proteome phylogeny of 59 of *Erwiniaceae* tailed phages reveals 19 clusters of phages. Phamerator (30) was used to group phage proteins into phams of related proteins. SPLITStree software (21) was used to generate the tree from each pham's absence or presence in each phage genome. The phage LS-2018a genome has not been annotated and was therefore not used in this analysis.

Phages from all three families of *Caudovirales (Podoviradae, Myoviradae* and *Siphoviridae*) have been isolated that infect *Erwiniaceae* bacteria. The number of annotated genes ranges from 47 (phage FE44) to 605 (CBB). The genome length is quite constant within each cluster, varying by at most 9%. As seen with other bacteriophages, *Erwiniaceae* phage genes are tightly packed with an average gene density of 1.2 ORFs (open reading frames)/kb. In Figure II.4 we plot the number of ORFs against the genome size of the founding *Erwiniaceae* phage of each group. Most lie close to the trend line, and we note that since this analysis is dependent on the annotation practices of different research groups, phages furthest from the line may not be as different as their locations suggest. A genomic map comparison of the founding phage members of each cluster is provided in supplementary Figure II.S1. It clearly shows the densely packed genomes of all 19 clusters that have annotated members.

The average G+C content of the *Erwiniaceae* tailed phage genomes is 48.5% and individual phages range from 38.4% to 55.4%. *Erwinia amylovora* is the most common host species for these phages, and its G+C content is 53.6%. *Pantoea agglomerans*, the most common *Pantoea* host is 55.1% G+C. With a few exceptions, the G+C content of bacteriophage genomes is closely related to their target host (*31*), making this drastic difference interesting. We note that phage Cronos belongs to the T4-like cluster (see below) in which other members are known to have substantially lower G+C contents than their hosts (*32*). Although the purpose for alternate G+C content is unknown, it has been suggested by some authors that lower G+C phages differ from their host in order to introduce their own set of tRNA's which favor the viral genome and the associated preferred codons (*32*).

Table II.2 A summary of the 20 clusters of *Erwiniaceae* phages. The columns contain the group's name (given by founding phage from that group), the number of phages within a group, the average genome length within the group (with standard deviation), the average number of ORF's (with standard deviation), the ORF's/Genome Length (calculated from the average and supplied in ORF's/Kb), the average GC content of each cluster (with standard error), the reported morphology, and closest non-*Erwiniaceae* phage relative of the cluster (well-known phages are selectively provided when available as a relative, otherwise less well-known phages are given). Note that phage LS-2018a has not been annotated, however we determined morphology bioinformatically. None – has no close relatives (i.e., defines a novel cluster).

<i>Erwinaceae</i> Group Name	Number of <i>Erwiniaceae</i> phages included	Average genome length	Number of ORF's	Number of ORF's/Genome length*1000	GC content	Morphology	Close Outside Relative of Cluster
CBB	1	378,379	605	1.6 ± 0.2	36.0	Myoviridae	RaK2
Ea35-70	10	272,744	321	1.2 ± 0.2	49.7	Myoviridae	None
Yoloswag	3	262,532	339	1.3 ± 0.2	48.1	Myoviridae	JA11
phiEaH2	13	239,344	269	1.1 ± 0.2	50.9	Myoviridae	SPN3US
phiEaH1	1	218,339	244	1.1 ± 0.2	52,3	Myoviridae	2050HW
Joad	2	235,241	244	1.0 ± 0.2	48.3	Myoviridae	None
Cronus	1	175,774	295	1.7 ± 0.2	38,4	Myoviridae	T4
øEa2809	2	163,099	162	1.0 ± 0.2	50,3	Myoviridae	Vi01
øEa21-4	4	84,599	124	1.5 ± 0.2	41.8	Myoviridae	Felix-01
S 6	6	74,656	92	1.3 ± 0.2	47.8	Podoviridae	N4
Vid5	1	61,437	99	1.6 ± 0.2	48.8	Siphoviridae	9g
PEp14	2	61,058	63	1.0 ± 0.2	50.0	Podoviridae	SopranoGao
Faunus	2	55,343	85	1.5 ± 0.2	43.9	Myoviridae	EcoM-GJ1
øEt88	1	47,279	68	1.4 ± 0.2	47.3	Myoviridae	T1
Era103	4	45,504	51	1.1 ± 0.2	49.8	Podoviridae	SP6
LIMElight	1	44,546	55	1.3 ± 0.2	54.0	Podoviridae	KP34
LIMEzero	1	43,032	57	1.3 ± 0.2	55.4	Podoviridae	J8-65
FE44	2	39,571	49	1.2 ± 0.2	50.3	Podoviridae	T7
LS-2018a	1	31,798			51.0	Sìphoviridae	None
ENT90	2	29,989	53	1.8 ± 0.2	55.0	Myoviridae	P2
Overall average:	3	162,734	198	1.2	48,5		

Figure II.4 Open reading frame density in *Erwiniaceae* bacteriophage clusters. Each cluster is labeled by the founding phage but represents the whole cluster's average. Equation and R2 value are displayed on the chart. The line represents a linear regression model of the average number of ORFs per phage compared to the average genome size of 19 *Erwinaceae* clusters.

II.4.2 Protein function among the Erwiniaceae phages

We selected one representative bacteriophage from each of the 19 annotated *Erwiniaceae* phage clusters and examined their predicted protein functions. Table II.3 shows that of the 2667 genes annotated in these 19 phage genomes only 793 (30%) have a predicted function. Since BLASTp detected homology is commonly used to identify putative function, this means that 70% of the annotated genes have no database match or match a protein whose function is unknown. Phage Era103 (*33*) had the highest percent (63%) of genes called with a putative protein function, which may in part be due to its smaller genome. In most of the *Erwiniaceae* jumbo phages only 20-30% of the encoded proteins have predicted functions. Among those with putative functions, DNA replication and recombination genes are most abundant (35-52% of total proteins with function). Phage structural proteins were also commonly annotated, with the major capsid and large terminase proteins being identified in all 19 clusters.

II.4.3 Lifestyles of Erwiniaceae tailed phages

We attempted to determine whether the *Erwiniaceae* phages in this study are lytic or temperate by bio-informatic means. Most appear not to carry genes such as integrase that might be indicative of the temperate lifestyle, but since prophages may not be integrated this lack does not prove a lytic lifestyle. In our 2016 study (25) we showed that the number of bacterial genome sequences that are available in the extant database is high enough that virtually all known prophage types are represented in those sequences. Therefore, if a newly identified phage is temperate it should have close relatives in extant bacterial genome sequences, especially in genomes of its host species or close relatives. Indeed, nearly all previously examined temperate. *Enterobacteriales* phage clusters encode MCP relatives with \geq 97% amino acid sequence identity to proteins encoded by prophages in *Enterobacteriales* bacterial host genomes, while no

Table II.3 Putative gene functions reported from representative phages of each of the 19 annotated *Erwiniaceae* phage clusters. One representative phage from each of the 19 clusters was selected to analyze the protein function annotation. Protein function was sorted into four sections shown in different colors: structural proteins are in blue, DNA replication and recombination are in orange, cell lysis genes are in yellow, and host related genes are in green. Numbers refer to the number of proteins annotated for that function. We are aware of some possible overlap among protein function categories, this is due to the use of original annotations. LS-2018a is not represented in this table since it had no annotation.

	CBB	RAY	Yoloswag	Huxley	phiEaH1	Joad	Cronus	øEa2809	øEa21-4	S6	Vid5	PEp14	Faunus	øEt88	Era103	LIMElight	LIMEzero	FE44	ENT90
Head protein	3	1	1	1	1	5	9	3	1	2	3	2	1	3	2	2	2	4	4
Tail Fiber	5	1	11	3	3	4	6	11	5		5	2	1	2	3	3	5	4	7
Baseplate	3	1					8	3	2				2	2					3
Putative virion																_	_		
structural protein	60	26		38	29	26	1		3		1		2		1	2	2		
Neck/whisker	1						2	2			1								
Procapsid							2	3	1										
Terminase	2	1	1	2	1	1	2	2	1	1	2	2	1	2	2	1	1	1	2
DNA Polymerase	3	1	4	1		2	3	3	2	2	2		1		1	2	1	1	
RNA Polymerase	1	7	1	7	5	7	3			1			1		1	1	1	2	
Helicase	3	3	2	2	3	3	2	4	1	1	1		1	1	1	1	1	1	
Nuclease	9	5	6	3	3	5	9	8	2		3		2	2	5	2	2	4	
Hydrolase	4	2	2	2	3	3		2		3	2	1	2		1			2	
Recombination/	4	1	2		1	2	3	3						3					
Repair	•						-	-						-		-			
I hymidine	2	3	2	2	2	4	2	2	1	1			1						
Nucleotide																			
reductase	5	2		1		1	4	2	3										
Topoisomerase	1		2				1	2											
Ligase	3		2			1	2	1	1		1		1		1	1		1	
Primase	2		1				1	1	1		1					1	1	1	
DNA-binding	1		5	1	1		3	4		1	1	2	1	1				2	
protein	1		Ŭ	'			5	-				-	1					2	
Lysin			2	1		2		1	1	1	1	3	2	1	2	1	1	2	2
Lysozyme	3	1	2				2								1				1
Holin							1		1		1	2	1	1	1	1			
Lysis							4		1		1								
inhibitor/regulator	-	-				-					-								
transglycosylase		2	2		2	2													
Integrase												1		1					1
Transcriptional/																			
Translational	2		3	1		1	1	1										2	3
repressor protein																			
Nucleoid disruptor							1												
protein							1												
Secretion systems			4																
EPS		1	1	1	1			1			1	1			1	1			

purely lytic phages had such closely related homologs (25). We therefore searched for MCP genes similar to those of the 20 clusters described here in bacterial host genomes (Table II.4). Of the 20 clusters, only three have homologues with >80% identity in bacterial genomes. Erwinia phage ENT90's MCP was 100% identical to a gene (locus tag C2E16 18005) in a similar prophage in a *Pantoea* sp. PSNIH2, suggesting it is most likely temperate in nature which is consistent with its similarity to temperate E. coli phage P2. Erwinia phage øET88 MCP has a 97% identical homologue (locus tag SAMN05216522 1056) as a putative prophage in the genome of Rosenbergiella nectarea strain 8N4; this species is a close relative of *Pantoea* and Erwinia (34). In addition, Müller et al. (35) reported that øET88 was isolated after mitomycin C treatment of an *Erwinia tasmaniensis* strain, a treatment that often results in prophage induction. Finally, we have previously argued from genomic analysis that øET88 should be considered a member of the phage lambda supercluster (26), and all other members of this large group are temperate. The putative phage LS-2018a MCP has 94% identical homologues encoded by the genomes of several Yersinia pestis isolates (e.g., strain I-2638). At least one of these genes is present on a circular 34 kb plasmid (Acc. No. KT020860) that is largely homologous to the LS-2018a genome. Thus, we suggest that LS-2018a is very likely a temperate phage with a circular plasmid prophage. In addition, phage PEp-14 encodes a protein with some similarity to phage integrases, suggesting that it could be temperate in spite of the fact that its closest MCP matches in the reported bacterial genome sequences are $\leq 88\%$ identical and are in very distantly related bacteria; however, it is possible that by chance no host genomes with PEp-14-like prophages have been sequenced.

We also note that the *Burkholderia* phages BcepIL02 and Bcep22 have substantial genome synteny with PEp-14 and also carry an apparent integrase gene.

Table II.4 The closest tBLASTn match to the MCP of 20 *Erwiniaceae* bacteriophage clusters. The MCP of the founding phage for each group (see Table 2) was used in a tBLASTn search for closest relatives in bacterial genomes that were greater than 1 megabase. *Erwiniaceae* bacteriophage clusters that are not represented in this table had no significant tBLASTn hits. *Closest *Enterobacteriales* bacteria

Phage	Best tBLASTn Bacterial Match	Accession Number	Identity
øEa21-4	Polyangium brachysporum strain DSM 7029	CP011371	32%
S6	Alteromonas sp. RKMC-009	CP031010	56%
Vid5	<i>Nitrosomonas ureae</i> strain Nm10	CP013341	47%
	*Enterococcus faecalis strain TY1	CP031027	35%
PEp14	Martelella sp AD-3	CP014275	75%
Faunus	<i>Rhizobiales</i> strain PAMC 29148	CP036515	29%
	*Enterobacter cloacae strain 20710	CP030076	28%
øEt88	<i>Rosenbergiella nectarea</i> strain 8N4	CP009706	97%
Era103	Pandoraea faecigallinarum strain DSM 23572	CP011807	30%
LIMElight	Cronobacter sakazakii strain ATCC 29544	CP011047	41%
LIMEzero	Enterobacter kobei strain DSM 13645	CP017181	52%
LS-2018a	Yersinia pestis strain I-2638	CP013974	94%
ENT90	Pantoea sp. PSNIH2	CP009866	100%

They have been reported not to form stable lysogens but may be able to form a transient benign association with the host (36); on the other hand, in a single counter-example we find a protein that is 93% identical to Bcep22 MCP encoded by a gene (locus tag WS71_20305) in an integrated prophage that is quite similar to Bcep22 in the genome of *Burkholderia* sp. DU8 (Acc. No. CP0013389). Thus, definitive determination whether phage PEp-14 is lytic or temperate awaits further study, but we conclude ENT90, øET88 and LS-2018a are almost certainly temperate, and the other 16 clusters discussed here most likely contain lytic phages. Bacterial matches included in Table II.4 are all clearly inserted in the bacterial chromosome or in a known plasmid (it is possible that finding a fragment of a phage genome in a bacterial draft genome can be a result of a lytic phage infection at the time of sequencing).

II.4.4 The 20 clusters of Erwiniaceae tailed phages

Since we have shown that in the *Enterobacteriales* clusters MCP sequence clustering nearly always reflects whole genome clustering (26), BLASTp searches with MCPs from each of these clusters were first used to identify the most closely related non-*Erwiniaceae* phages. These results and subsequent whole genome nucleotide comparisons showed that 17 of the *Erwiniaceae* clusters can be placed in previously defined *Enterobacteriales* phage clusters (summarized in Table II.2). Figures II.5A and B show nucleotide sequence dot plots that compare phages from each of the 17 non-singleton clusters with their most closely related *Enterobacteriales* phages. Subcluster designations, indicating closer relationships, are provided in Table II.1 (see Grose and Casjens for *Enterobacteriales* cluster/sub-cluster assignments).

Three *Erwiniaceae* phage clusters typified by phages Yoloswag, Joad and LS-2018a represent novel *Enterobacteriales* tailed phage clusters that have not been previously described.

Figure II.5 Dot plots of 17 *Erwiniaceae* phage clusters with their relatives. Red lines separate *Erwiniaceae* bacteriophage clusters and homologous Enterobacteriales phage genomes. Blue lines indicate the ends of each genome. Parts A and B depict nine and eight phage clusters, respectively. Due to the large number of phages in some of the phage clusters only representative phages are shown.

The following paragraphs examine the molecular lifestyles of the 20 phage clusters with members that infect the *Erwiniaceae*:

II.4.4.1 Jumbo phages with genomes larger than 200 kb

1) CBB was originally isolated on *Pectobacterium* but forms plaques on an *Erwinia* strain (15). It is the largest *Erwiniaceae* phage reported to date (15). CBB fits in the RaK2-like *Enterobacteriales* phage cluster and is most similar to *Cronobacter* phage GAP32. The nine known phages in the RaK2-like cluster form three subclusters and a representative from each cluster is shown in Figure II.5A. The RaK2-like phages are jumbo *Myoviridae* phages, and many or all are "hairy" with unusual whisker-like structural proteins along the contractile tail. The Phamerator map (supplementary Figure II.S1 indicates that the terminal regions of the CBB genome (as it is currently oriented in GenBank) share some similarity to other *Erwiniaceae* phages, specifically with the Cronus and ØEa2809 clusters. These related regions encode proteins annotated as hypothetical proteins and structural proteins. (For more information see reference (*37*) for phage GAP32 characterization)

2) The phiEaH2-like *Erwiniaceae* group fits into the previously defined *Enterobacteriales* SPN3US-like phage cluster (26). This cluster consists of jumbo myoviruses with genomes in the 229-247 kb range (note that an error in Table 1 of reference (26) places the SPN3US-like and Rak2-like clusters inside the rV5 supercluster, but this is incorrect). The SPN3US-like cluster also includes phages that infect *Salmonella, Escherichia* and *Cronobacter* hosts, and the dot plot in Figure 5A shows that the 16 phages currently in this cluster separate into 9 subclusters, of which only subcluster A includes phage from multiple host genera (*Escherichia* and *Salmonella* including phages *SPN3US*, *SEGD1*, *NAFV-136*). The 13 *Erwinia*

phages form 7 different subclusters that contain no other phages, highlighting the strong correlation between phage subclusters and host genus.

One of the noteworthy features of phage SPN3US is that it encodes a five subunit RNA polymerase that is packaged into the virion and injected into the host cell with the phage DNA and the *Erwinia* members carry similar genes. This group also shares a number of gene homologies with *Pseudomonas aeruginosa* phage øKZ (91 genes), including 61 virion structural genes (*38, 39*). (For more information see reference (*40*) for phage SPN3US characterization)

3) The jumbo *Erwinia Siphoviridae* phage phiEaH1 has a 218 kb genome and is the prototypical member of the *Enterobacteriales* phiEaH1-like phage cluster (*41, 42*). The only other phage in this cluster is *Serratia* phage 2050HW. These two phages are moderately distant relatives sharing syntenic proteomes (with their MCP's sharing 56% identity and 71% similarity) and are only very distantly related at the nucleotide level (see Figure II.5A). (For more information see reference (*43*) for phage 2050HW characterization)

II.4.4.2 Myoviridae with genomes between 50 and 180 kb

4) *Erwinia* phage Cronus forms a singleton subcluster in the *Enterobacteriales* T4-like *Myoviridae* cluster. Its genome size of 175 kb is typical of phages in this cluster, and like many other phages in this cluster its DNA has a substantially lower G+C content than its host. This cluster currently contains 169 completely sequenced genomes of phages that infect 14 host genera from six of the families within the *Enterobacteriales* order (supplementary Table II.S2). The dot plot in supplementary Figure II.S2 Part B shows that there are 21 subclusters (A through U) in this cluster, one of which is defined by phage Cronus. Six of the subclusters are singletons, but of the 15 subclusters with more than one member, 11 contain members that all infect the same host genus (assuming that *Escherichia* and *Shigella* are actually one genus (*44*); and all but

one has members that infect a single host family. Thus, subcluster membership is far from random, with many genus-specific or family-specific subclusters at this level of analysis. We also note that diversity within this cluster is still quite incompletely understood (*30*), since (i) the almost 30% singleton subclusters implies the existence of numerous undiscovered subclusters, (ii) individual genera are often infected by multiple phage subclusters, and (iii) phages of a number of *Enterobacteriales* families and genera remain unexplored.

5) The *Erwinia* phages øEa2809 (*14*) and Bue1 (accession No. MG973030) share similarity to the *Enterobacteriales* Vi01-like cluster of *Myoviridae*, which is currently comprised of 51 *Enterobacteriales* phages, including *E. coli* phage CBA120 and *Salmonella enterica* phage Det7, that typically have genomes in the 150-165 kb range. These phages have virion structural genes that are moderately distant relatives of those of phage T4, but their virion heads are isomorphic rather than elongated, and their homologous genes are not syntenic with the T4-like phages. They encode a thymidylate synthase that suggests they may incorporate hydroxymethyldeoxyuracil into their DNA (*45*), and they encode multiple tailspikes that allow them to adsorb to several different hosts (*46-48*). This cluster was previously separated into at least six subclusters, one of which is comprised of only the two *Erwinia* phages øEa2809 (*14*) and Bue1, phages that were isolated in Belarus and Switzerland, respectively (Figure 5A). (For more information see reference (*45*) for phage CBA120 characterization)

6) The øEa21-4-like *Erwinia* phage group lies within the previously defined Felix-O1like *Enterobacteriales* phage cluster (*26, 50, 51*). This cluster of contractile tailed phages have genome sizes that range from 82 to 91 kb and carry a number tRNA genes which are highly conserved across the øEa21-4 group. The Felix-O1-like cluster currently contains 46 completely sequenced *Enterobacteriales* phages that fall into three subclusters (*26*), and the four *Erwinia*

phages in this cluster form one of these subclusters (Figure 5A). The known phages in this cluster infect six different *Enterobacteriales* host genera, and there are fairly close relatives that infect *P. aeruginosa* in the *Pseudomonadales* order of Gamma-Proteobacteria (*50*). (For more information see reference (*52*) for phage TP1 characterization)

7) The phage Y2-like *Erwinia* group has similarity to the previously defined *Enterobacteriales* lytic Myoviridae phage øEcoM-Gj1-like cluster (26), currently containing four subclusters. This cluster is currently comprised of two *Escherichia* phages, øEcoM-Gj1 (53) and ST32, two *Pectobacterium* phages, PM1 (54) and PP101, and two *Erwinia* phages, Faunus and Y2 (55). The last two are sufficiently different that they each form a distinct singleton subcluster (Figure 5B). These phages have genomes in the 52-57 kb range and encode a single subunit RNA polymerase like phage T7 (53). (No phages in this cluster have been extensively characterized)

II.4.4.3 Lytic *Podoviridae* phage

8) The *Erwinia* S6-like group fits into the previously defined *Enterobacteriales* N4-like cluster of *Podoviriadae* phages. The 26 currently known completely sequenced members of this cluster fall into six subclusters, three of which, typified by phages Ea9-2, S6 (1) and ØEaP-8 (56), are made up by the seven *Erwinia* phages and no others; the last two are singleton subclusters (Figure II.5A). The larger group of N4-like phages appears to be a very successful group of phages whose members infect other Gamma-Proteobacteria orders as well as Beta-Proteobacteria hosts (*e.g.*, N4-like phage JWDelta infects the Beta-Proteobacteria *Achromobacter xylosoxidans (57)*). A unique feature of this group is its large (about 3500 amino acid) single subunit RNA polymerase that is present in the virion and is injected with the DNA into the host cell (*58*).

9) Phages PEp-14 and Pavtok define an Erwinia group that expands the previously defined Enterobacteriales PEp-14-like Podoviridae singleton cluster (26). Klebsiella phage SopranoGao is also a recently sequenced member of this cluster, but the two *Erwinia* phages form a unique subcluster (Figure 5A). As discussed above it remains unclear whether these phages are temperate or lytic. A striking feature of these phages, that have genomes about 61 kb long, is that they encode an exceptionally large putative protein that is 4915, 5007 and 4369 amino acids long in the PEp-14 (Acc. No. YP005098431), Pavtok (AXF51455) and SopranoGao (ASV45029) homologues, respectively. These single genes occupy about a quarter of their genomes, and their products are the longest bacteriophage encoded proteins that we are aware of. Other classes of large phage proteins are the virion RNA polymerases of the N4-like phages (above) (59) and a possible tail fiber of øKO2 at 3433 AA (60). BLASTp searches with the large Pavtok protein (locus tag PAVTOK 25) have shown that it shares patches of convincing similarity to large proteins in the following phages that infect diverse hosts: \geq 50% identity to Vibrio phage VvAW1 (3640 AA; Gamma-Proteobacteria host), Pseudomonas phage Skulduggery (3695 AA; Gamma-Proteobacteria host), Agrobacterium phage atu ph08 (4877 AA; Alpha-Proteobacteria), and Sinorhizobium phage PBC5 (2849 AA; Alpha-Proteobacteria host), as well as 35% identity to proteins from several Beta-Proteobacteria phages including Burkholderia phages Bcep22 (4602 AA). The function of these large proteins has not been studied directly, but two sequence matches are informative. First, amino acids 70-170 of all three of the PEp-14-like cluster phages' large protein contain a lysozyme motif and are 33% identical to a section of phage T7 gene 16 protein. There are a small number of molecules of 16 protein in the T7 virion, and they are released into the host with the DNA (61, 62). Many tailed phage that infect Gram negative bacteria are thought to inject proteins with lysozyme activity that cleave the peptidoglycan so that DNA can pass through it to reach the cytoplasm during injection (63, 64), and the T7 gene 16 protein has been shown to have such an activity (65). Second, a region between amino acids 2700 and 3200 of the PEp-14-like large proteins have weak but convincing similarity to parts of E. coli phage P1 DarB protein (2255 AA; accession No. YP 006479), which has also been shown to be injected with the DNA (66) and is involved in defense against host restriction endonucleases (67). We conclude that it is very likely that these large PEp-14like cluster proteins are present in the virions and are injected into the host with the DNA. Gill et al. (36) have made a similar argument with the homologous large gp75 protein of Burkholderia phage Bcep22 (Acc. No. NP944303), which has been shown to be a virion protein. Why are these PEp-14-like phage proteins and their homologues so large? We speculate that when a phage "finds" a new protein function that is advantageous to inject from the virion, it may be evolutionarily simplest to fuse it to an existing protein that is injected. Thus, such proteins may accumulate new polypeptide sections and become large multidomain proteins over time. This would also explain the patchy nature of the relationships between such proteins in different phages. We note that the distantly related phages mentioned above all have similarity to the leftmost approximately 37 kb of the PEp-14-like phages (in the Pavtok GenBank orientation), a region that contains the putative virion assembly genes (supplementary Material figure S3 shows a comparison of phage Pavtok with Burkholderia phage DC1/Bcep22). (No phage in this cluster has been extensively characterized)

(10-13) The four *Erwiniaceae* phage clusters discussed in this section fall into the previously defined *Enterobacteriales* T7-, SP6-, KP34- and LIMEZERO-like clusters (*26*), which in turn all reside within the T7 supercluster (classified by the International Committee on Virus Taxonomy as the *Autographivirinae* subfamily of the *Podoviridae*). They all have apparent
lytic life cycles similar to phage T7 which infects *E. coli* (68) and is one of the best characterized and most prolific tailed bacteriophages. It has many known relatives that infect a wide variety of bacterial hosts, even outside of the *Enterobacteriales*. Hallmarks of these phages include a phage encoded single subunit RNA polymerase.

Erwinia phage ERA103 fits into the *Enterobacteriales* SP6-like cluster, where it, along with *Erwinia* phages øEa100 (69), øEa1H and S2, form the *Erwinia* specific subcluster D. *Pantoea* phage LIMElight belongs to the KP34-like cluster where it forms the singleton subcluster B. *Pantoea* phage LIMEzero is the prototype phage for the LIMEzero-like cluster, which also contains *Escherichia* phage J8-65. These two phages define different subclusters. Finally, *Erwinia* phage FE44 shares its highest overall nucleotide sequence identity of 91-94% to *Escherichia* phages 285P, BA14 and S523 (70, 71) and is a member of the T7-like cluster. FE44, along with phages that infect the *Escherichia, Yersinia, Salmonella, Kluyvera* and *Pectobacterium* genera, form subcluster C of this *Enterobacteriales* cluster (Figure 5B).

II.4.4.4 Lytic *Siphoviridae* phage

14) *Pantoea* phage Vid5 is a member of the *Enterobacteriales* 9g-like cluster of lytic phages (*26*, *72*). This *Siphoviridae* cluster's founding member phage 9g has deoxy-archaeosine (modified guanosine) nucleotides in its DNA that make it resistant to many restriction endonucleases (*73*). Vid5 has a similar but not identical set of genes predicted to be involved in this or a similar DNA modification, and its DNA is similarly resistant to such nucleases (*72*). The 15 phages with available complete genomes in this cluster fall into three subclusters, two of which have been called the *Nonagvirus* and *Seuratvirus* genera (*74*), and the third is Vid5 which forms a singleton subcluster. The dot plot in Figure 5A compares representatives of these three subclusters; subclusters A and B are all *Escherichia* phages except for one *Salmonella* phage

(phage SE1; accession No. KY926791) in subcluster A. (For more information see reference (73) for phage 9g characterization)

II.4.4.5 Temperate *Myoviridae* phage

15) Erwinia phage EtG is quite closely related to Escherichia phage 186 and Salmonella phage PsP3, and although ENT90 is more distantly related, both of these Erwinia phages are clearly members of the P2-like Enterobacteriales temperate phage cluster (26) (Figure 5B) (75). Phages in this cluster are widely distributed with phages that infect many different types of Enterobacteriales (25), and EtG belongs to subcluster B that also contains phages that infect *Escherichia* and Salmonella, while ENT90 defines singleton subcluster D.

II.4.4.6 Clusters that currently contain only *Erwinia/Pantoea* phages

Although most of the currently known *Erwiniaceae* tailed phages fall into to one of the over 70 previously defined *Enterobacteriales* phage clusters (*25, 26*), five of 20 *Erwiniaceae* phage-containing clusters contain only phages that infect the *Erwinia* and/or *Pantoea* genera (the Ea35-70-, Yoloswag-, Joad-, LS-2018a- and øET88-like phages). Three of these five clusters (Yoloswag-, Joad-, and LS02018a-like) form novel *Enterobacteriales* clusters that have not been previously described.

16) The *Erwiniaceae* phages within the previously defined Ea35-70-like *Enterobacteriales* phage cluster (*26*) form the most highly conserved of all of the *Erwiniaceae* clusters we analyzed, with less than 3% ANI variance among the phages within this cluster. It is comprised of jumbo *Myoviridae* phages typified by phage Ea35-70 that was isolated from soil beneath a fire blight-infected pear tree in Ontario, Canada (*76*). No similar phages are known that infect other host species. More than 60% of their 271-275 kb genomes are made up of novel genes without significant BLASTp matches in the current database, and like other jumbo phages their small fraction of genes with predicted functions encode mainly virion structural proteins and DNA metabolism proteins. (No phage in this cluster has been extensively characterized)

17) Phage Yoloswag represents an *Erwinia* jumbo phage group that includes two closely related phages, Alexandra and Y3. Five *Dickeya* phages have recently been described who's putative MCPs are about 74% identical to that of Yoloswag, and Figure 5A shows a dot plot analysis of these eight phages. Long weak diagonal similarity lines confirm that they all have similar genome organization and belong in this previously undefined *Enterobacteriales* phage cluster which we call the Yoloswag-like cluster. It also shows that substantial diversity is present within the cluster, and we define three subclusters, A, B and C. Subclusters A and B are quite different from C, and the three phages within B are more diverse (weaker diagonal similarity line) than those within C. Interestingly, the clusters do not correlate perfectly with host genus, since subcluster B contains phages with *Erwinia* and *Dickeya* hosts, and these two genera have recently been placed in the two different but rather closely related families, *Erwiniaceae* and *Pectobacteriaceae*. This suggest that one of these phages, perhaps AD1, has switched hosts in the relatively recent distant past.

The proteins that are expressed by the conserved core-genome of the Yoloswag-like *Erwinia* phages are mostly virion structural proteins and DNA replication and repair proteins. Recent publications describing the phage Y3 genome sequence (*13*) and the four *Dickeya* relative genomes (*77*) have presented various aspects of this group of phages, so we will not discuss them in detail here but will only briefly mention some of this cluster's salient features. Our Phamerator (*19*) analysis shows that there are 176 protein Phamilies conserved among the three *Erwinia* members of this cluster, with only 46 of these proteins having a predicted function, including four secretion system proteins (products of the phage Yoloswag genes *88, 107, 152*

168

and *154*) that are not present in any of the other *Erwinia* phages. A conserved Cas4-like protein is also encoded by all three *Erwinia* phages. Cas4 has no well-defined function but is known to be present in CRISPR/Cas gene clusters. It could be carried by the phage to modify CRISPR systems in its hosts. The virions of this cluster have large isometric heads about 130 nm in diameter and a contractile tail about 190 nm long. An interesting reported feature of at least Y3 and the *Dickeya* members of this cluster is the presence of unusual curly hair-like fibrils of unknown function extending from the sheath along the length of the tail similar to those seen in the RaK2-like phages (above). (No phage in this cluster has been extensively characterized)

18) The jumbo *Myoviridae* phages Joad and RisingSun represent a new *Enterobacteriales* tailed phage cluster with 235 kb genomes (see Figure 2 of ref. (12)). These two *Erwinia* phages share 96.6% whole genome ANI, with Joad encoding two genes not present in RisingSun (a putative HNH endonuclease and a hypothetical protein). The RisingSun genome encodes 243 predicted proteins, ~43% of which have no significant BLASTP database match (e-value of $\geq 10^{-7}$); another 24% of its genes have no known function but do have BLASTP matches to hypothetical proteins (12). This novel cluster shares some homology with *Pseudomonas* phages EL and OBP as well as *Vibrio* phages P4B and pTD1, with 112 genes that had corresponding BLASTp hits with these *Pseudomonas* phages, indicating these phages are clearly related.

19) *Erwinia* phage LS-2018a also represents (as a singleton) a new *Enterobacteriales* tailed phage cluster. Its sequence in GenBank contains very large terminal redundancy (if a small amount of sequence imprecision is allowed), and we believe it very likely has a circular genome that is 31,789 bp long. Its sequence in GenBank is unannotated, but we find a 97% identical homologue of its putative MCP (bp 29319-30479 of accession No. CP013974) and a similar

169

terminase encoded by several isolates of *Yersinia pestis*. In *Y. pestis* biovar Medievalis strain I-2638 the 33,778 bp long circular plasmid pTP33 (MCP encoded between bp 11182 and 12342 of accession No. KT020860 (78)) encodes such an MCP homologue (the other matches are on *Yersinia* sequence contigs that are the same size or smaller but are not annotated as plasmids). The dot plot in supplementary Material figure S2 shows that LS-2018a and pTP33 share considerable syntenic similarity and that (with some, not unexpected, mosaicism) they have nearly identical genome organizations. We conclude that pTP33 is very likely a circular plasmid prophage and that LS-2018a may have a similar prophage (although we note that both carry a possible integrase gene). The *Yersinia* genus is a member of the newly defined *Yersiniaceae* family in the *Enterobacteriales (79)*, and LS-2018a and pTP33 represent two singleton subclusters, each of which infects a different host family.

20) *Erwinia* phage øET88 is the singleton representative of its *Enterobacteriales* cluster (26). Although its MCP is up to 49% identical to some phages in the T1-like lytic phage cluster, it is likely a temperate member of the phage lambda supercluster (26) (see above). Eighteen of the 20 *Erwiniaceae* clusters contain more than one authentic phage member (øET88 and LS-2018a comprise singleton clusters). Within each of these clusters, most of the *Erwiniaceae* phages are more closely related to one another than to phages that infect other host genera and so form distinct subclusters. Nonetheless, eight of the 33 *Erwiniaceae* phagecontaining subclusters also contain phages that infect other genera in addition to *Erwinia* and *Pantoea* (Figure 5), indicating a few possible examples of relatively recent host switching. II.5 Conclusions

The purpose of this analysis was to gain insight into the relationships among the 60 *Erwiniaceae* bacteriophages that have completely sequenced genomes and to further

understanding of their host interactions. We found that on average Erwiniaceae phages have much larger genomes than the average *Enterobacteriales* phage, which may be due to their isolation source (trees and the soil surrounding them) or may be driven by the bacterial host. We note that only dsDNA tailed phages infective of Erwinia and Pantoea have been isolated to date. When the nucleotide and protein sequences of these 60 phages are compared, they naturally separate into 20 clusters, or 3 phages/cluster on average. This ratio highlights the diversity present in these phages in spite of the fact that they share highly related hosts. In comparison, 472 E. coli phages currently in GenBank fall into 50 clusters with an average of 9.4 E. coli phages/cluster. The lower phages/cluster ratio for *Erwiniaceae* phages (3 phages/cluster) may not be due to the decreased number of total phages isolated because Paenibacillus phages have a comparable number of isolates, but a phages/cluster ratio more similar to E. coli (9.6 phages/cluster). Comparison of the 60 Erwiniaceae phage genomes with all the other Enterobacteriales phage genomes, showed that 17 of the Erwiniaceae clusters belong to previously defined *Enterobacteriales* phage clusters that include phages with hosts outside this family, and three form clusters whose known members infect only Erwiniaceae. The Erwiniaceae phages in the 17 Enterobacteriales clusters tend form their own subcluster within their clusters. This latter distinction is perhaps due to the plant-based ecological niche of Erwinia and Pantoea. A majority of the proteins encoded by the Erwiniaceae phages (~70% or 1874 proteins) have unknown function, highlighting the need for further characterization of these phages. Each of the 19 analyzed Erwiniaceae bacteriophage clusters encodes unique proteins, including tail fibers, lysins, holins, and CRISPER proteins, which likely contribute to the phage host range and will be important considerations in the development and improvement of phage therapy cocktail design and safety.

II.6 Declarations

II.6.1 Competing interests

We declare that there were no competing interests with any author or institution responsible for this manuscript.

II.6.2 Funding

This research was funded by the department of Microbiology and Molecular Biology and the College of Life Sciences at Brigham Young University.

II.6.3 Authors contributions

DWT, SRC and JHG all performed analysis of the phage genomes and wrote the manuscript. RS annotated phages Rebecca and Derbicus and performed analysis of the Ea35-70 phage group.

II.7 Acknowledgements

The authors extend a special thanks to the Science Education Alliance – Phage Hunters Advancing Genomics and Evolutionary Science (SEA-PHAGES) for support and training on phage analysis, Steven Cresawn training on Phamerator, Edward Wilcox from the BYU Sequencing Center, and David Parady and Brandon Ekins from Life Science IT at BYU for providing DNAmaster and PhamDB on BYU servers. We would also like to thank the following undergraduates from the BYU Phage hunters program for their contributions to isolation of the phages Derbicus and Rebecca: Nolan Beatty, Jordan Berg, Minsey Choi, Steven Duncan, Rebecca Eardley, Christopher Fajardo, Hannah Ferguson, Jared Kruger, Ashley Payne and C.J. Webb, as well as Professors Donald Breakwell and Sandra Hope from the BYU Phage Hunters program.

II.8 Supplementary tables and figures

Supplementary Table II.S1 Average Nucleotide Identity (5) matrix using Geneious (6) reveals 20 clusters from 48 representative *Erwinia/Pantoea* bacteriophages. Due to the ANI program restraints and high similarity of phages within some clusters, 13 phages were removed from the ANI. The 13 phages that were removed were more than 90% similar to others within their specific cluster and therefore will not affect the overall ANI table. The individual phages that were removed from the table: SpecialG, Simmy50, Desertfox, Bosolaphorus, Rebecca, MadMel, Mortimer, Assesino, ChrisDB, Derbicus, Wellington, Kwan, ØEaP-8.

	Ray	Deimos-minion	Ea35-70	Yoloswag	Y3	Alexandra	Huxley	Machina	Parshik	Caitlin	Phobos	EarlPhillipIV	Stratton	phiEaH2	phiEaH1	Joad	RisingSun	Cronus	ØEa2809	Bue1
Ray		95.207	96.029	19.718	20.177	20.185	21.273	21.261	21.244	21.199	20.607	20.683	21.425	21.058	18.854	21.44	21.517	15.941	14.827	14.852
Deimos-minion	95.207		95.337	19.569	20.036	20.069	21.12	21.11	21.092	21.029	20.444	20.516	21.259	20.87	18.723	21.287	21.363	15.788	14.713	14.74
Ea35-70	96.029	95.337		19.778	20.234	20.258	21.385	21.369	21.356	21.306	20.709	20.771	21.522	21.13	18.852	21.47	21.547	15.93	14.823	14.85
Yoloswag	19.718	19.569	19.778		47.478	43.39	20.055	20.093	20.032	19.823	19.171	19.101	20.034	20.22	18.804	20.507	20.6	16.359	14.96	14.963
Y3	20.177	20.036	20.234	47.478		55.715	20.524	20.531	20.501	20.32	19.807	19.796	20.472	20.489	19.57	21.045	21.136	16.757	15.381	15.31
Alexandra	20.185	20.069	20.258	43.39	55.715		20.394	20.412	20.363	20.256	19.748	19.771	20.377	20.28	19.417	20.874	20.975	16.344	15.179	15.184
Huxley	21.273	21.12	21.385	20.055	20.524	20.394		97.727	98.351	60.345	38.536	38.237	51.88	46.188	20.001	23.261	23.403	17.451	16.345	16.379
Machina	21.261	21.11	21.369	20.093	20.531	20.412	97.727		97.026	60.704	38.587	38.313	52.051	46.292	19.999	23.315	23.457	17.485	16.342	16.376
Parshik	21.244	21.092	21.356	20.032	20.501	20.363	98.351	97.026		60.197	38.48	38.196	51.859	46.202	19.989	23.248	23.396	17.438	16.311	16.342
Caitlin	21.199	21.029	21.306	19.823	20.32	20.256	60.345	60.704	60.197		38.837	38.481	. 51.724	46.7	20.037	23.21	23.306	17.355	16.304	16.36
Phobos	20.607	20.444	20.709	19.171	19.807	19.748	38.536	38.587	38.48	38.837		66.579	38.679	36.739	20.462	23.365	23.438	18.125	16.677	16.592
EarlPhillipIV	20.683	20.516	20.771	19.101	19.796	19.771	38.237	38.313	38.196	38.481	66.579		38.34	36.211	20.552	23.486	23.506	18.119	16.805	16.728
Stratton	21.425	21.259	21.522	20.034	20.472	20.377	51.88	52.051	51.859	51.724	38.679	38.34		95.729	20.017	23.465	23.597	17.509	16.235	16.28
phiEaH2	21.058	20.87	21.13	20.22	20.489	20.28	46.188	46.292	46.202	46.7	36.739	36.211	. 95.729		20.579	23.713	23.892	18.212	17.342	17.415
phiEaH1	18.854	18.723	18.852	18.804	19.57	19.417	20.001	19.999	19.989	20.037	20.462	20.552	20.017	20.579		21.146	21.247	23.478	22.149	22.002
Joad	21.44	21.287	21.47	20.507	21.045	20.874	23.261	23.315	23.248	23.21	23.365	23.486	23.465	23.713	21.146		95.783	18.488	16.912	16.817
RisingSun	21.517	21.363	21.547	20.6	21.136	20.975	23.403	23.457	23.396	23.306	23.438	23.506	23.597	23.892	21.247	95.783		18.528	16.956	16.899
Cronus	15.941	15.788	15.93	16.359	16.757	16.344	17.451	17.485	17.438	17.355	18.125	18.119	17.509	18.212	23.478	18.488	18.528		26.903	26.559
øEa2809	14.827	14.713	14.823	14.96	15.381	15.179	16.345	16.342	16.311	16.304	16.677	16.805	16.235	17.342	22.149	16.912	16.956	26.903		91.338
Bue1	14.852	14.74	14.85	14.963	15.31	15.184	16.379	16.376	16.342	16.36	16.592	16.728	16.28	17.415	22.002	16.817	16.899	26.559	91.338	
øEa21-4	8.18	8.117	8.222	18.61	14.414	12.683	9.236	9.224	9.206	9.132	9.093	9.085	9.047	9.054	8.945	9.257	9.307	9.253	8.608	8.49
øEa104	8.177	8.116	8.219	18.616	14.422	12.688	9.235	9.227	9.204	9.124	9.096	9.08	9.046	9.068	8.95	9.263	9.309	9.244	8.622	8.502
M7	8.241	8.162	8.269	18.685	14.751	12.916	9.519	9.509	9.507	9.312	9.176	9.246	9.271	10.082	9.037	9.327	9.367	9.538	8.916	8.846
SunLiken	8.19	8.124	8.229	18.626	14.447	12.708	9.249	9.239	9.219	9.144	9.074	9.078	9.041	9.027	8.917	9.276	9.326	9.228	8.606	8.496
56	7.097	7.03	7.079	7.054	7.352	7.227	8.027	8.015	8.016	7.994	8.174	8.363	7.946	8.276	19.079	8.072	8.082	13.015	13.447	13.239
Frozen	7.194	7.130	7.194	7.204	7.404	7.3	8.075	8.082	8.039	7.999	8.287	8.352	7.978	8.435	11.110	8.225	8.221	15.3	23.794	23.458
Gutmoistor	6 901	6 746	6 205	6.022	7.430	6 907	7 651	7 650	7 616	0.019 7 56	7 9/15	0.531	7.555	9 /2/	10 519	7 201	7 70/	14 522	23.652	23.490
Fa9-2	7 207	7 15	7 209	7 259	7.005	7 346	8 105	8 11	8 071	8 048	8 32	8 385	8 011	8 445	11 179	8 259	8 258	15 362	22.007	22.33
Vid5	6 314	6 261	6 319	6 119	6 011	6.007	9.08	9.054	9.077	9.076	9 212	9 327	9 193	13 209	7 204	7 404	7 393	8.09	8 258	8 172
Pen14	5 782	5 733	5 794	5 718	5 822	5 888	6 597	6 608	6 601	6 658	6 741	6 919	6 603	7 111	9 356	6 646	6 654	16 983	13 329	13 197
Pavtok	5 872	5.735	5 874	5 792	5 894	5.000	6 642	6 655	6 639	6 719	6 804	6 946	6 676	7 188	9 405	6 736	6 732	17 204	13 468	13 355
LS-2018a	6.25	6.196	6.251	6.056	5,985	6.001	9.099	9.064	9,111	9.001	8.974	9.038	9,122	12.643	7.221	7.23	7.228	7.907	8,181	8.097
Faunus	5,435	5.364	5.433	5.214	5.269	5.124	6.29	6.28	6.281	6.309	6.458	6.545	6.291	6,793	5.805	13.334	13.358	6.403	6.097	6.047
Y2	5.642	5.581	5.641	5,423	5,494	5.443	7.843	7.816	7.827	7.838	10.928	11.2	7.728	7.665	6.309	6.678	6.69	7.042	6,703	6,655
ØEt88	4.857	4.828	4.874	4.745	4.643	4.674	7.786	7.754	7.783	7.722	6.779	6.714	7.887	11.563	5.592	5.725	5.726	6.253	6.306	6.254
Era103	4.116	4.084	4.122	6.494	7.579	10.212	4.727	4.719	4.724	4.676	4.805	4.821	4.646	4.799	4.833	4.751	4.768	4.917	4.88	4.877
ØEa100	4.129	4.096	4.132	6.535	7.627	10.26	4.743	4.735	4.739	4.708	4.839	4.845	4.667	4.741	4.848	4.753	4.766	4.928	4.896	4.883
EamP-s2	4.127	4.104	4.136	5.995	6.87	8.716	4.69	4.69	4.694	4.656	4.769	4.786	4.619	4.773	4.811	4.686	4.706	4.891	4.867	4.862
ØEa1H	4.127	4.094	4.131	6.53	7.621	10.255	4.739	4.731	4.736	4.705	4.836	4.842	4.665	4.742	4.843	4.751	4.763	4.927	4.898	4.885
LIMElight	6.49	6.444	6.497	4.33	4.321	4.288	5.31	5.307	5.309	5.338	5.36	5.482	5.238	6.011	5.11	5.221	5.237	5.604	5.887	5.871
LIMEzero	7.278	7.198	7.299	4.225	4.167	4.141	5.19	5.173	5.195	5.173	5.276	5.353	5.184	5.965	4.93	5.053	5.07	5.387	5.682	5.658
FE44	4.124	4.087	4.134	4.024	3.936	3.9	6.904	6.886	6.91	6.895	6.015	5.958	7.074	10.376	4.702	4.87	4.892	5.378	5.345	5.297
EamP-L1	4.173	4.13	4.179	3.986	3.914	3.853	7.808	7.783	7.813	7.779	6.381	6.36	8.041	11.784	4.734	4.885	4.891	5.19	5.491	5.454
ENT90	6.807	6.736	6.824	2.9	2.927	2.882	3.669	3.66	3.661	3.684	3.75	3.793	3.662	4.072	3.466	3.529	3.539	3.826	4.01	3.979
EtG	3.15	3.118	3.145	2.958	3.015	2.987	4.92	4.911	4.914	4.966	7.559	7.776	4.841	4.75	3.56	3.715	3.719	3.783	3.946	3.922

ØEa21-4	phiEa104	M7	SunLiRen	Eamp-S6	Frozen	Rexella	Gutmeister	Ea9-2	Vid5	Pep14	Pavtok	LS-2018a	Faunus	Y2	ØEt88	Era103	phiEa100	EamP-s2	ØEa1H	LIMElight	LIMEzero	FE44	EamP-L1	ENT90	EtG
8.18	8.177	8.241	8.19	7.097	7.194	7.212	6.801	7.207	6.314	5.782	5.872	6.25	5.435	5.642	4.857	4.116	4.129	4.127	4.127	6.49	7.278	4.124	4.173	6.807	3.15
8.117	8.116	8.162	8.124	7.03	7.136	7.155	6.746	7.15	6.261	5.733	5.826	6.196	5.364	5.581	4.828	4.084	4.096	4.104	4.094	6.444	7.198	4.087	4.13	6.736	3.118
8.222	8.219	8.269	8.229	7.079	7.194	7.213	6.805	7.209	6.319	5.794	5.874	6.251	5.433	5.641	4.874	4.122	4.132	4.136	4.131	6.497	7.299	4.134	4.179	6.824	3.145
18.61	18.616	18.685	18.626	7.054	7.204	7.237	6.933	7.259	6.119	5.718	5.792	6.056	5.214	5.423	4.745	6.494	6.535	5.995	6.53	4.33	4.225	4.024	3.986	2.9	2.958
14.414	14.422	14.751	14.447	7.352	7.404	7.436	5 7.005	7.47	6.011	5.822	5.894	5.985	5.269	5.494	4.643	7.579	7.627	6.87	7.621	4.321	4.167	3.936	3.914	2.927	3.015
12.683	12.688	12.916	12.708	3 7.227	7.3	7.338	6.907	7.346	6.007	5.888	5.981	6.001	5.124	5.443	4.674	10.212	10.26	8.716	10.255	4.288	4.141	3.9	3.853	2.882	2.987
9.236	9.235	9.519	9.249	8.027	8.075	8.091	7.651	8.105	9.08	6.597	6.642	9.099	6.29	7.843	7.786	4.727	4.743	4.69	4.739	5.31	5.19	6.904	7.808	3.669	4.92
9.224	9.227	9.509	9.239	8.015	8.082	8.096	5 7.659	8.11	9.054	6.608	6.655	9.064	6.28	7.816	7.754	4.719	4.735	4.69	4.731	5.307	5.173	6.886	7.783	3.66	4.911
9.206	9.204	9.507	9.219	8.016	8.039	8.055	7.616	8.071	9.077	6.601	6.639	9.111	6.281	7.827	7.783	4.724	4.739	4.694	4.736	5.309	5.195	6.91	7.813	3.661	4.914
9.132	9.124	9.312	9.144	7.994	7.999	8.019	7.56	8.048	9.076	6.658	6.719	9.001	6.309	7.838	7.722	4.676	4.708	4.656	4.705	5.338	5.173	6.895	7.779	3.684	4.966
9.093	9.096	9.176	9.074	8.174	8.287	8.318	3 7.845	8.32	9.212	6.741	6.804	8.974	6.458	10.928	6.779	4.805	4.839	4.769	4.836	5.36	5.276	6.015	6.381	3.75	7.559
9.085	9.08	9.246	9.078	8.363	8.352	8.351	7.91	8.385	9.327	6.919	6.946	9.038	6.545	11.2	6./14	4.821	4.845	4.786	4.842	5.482	5.353	5.958	6.36	3.793	/.//6
9.04/	9.046	9.2/1	9.041	l 7.946	7.978	7.995	7.561	8.011	9.193	6.603	6.6/6	9.122	6.291	7.728	7.887	4.646	4.66/	4.619	4.665	5.238	5.184	7.074	8.041	3.662	4.841
9.054	9.068	10.082	9.027	8.276	8.435	8.5	8.434	8.445	13.209	7.111	7.188	12.043	6.793	7.005	11.503	4.799	4.741	4.773	4.742	6.011	5.905	10.376	11.784	4.072	4.75
8.945	8.95	9.037	8.91/	19.079	11.116	11.161	10.518	11.179	7.204	9.356	9.405	7.221	5.805	6.309	5.592	4.833	4.848	4.811	4.843	5.11	4.93	4.702	4.734	3.466	3.56
9.25/	9.263	9.327	9.2/6	8.072	8.225	8.267	7.801	8.259	7.404	6.646	6.736	7.23	13.334	6.678	5.725	4.751	4.753	4.686	4.751	5.221	5.053	4.87	4.885	3.529	3.715
9.30/	9.309	9.367	9.326	8.082	8.221	8.263	7.794	8.258	7.393	6.654	6.732	7.228	13.358	5.69	5.726	4.768	4.766	4.706	4.763	5.237	5.07	4.892	4.891	3.539	3.719
9.253	9.244	9.538	9.228	13.015	15.3	15.327	14.533	15.362	8.09	16.983	17.204	7.907	6.403	7.042	6.253	4.917	4.928	4.891	4.927	5.604	5.387	5.378	5.19	3.826	3.783
8.608	8.622	8.910	8.606	13.447	23.794	23.832	22.667	23.905	8.258	13.329	13.468	8.181	6.097	6.703	0.300	4.88	4.890	4.867	4.898	5.887	5.082	5.345	5.491	4.01	3.940
8.45	8.502	8.840	8.490	13.239	23.458	23.498	5 22.35	23.64	8.1/2	13.197	13.355	8.097	6.047	4.005	0.254	4.877	4.883	4.862	4.885	5.8/1	5.058	5.297	5.454	3.979	3.922
00.21	98.31	87.879	97.627	6.036	5.941	5.971	5.8//	5.979	5.003	4.989	5.131	5.141	4.674	4.985	2 001	5.93	5.923	5.673	5.924	4.401	4.303	3.818	3.055	3.075	3.104
98.31	00 205	88.385	97.302	5 794	5.954	5.981	5.89	5.992	5.008	5.007	5.154	5.149	4.649	4.99 5 170	5.991	5.925	5.919	5.575	5.92	4.38	4.267	5.022	3.059	3.077	3.122
07.67	07 262	97 226	87.330	6 029	5 0/15	5.075	5.823	5 092	1 09/	4 002	5.207	5 121	4.700	1 090	2 096	5 021	5 015	5.6%	5 016	4.400	4.272	2 917	2 654	2.038	2 12/
6.03(6.036	5 78/	6.039	0.038	12 /66	12 /137	7 12	12 /199	6.437	4.332	12 166	6.445	4.008	5 221	5 3/8	1.521	J. J.J.J A AAA	J.080 A A13	J. J.D	5 316	5 2/1	5.017	5.054	4 122	3.124
5.941	5 95/	5 89/	5.945	12 466	12.400	97 287	7 94 707	93 527	6.675	15 456	15.496	6 754	5 1/17	5 633	5 554	4.45	4.444	4.413	4.447	5 538	5 309	5 166	5 205	4.122	3 762
5.97	5 981	5 924	5 975	12.400	97 287	57.207	92 557	92 689	6 698	15 376	15.401	6 782	5 125	5 582	5 558	4.433	4.434	4.410	4.436	5 514	5 309	5 176	5 197	4 155	3 719
5.87	5.89	5.825	5.857	12	94 707	92 557	7	88 566	6 915	14 893	14 906	7.016	5.064	5 522	5 775	4 183	4 183	4 129	4 184	5 498	5 257	5 387	5 427	4 15	3 767
5.97	5,992	5.915	5.983	12,499	93.527	92.689	88,566	00.500	6.614	15.462	15.489	6.715	5.15	5.621	5.538	4.46	4.459	4.426	4.46	5.485	5.311	5.157	5.171	4,185	3.797
5.00	5.008	6.664	4.984	6.437	6.675	6,698	6,915	6.614		6.235	6.338	21.666	6.111	8.833	17.785	4.437	4.372	4.47	4.374	7.771	7.637	16.414	16.251	5.747	6.699
4.98	5.007	5.135	4.992	12.2	15,456	15.376	14.893	15.462	6.235	0.200	78.934	6.254	4.591	5.028	5.335	4.083	4.073	4.036	4.074	5.325	5.52	4.901	5.032	4.418	3.76
5.131	5.154	5.287	5.14	12.166	15,496	15,401	14,906	15.489	6.338	78.934		6.453	4.598	5.065	5,492	4.108	4.091	4,122	4.093	5.412	5.585	4,993	5,083	4.399	3,798
5.142	5.149	6.572	5.131	6.445	6,754	6.782	7.016	6.715	21.666	6.254	6.453		6.373	8,783	17.915	4.348	4.28	4.251	4.277	8.225	7.869	16.678	16.485	6.101	6.648
4.674	4.649	4.706	4.668	4.897	5.147	5.125	5.064	5.15	6.111	4,591	4,598	6.373		51	5,496	3,356	3.376	3.436	3.38	5,381	5,291	5.412	5.296	4.165	3.889
4.985	4.99	5.179	4.989	5.221	5.633	5.582	5,522	5.621	8.833	5.028	5.065	8.783	51		4.848	3.837	3.886	3.885	3.885	5.846	5.554	4.559	4,755	4.542	19.414
1	3.991	5.51	3.986	5.348	5,554	5.558	5.775	5,538	17.785	5.335	5,492	17.915	5.496	4.848		3.926	3.856	3.855	3.858	6,948	7,199	22.357	22,298	5.525	3.543
5.93	5.925	5.807	5.921	4.45	4.455	4.437	4.183	4.46	4.437	4.083	4.108	4.348	3.356	3.837	3.926		97.605	74.519	97.682	3.841	3.619	3.61	3.679	3.113	2.865
5.92	5.919	5.774	5.915	4,444	4.454	4.434	4.183	4,459	4.372	4.073	4.091	4.28	3.376	3.886	3.856	97.605		73.683	99.917	3.825	3.594	3.552	3.613	3.095	2.89
5.673	5.676	5.582	5.686	4.413	4.418	4.4	4.129	4.426	4.47	4.036	4.122	4.251	3.436	3.885	3.855	74.519	73.683		73.741	3.861	3.706	3.628	3.694	3.152	2.846
5.924	5.92	5.775	5.916	4.447	4.456	4.436	4.184	4.46	4.374	4.074	4.093	4.277	3.38	3.885	3.858	97.682	99.917	73.741		3.824	3.594	3.554	3.616	3.097	2.888
4.401	4.38	4.408	4.402	5.316	5.538	5.514	5.498	5.485	7.771	5.325	5.412	8.225	5.381	5.846	6.948	3.841	3.825	3.861	3.824		31.309	6.982	7.033	23.322	4.683
4.305	4.267	4.272	4.294	5.241	5.309	5.309	5.257	5.311	7.637	5.52	5.585	7.869	5.291	5.554	7.199	3.619	3.594	3.706	3.594	31.309	-	6.982	7.059	26.891	4.628
3.818	3.808	5.022	3.817	5.017	5.166	5.176	5.387	5.157	16.414	4.901	4.993	16.678	5.412	4.559	22.357	3.61	3.552	3.628	3.554	6.982	6.982		41.786	5.705	3.345
3.655	3.659	4.846	3.654	5.062	5.205	5.197	5.427	5.171	16.251	5.032	5.083	16.485	5.296	4.755	22.298	3.679	3.613	3.694	3.616	7.033	7.059	41.786		5.829	3.593
3.075	3.077	3.038	3.076	4.122	4.159	4.155	4.15	4.185	5.747	4.418	4.399	6.101	4.165	4.542	5.525	3.113	3.095	3.152	3.097	23.322	26.891	5.705	5.829		39.8
3.104	3.122	3.275	3.124	3.619	3.762	3.719	3.767	3.797	6.699	3.76	3.798	6.648	3.889	19.414	3.543	2.865	2.89	2.846	2.888	4.683	4.628	3.345	3.593	39.8	

			Accession		Genome			
SubCluster	Member phages	Host species	number	Sequence publication	size (bp)	Host family		
Α	ACG-C40	Escherichia coli	JN986846	Viruses 4:471	167396	Enlerobacteriaceae		
A	Anlaß	Escherichia coli	KT184308	-	168496	Enterobacteriaceae		
A	ARI	Escherichia coli	AP011113	JVirol 85:6567	167435	Fnlerobacteriaceae		
A	CF2	Escherichia coli	KY608967	SciRep7:46151	168188	Fnlerobacteriaceae		
A	CrRo10	Citrohader mdentium	MG775043	-	171500	Enterobacteriaceae		
A	e11/2 (EcoM 112)	Escherichia coli	NC 024125	_	168470	Fnlerobacteriaceae		
A	EC121	Escherichia coli	ME001359	_	168805	Fnlerobacteriaceae		
A	ECM -134	Escherichia coli	JX 128259		166783	Enlemhacleriaceae		
A	FCD4	Escherichia coli	ME001360	_	168638	Enlerohaderiaceae		
A	fHoEco02	Escherichia coli	MG781191		167064	Fnlerobacteriaceae		
A	fHiFcol6	Escherichia coli	MG781190		167076	Enternhacteriaceae		
Â	Gi7h	Escherichia coli	KT184311		166514	Enteroharteriaceae		
<u>^</u>	HY01	Escherichia coli	KE925357	PLoS One 11:e0168985	166977	Enterohacteriaceae		
A	HY03	Escharichia coli	KR269718	_	170770	Enterohacteriaceae		
Â	INFOQ	Eschorichia coli	IN202312		166499	Enterobactoriaceae		
	IME330	Eschorichia coli	MH051015		164366	Enterobacteriaceae		
A	IME340	Eschorichia coli	MH051915		165549	Enterobactoriaceae		
A	1975	Escharichia coli	M-1355594		167208	Enterobactoriaceae		
A	JD/J Khafa	Esoberiatio coli	WE1333304		167219	Enterobacteriaceae		
A		Escherichia coli	K1104312		166949	Enterobacteriaceae		
A	NITUJ	Escherichia coli	AP018932		100040	Enlerobactenaceae		
A	NGBZ	Escherichia con	M1243439		100083	Enterobactenaceae		
A	PU112	Escherichia coli	MI1837020		168084	Enteropactenaceae		
A	PE37	Escherichia coli	KU925172		166423	Enteropactenaceae		
A	PEC04	Escherichia coli	KR233165		167552	Enteropactenaceae		
Α	ទុបា	Yersina pestis	HE956711	-	167063	Yersiniaceae		
^	PP01	Escherichia coli	LC348379		167812	Enterobactenaceae		
^	p5s-1	Shigelia sonnei	KM501444	-	164999	Enterobactenaceae		
^	PSI	Yersina pestis	KF208315	-	167785	Yersiniaceae		
۸	PYPS2T	Yersina pseudotuberculosis	MH809535	-	169604	Yersiniaceae		
Α	RB10	Escherichia coli	KM606999	GenomeA 3:e01122-14	168401	Enterobactenaceae		
Α	RB14	Eschenchia coli	NC_012638		165429	Enterobactenaceae		
Α	RB18	Eschenchia coli	MH553563		166677	Enterobactenaceae		
Α	RB27	Eschenchia coli	KM607000	GenomeA 3:e01122-14	165179	Enterobactenaceae		
Α	RB3	Eschenchia coli	KM606994	GenomeA 3:e01122-14	168402	Enterobactenaceae		
Α	RB32	Eschenchia coli	NC_008515	-	165890	Enterobactenaceae		
۸	RB33	Eschenchia coli	KM607001	GenomeA 3:e01122-14	166007	Enterobactenaceae		
Λ	RB5	Eschenchia coli	KM606995	GenomeA 3:e01122-14	168394	Enterobacteriaceae		
Λ	RB51	Eschenchia coli	NC_012635	-	168394	Enterobacteriaceae		
Λ	RB55	Escherichia coli	KM607002	GenomeA 3:e01122-14	168896	Enterobacteriaceae		
Α	RB59	Eschenchia coli	KM607003	GenomeA 3:e01122-14	168966	Enterobactenaceae		
Α	RBG	Eschenchia coli	KM606996	GenomeA 3:e01122-14	168394	Enterobactenaceae		
Α	RB68	Escherichia coli	KM607003	GenomeA 3:e01122-14	168401	Enterobacteriaceae		
Α	R87	Escherichia coli	KM606997	GenomeA 3:e01122-14	168395	Enterobacteriaceae		
Α	RB9	Escherichia coli	KM606998	GenomeA 3:e01122-14	168395	Enterobacteriaceae		
Α	Sf21	Shigella flexneri + E. coli	MF327007	JVirol 92:e02117-17	166002	Enterobacteriaceae		
Α	Sf22	Shigella sonnei	MF158045	JVirol 92:e02117-17	166283	Enterobacteriaceae		
A	S123	Shigella boydii	MF158046	JVirol 92:e02117-17	167678	Enterobacteriaceae		
Α	S124	Shigella flexneri	MF327008	JVirol 92:e02117-17	168112	Enterobacteriaceae		
Α	\$125	Shigella	MF327009	JVirol 92:e02117-17	168573	Enterobacteriaceae		
Α	SG1	Salmonella enterica	MF001354		169805	Enterobacteriaceae		
Α	SH7	Shigella sp.	KX828711		164870	Enterobacteriaceae		
Α	SHEML-50-1	Shigella sonnei	KX130864		166634	Enterobacteriaceae		
Α	Shii2	Shigella flexneri	NC_015457		165919	Enterobacteriaceae		
Α	SHEML-11	Shigella sonnei	KX130861	-	170650	Enterobacteriaceae		
Α	SHFML-26	Shigella sonnei	KX130862	-	168993	Enterobacteriaceae		
Α	siur02	Escherichia coli	LN881726	-	167298	Enterobacteriaceae		
Α	slur03	Escherichia coli	LN881728	-	167467	Enterobacteriaceae		
Α	slur04	Escherichia coli	LN881729	-	167298	Enterobacteriaceae		
Α	slur07	Escherichia coli	LN881732	-	167124	Enterobacteriaceae		
Α	slur08	Escherichia coli	LN881733	-	167467	Enterobacteriaceae		
Α	slur11	Escherichia coli	LN881734	-	167298	Enterobacteriaceae		
А	slur13	Escherichia coli	LN881737	-	167299	Enterobacteriaceae		
А	slur14	Escherichia coli	LN881736	-	167467	Enterobacteriaceae		
L				4	1	1		

Supplementary Table II.S2 Members of the T4-like cluster of phages that infect the Enterobacteriales

r			Accession		Genome	
SubCluster	Member phages	Host species	number	Sequence publication	size (bo)	Host family
A	172	Escherichia coli	MH751506		163832	Fnlerobacteriaceae
~			AY318471 /		100002	
А	T4	Escherichia coli	AF158101	MMBR 67:87	168903	Enterobacteriaceae
А	T6	Escherichia coli	MH550421	_	168706	Enterobacteriaceae
Α	TP7 (7)	Escherichia coli 0157	KP869105	BMCgenomics 16:271	167747	Enterobacteriaceae
Α	UFV-AREG1	Escherichia coli	KX009778	GenomeA 4:e00412-16	170787	Enterobacteriaceae
A	UFV13	Escherichia coli	KU867876	Sci Rep. 2018 in press	165772	Enterobacteriaceae
A	wV7	Escherichia coli	HM997020	JVirol 88:1026	166452	Enterobacteriaceae
А	YUEEL01	Escherichia coli	KY290975		169621	Enterobacteriaceae
В	APCEc01	Escherichia coli	KR422352	-	168771	Enterobacteriaceae
в	ATK47	Escherichia coli	KT184309	-	170020	Enterobacteriaceae
В	AYK48	Escherichia coli	KT184310	-	169729	Enterobacteriaceae
В	HP3 {#EC1}	Escherichia coli	KY608965	SciRep7:46151	170254	Enterobacteriaceae
В	HX01	Escherichia coli	JX536493	JVirol 86:13871	161158	Enterobacteriaceae
В	J\$09	Escherichia coli	NC_024124	Intervirol 58:218	169148	Enterobacteriaceae
В	NBG1	Escherichia coli	MH243438	GenomeA e00586-18	168869	Enterobacteriaceae
В	OLB35	Escherichia coli	MH992122		169140	Enterobacteriaceae
В	p000y	Escherichia coli	MK047718		169872	Enterobacteriaceae
В	PhAPEC2	Escherichia coli	KF562341	VetMicro171:470	167318	Enterobacteriaceae
В	phi25-307	Shigella sonnei	MG589383		167544	Enterobacteriaceae
В	øC120	Escherichia coli	KY703222		186570	Enterobacteriaceae
В	RB69	Escherichia coli	NC_004928	VirolJ 3:30	167560	Enterobacteriaceae
В	SHBML-52-1	Shigella sonnei	KX130865		169621	Enterobacteriaceae
в	SF	Escherichia coli	MH359124	-	168695	Enterobacteriaceae
В	Shift 25875	Shigella flexnen	KM407600.		169062	Enterobactenaceae
в	STO	Escherichia coli	MF044457	StdGenSci 12:85	170496	Enterobactenaceae
в	1913 (13)	Escherichia coli 0157	KP869111	BMCgenomics 16:271	162417	Enterobactenaceae
в	IP3 (3)	Escherichia coli 015/	KP869101	BMCgenomics 16:271	168733	Enterobacterraceae
B	110 (0)	Escherichia coli 0157	KP809104	BMCgenomics 16.27 1	160070	Enterobacienaceae
C C	Bp/	Escherichia coli	HQ829472	JV101 80, 13832	175427	Enteropacteriaceae
C	LCSI	Escherichia coli	NC 014260	Arch Viol 2016 In piess	173437	Enterobacteriaceae
C	IMC00	Escherichia coli	MU05 1012	-	170531	Enterobacteriaceae
c	IME341	Escherichia coli	MH051913		170331	Entembacteriaceae
C	1510	Escherichia coli	EU863409	Vinlogy 388:21	171451	Enternhacteriaceae
c	1598	Escherichia coli	EE469154	-IBact 189:8206	170523	Enternhacteriaceae
c	MX01	Escherichia coli	KU878969		168929	Enternhaderiaceae
c	QL01	Escherichia coli	KT176190	JBasicMicrobiol 55-1	170527	Enterobacteriaceae
с	VR5	Escherichia coli	KP007359	AEM in press 2015	170473	Enterobacteriaceae
с	WG01	Escherichia coli	KU878968	-	169936	Enterobacteriaceae
D	SP18	Shiqella sonnei	GQ981382	Microbiol 48:213	170605	Enterobacteriaceae
D	VR7	Escherichia coli	HM563683	ArchVriol 155:871	169285	Enterobacteriaceae
D	VR20	Escherichia coli	KP007360	AEM in press 2015	170336	Enterobacteriaceae
D	VR25	Escherichia coli	KP007361	AEM in press 2015	170822	Enterobacteriaceae
D	VR26	Escherichia coli	KP007362	AEM in press 2015	171541	Enterobacteriaceae
	CGG4-1	Salmonella enterica Newport	NC_031065	_	159878	Enterobacteriaceae
E	Melville	Salmonella enterica Newport	MF957259		159323	Enterobacteriaceae
E	S16 (SenMS16)	Salmonella enterica	HQ331142	MolMicro 87:818	160221	Enterobacteriaceae
E	STML_198	Salmonella enterica	JX181825		158099	Enterobacteriaceae
E	STP4-a	Salmonella enterica	KJ000058	-	159914	Enterobacteriaceae
F	fi-le-Yen9-01	Yersinia enterocolitica	KY593455	-	167773	Yersiniaceae
F	øR1-RT	Yersinia enterocolitica	HE956709		168809	Yersiniaceae
F	TG1	Yersinia enterocolitica	KP202158	-	162101	Yersiniaceae
G	Pet-CM3-4	Cronobacter malonaticus	LT614807	-	171975	Enterobacteriaceae
G	PG7	Enterobacter cloacae	KJ101592	-	173276	Enterobacteriaceae
G	CC31	Escherichia coli	GU323318	—	166540	Enterobacteriaceae
G	myPSH1140	Enterobacter cibacae	MG999954	-	172614	Enterobacteriaceae
Н	ECD7	Escherichia coli	KY683735		164706	Enterobacteriaceae
н	GEC-3S	Escherichia coli	HE978309		163424	Enterobacteriaceae
н	JSE	Escherichia coli	EU863408	Virology 388:21	166418	Enterobacteriaceae
N	KFS-EC	Escherichia coli	MH560358	—	164715	Enterobacteriaceae
н	\$1	Escherichia coli	NC_009821	-	164270	Enterobacteriaceae
н	RB49	Escherichia coli	NC_005066	VirolJ 3:30	164018	Enterobacteriaceae

			Accession		Canoma	[
SubCluster	Member phages	Host species	number	Sequence publication	size (bp)	Host family		
N	Sf20	Shigella flexneri	MF327006	JVirol 92:e02117-17	163982	Enterobacteriaceae		
I	CfP1	Citrobacter freundii	KX245890	-	180219	Enterobacteriaceae		
I	IME-CF2	Citrobacter freundii	KR869820	-	177688	Enterobacteriaceae		
I	Margaery	Citrobacter freundii	KT381880	-	178182	Enterobacteriaceae		
i	Maroon	Citrobacter freundii	MH823906	-	178830	Enterobacteriaceae		
I	Miller	Citrobacter freundii	KM236237	GenomeA 3:.01425-14	178171	Enterobacteriaceae		
1	GAP161	Cronobacter sakazakii	JN882287	JVīrol 86:13806	178193	Enterobacteriaceae		
1	leB	Cronobacter	KX443552	Int. J. Food Microbiol. 253:1	181570	Enterobacteriaceae		
1	leE	Cronobacter	KX431559	Int. J. Food Microbiol. 253:1	177907	Enterobacteriaceae		
1	leN	Cronobacter	KX431560	Int. J. Food Microbiol. 253:1	179516	Enterobacteriaceae		
I	Lw1	Escherichia coli	NC_021344	GenomeA 1:e00743-13	176227	Enterobacteriaceae		
1	RB16	Escherichia coli	HM134276	-	176789	Enterobacteriaceae		
1	RB43	Escherichia coli	NC 007023	VirolJ 3:30	180500	Enterobacteriaceae		
J	PS2	Serratia marcescens	 KJ025957	Arch Virol 2018 in press	167266	Yersiniaceae		
К	JD18	Klebsiella pneumoniae	KT239446	-	166313	Enterobacteriaceae		
к	KpV477	Klebsiella pneumoniae	KX258185	GenomeA14:e00694-17	168272	Enterobacteriaceae		
К	Mineola	Klebsiella pneumoniae	MH333064		166130	Enterobacteriaceae		
к	PK0111	Klebiella oxvtoca	KR269720	Park Arch Vriol in press	168758	Enterobacteriaceae		
к	KP1	Klebsiella pneumoniae	MG751100	-	167989	Enterobacteriaceae		
к	KPV15	Klebsiella pneumoniae	KY000080	-	167034	Enterobacteriaceae		
К	KPV179	Klebsiella pneumoniae	MH729874	-	162630	Enterobacteriaceae		
L	MP1	Morganella sp.	KX078569	SciRep 7:46157	163201	Morganellaceae		
М	CF1 ERZ-2017	Citrobacter freundii	MG250484	-	171911	Enterobacteriaceae		
М	Merlin	Citrobacter freundii	KT001915	GenomeA 3:e01133	172733	Enterobacteriaceae		
М	Moon	Citrobacter freundii	KM236240	-	170341	Enterobacteriaceae		
N	øEap-3	Enterobacter aerogenes	KT321315	-	175814	Enterobacteriaceae		
N	phT4A	Escherichia coli	KX130727	-	171598	Enterobacteriaceae		
N	KP15	Klebsiella pneumoniae	GU295964	VirolJ 10:100	174436	Enterobacteriaceae		
N	KP27	Klebsiella pneumoniae	HQ918180	VirolJ 10:100	174413	Enterobacteriaceae		
N	Matisse	Klebsiella pneumoniae	KT001918	-	176081	Enterobacteriaceae		
N	Miro	Klebsiella pneumoniae	KT001919	GenomeA 3:e01137	176055	Enterobacteriaceae		
N	phT4A	Escherichia coli	KX130727	-	171598	Enterobacteriaceae		
N	PMBT1	Klebsiella pneumoniae	LT607758	-	175206	Enterobacteriaceae		
0	phiP4-3	Proteus penneri	MG696114	-	167849	Morganellaceae		
0	Pm5461	Proteus mirabilis	NC 028762	-	161989	Morganellaceae		
Р	S13	Cronobacter sakazakii	KC954775	-	182145	Enterobacteriaceae		
Q	PEi20	Edwardsiella ictaluri	AP014714	-	177643	Hafniaceae		
Q	PEi26	Edwardsiella ictaluri	AP014715	-	177215	Hafniaceae		
R	PM2	Pectobacterium corotovforum	KF835987	PlantPathol 31:83	170286	Pectobacteriaceae		
S	СВН8	Serratia sp. ATCC 39006	MF036691	-	171175	Yersiniaceae		
s	CHI14	Serratia sp. ATCC 39006	MF036690	-	171175	Yersiniaceae		
S	X20	Serratia sp. ATCC 39006	MF036692	-	172450	Yersiniaceae		
т	F48	Klebsiella pneumoniae	MG746602	Viruses 10:E482	170764	Enterobacteriaceae		
U	Cronus	Erwinia amylovora	MH059636	-	175774	Erwiniaceae		

Supplementary Figure II.S1 Phamerator map of the genomes of 19 *Erwiniaceae* clusters using the founding phage of each cluster. Overall genomic and proteomic structure of each phage can be seen, with ittle to no protein and nucleotide homology is seen between clusters. The coloring of the boxes shows homologous proteins, and lines between strands show homology in the nucleotides. Boxes on the top of the ruler are expressed on the forward strand and boxes below the ruler are expressed on the reverse strand. Proteins are labeled with annotated function and proteins with no known function are given by gene number. Nine phages are shown in panel A, with a dotted line indicating where the genomes are continued on a new line due to the large nature of the genomes. The remaining ten phages are shown in panel B.

Supplementary Figure II.S2.A Cronus defines a unique subcluster within the *Enterobacteriales* T4-like phage cluster. A. A dot plot comparing phages T4 and Cronus created by DNA Strider (1). The Cronus and T4 genomes show a typical mosaic relationship; the Cronus regions between 35 and 75 kb and between 105 and 118 kb are particularly different from the parallel T4 regions. The most closely related regions encode head and tail virion assembly proteins. T4 genes and genome regions are indicated

below.

Supplementary Figure II.S2.B Cronus defines a unique subcluster within the *Enterobacteriales* T4-like phage cluster. The whole genome dot plot of selected members of all 20 subclusters was created by Gephard (2). Two phage genomes were chosen a random from each of the subclusters with more than one member. Phage names are shown at the left and top; on the right the letters are subcluster names and in parentheses the "number of host species known to be infected; number of phages in the subcluster; families infected" are shown (assuming that *Escherichia* and *Shigella* are actually one genus; (3)). The family names are abbreviated as follows: Ent, *Enterobacteriaceae*; Yers, Yersiniaceae; Morg, *Morganellaceae*; Haf, *Hafniaceae*; Pect, *Pectobacteriaceae*; Erw, *Erwinaceae* (according to ref (4))

Supplementary Figure II.S3 Comparison of Pavtok and DC1, two novel, large proteins and their predicted domains. Boxes represent the domains with the amino acid start and stop that correspond. Protein function is included, instances where both genes contained the same domain the function is placed in between the genes. Instances where only one gene had a domain the function is written on the outside of the genes. Distances are not exact and only show gene order not necessarily distance between domains.

- II.8.1 References for supplementary material
- 1. S. E. Douglas, DNA Strider. An inexpensive sequence analysis package for the Macintosh. *Mol Biotechnol* 3, 37-45 (1995).
- 2. J. Krumsiek, R. Arnold, T. Rattei, Gepard: a rapid and sensitive tool for creating dotplots on genome scale. *Bioinformatics* 23, 1026-1028 (2007).
- 3. G. Zuo, Z. Xu, B. Hao, Shigella strains are not clones of Escherichia coli but sister species in the genus Escherichia. *Genomics Proteomics Bioinformatics* 11, 61-65 (2013).
- 4. M. Adeolu, S. Alnajar, S. Naushad, S. G. R, Genome-based phylogeny and taxonomy of the 'Enterobacteriales': proposal for Enterobacteriales ord. nov. divided into the families Enterobacteriaceae, Erwiniaceae fam. nov., Pectobacteriaceae fam. nov., Yersiniaceae fam. nov., Hafniaceae fam. nov., Morganellaceae fam. nov., and Budviciaceae fam. nov. *Int J Syst Evol Microbiol* 66, 5575-5599 (2016).
- 5. I. N. D. Esplin *et al.*, Genome Sequences of 19 Novel Erwinia amylovora Bacteriophages. *Genome Announc* 5, (2017).
- 6. M. Kearse *et al.*, Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. *Bioinformatics* 28, 1647-1649 (2012).

REFERENCES

- 1. W. Fiers *et al.*, Complete nucleotide sequence of bacteriophage MS2 RNA: primary and secondary structure of the replicase gene. *Nature* 260, 500-507 (1976).
- 2. G. F. Hatfull, R. W. Hendrix, Bacteriophages and their genomes. *Curr Opin Virol* 1, 298-303 (2011).
- 3. C. A. Suttle, Marine viruses--major players in the global ecosystem. *Nat Rev Microbiol* 5, 801-812 (2007).
- 4. K. C.I., *Erwinia and Related Genera*. F. S. Dworkin M., Rosenberg E., Schleifer KH., Stackebrandt E., Ed., The Prokaryotes (Springer, New York, NY, 2006).
- 5. M. Sengupta, S. Banerjee, N. K. Das, P. Guchhait, S. Misra, Early Onset Neonatal Septicaemia Caused by Pantoea agglomerans. *J Clin Diagn Res* 10, DD01-02 (2016).
- J. L. Norelli, A. L. Jones, H. S. Aldwinckle, Fire Blight Management in the Twenty-first Century: Using New Technologies that Enhance Host Resistance in Apple. *Plant Dis* 87, 756-765 (2003).
- H. Forster, G. C. McGhee, G. W. Sundin, J. E. Adaskaveg, Characterization of Streptomycin Resistance in Isolates of Erwinia amylovora in California. *Phytopathology* 105, 1302-1310 (2015).
- 8. I. N. D. Esplin *et al.*, Genome Sequences of 19 Novel Erwinia amylovora Bacteriophages. *Genome Announc* 5, (2017).
- 9. R. Sharma *et al.*, Genome Sequences of Nine Erwinia amylovora Bacteriophages. *Microbiology Resource Announcements* 7, (2018).
- 10. NC_015249.
- 11. J. Krumsiek, R. Arnold, T. Rattei, Gepard: a rapid and sensitive tool for creating dotplots on genome scale. *Bioinformatics* 23, 1026-1028 (2007).
- 12. M. Kearse *et al.*, Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. *Bioinformatics* 28, 1647-1649 (2012).
- 13. S. G. Cresawn *et al.*, Phamerator: a bioinformatic tool for comparative bacteriophage genomics. *BMC Bioinformatics* 12, 395 (2011).
- 14. A. W. Dress, D. H. Huson, Constructing splits graphs. *IEEE/ACM Trans Comput Biol Bioinform* 1, 109-115 (2004).
- 15. M. Adeolu, S. Alnajar, S. Naushad, S. G. R, Genome-based phylogeny and taxonomy of the 'Enterobacteriales': proposal for Enterobacteriales ord. nov. divided into the families Enterobacteriaceae, Erwiniaceae fam. nov., Pectobacteriaceae fam. nov., Yersiniaceae

fam. nov., Hafniaceae fam. nov., Morganellaceae fam. nov., and Budviciaceae fam. nov. *Int J Syst Evol Microbiol* 66, 5575-5599 (2016).

- 16. D. K. Arens *et al.*, Characterization of two related Erwinia myoviruses that are distant relatives of the ØKZ-like Jumbo phages. *PLoS One* 13, e0200202 (2018).
- 17. C. Buttimer *et al.*, Erwinia amylovora phage vB_EamM_Y3 represents another lineage of hairy Myoviridae. *Res Microbiol*, (2018).
- A. L. Lagonenko, O. Sadovskaya, L. N. Valentovich, A. N. Evtushenkov, Characterization of a new ViI-like Erwinia amylovora bacteriophage ØEa2809. *FEMS Microbiol Lett* 362, (2015).
- 19. C. Buttimer *et al.*, Things Are Getting Hairy: Enterobacteria Bacteriophage vB PcaM CBB. *Front Microbiol* 8, 44 (2017).
- 20. S. R. Casjens, J. H. Grose, Contributions of P2- and P22-like prophages to understanding the enormous diversity and abundance of tailed bacteriophages. *Virology* 496, 255-276 (2016).
- 21. J. H. Grose, S. R. Casjens, Understanding the enormous diversity of bacteriophages: the tailed phages that infect the bacterial family Enterobacteriaceae. *Virology* 468-470, 421-443 (2014).
- 22. G. F. Hatfull *et al.*, Comparative genomic analysis of 60 Mycobacteriophage genomes: genome clustering, gene acquisition, and gene size. *J Mol Biol* 397, 119-143 (2010).
- 23. D. H. Huson, D. Bryant, Application of phylogenetic networks in evolutionary studies. *Mol Biol Evol* 23, 254-267 (2006).
- 24. K. C. Smith *et al.*, Phage cluster relationships identified through single gene analysis. *BMC Genomics* 14, 410 (2013).
- 25. I. Bahir, M. Fromer, Y. Prat, M. Linial, Viral adaptation to host: a proteome-based analysis of codon usage and amino acid preferences. *Mol Syst Biol* 5, 311 (2009).
- 26. K. Limor-Waisberg, A. Carmi, A. Scherz, Y. Pilpel, I. Furman, Specialization versus adaptation: two strategies employed by cyanophages to enhance their translation efficiencies. *Nucleic Acids Res* 39, 6016-6028 (2011).
- 27. M. Halpern, S. Fridman, N. Atamna-Ismaeel, I. Izhaki, Rosenbergiella nectarea gen. nov., sp. nov., in the family Enterobacteriaceae, isolated from floral nectar. *Int J Syst Evol Microbiol* 63, 4259-4265 (2013).
- 28. R. A. King *et al.*, Newly discovered antiterminator RNAs in bacteriophage. *J Bacteriol* 193, 5784-5792 (2011).

- 29. J. J. Gill *et al.*, Genomes and characterization of phages Bcep22 and BcepIL02, founders of a novel phage type in Burkholderia cenocepacia. *J Bacteriol* 193, 5300-5313 (2011).
- 30. B. Ali *et al.*, To Be or Not To Be T4: Evidence of a Complex Evolutionary Pathway of Head Structure and Assembly in Giant Salmonella Virus SPN3US. *Front Microbiol* 8, 2251 (2017).
- 31. J. A. Thomas *et al.*, Identification of Essential Genes in the Salmonella Phage SPN3US Reveals Novel Insights into Giant Phage Head Structure and Assembly. *J Virol* 90, 10284-10298 (2016).
- 32. K. Meczker *et al.*, The genome of the Erwinia amylovora phage PhiEaH1 reveals greater diversity and broadens the applicability of phages for the treatment of fire blight. *FEMS Microbiol Lett* 350, 25-27 (2014).
- 33. J. H. Grose, S. R. Casjens, Understanding the enormous diversity of bacteriophages: the tailed phages that infect the bacterial family Enterobacteriaceae. *Virology* 468-470, 421-443 (2014).
- 34. G. Zuo, Z. Xu, B. Hao, Shigella strains are not clones of Escherichia coli but sister species in the genus Escherichia. *Genomics Proteomics Bioinformatics* 11, 61-65 (2013).
- S. Iida, M. B. Streiff, T. A. Bickle, W. Arber, Two DNA antirestriction systems of bacteriophage P1, darA, and darB: characterization of darA- phages. *Virology* 157, 156-166 (1987).
- 36. E. M. Kutter *et al.*, Characterization of a ViI-like phage specific to Escherichia coli O157:H7. *Virol J* 8, 430 (2011).
- 37. E. M. Adriaenssens *et al.*, A suggested new bacteriophage genus: "Viunalikevirus". *Arch Virol* 157, 2035-2046 (2012).
- 38. C. Chen *et al.*, Crystal structure of ORF210 from E. coli O157:H1 phage CBA120 (TSP1), a putative tailspike protein. *PLoS One* 9, e93156 (2014).
- 39. S. R. Casjens, D. Jacobs-Sera, G. F. Hatfull, R. W. Hendrix, Genome Sequence of Salmonella enterica Phage Det7. *Genome Announc* 3, (2015).
- 40. D. J. Magill *et al.*, Pf16 and ØPMW: Expanding the realm of Pseudomonas putida bacteriophages. *PLoS One* 12, e0184307 (2017).
- 41. S. M. Lehman, A. M. Kropinski, A. J. Castle, A. M. Svircev, Complete genome of the broad-host-range Erwinia amylovora phage ØEa21-4 and its relationship to Salmonella phage felix O1. *Appl Environ Microbiol* 75, 2139-2147 (2009).
- 42. J. Park, G. M. Lee, D. Kim, D. H. Park, C. S. Oh, Characterization of the Lytic Bacteriophage ØEaP-8 Effective against Both Erwinia amylovora and Erwinia pyrifoliae Causing Severe Diseases in Apple and Pear. *Plant Pathol J* 34, 445-450 (2018).

- 43. J. Wittmann *et al.*, First genome sequences of Achromobacter phages reveal new members of the N4 family. *Virol J* 11, 14 (2014).
- 44. S. C. Falco, K. V. Laan, L. B. Rothman-Denes, Virion-associated RNA polymerase required for bacteriophage N4 development. *Proc Natl Acad Sci U S A* 74, 520-523 (1977).
- 45. E. Simoliunas *et al.*, Pantoea Bacteriophage vB_PagS_Vid5: A Low-Temperature Siphovirus That Harbors a Cluster of Genes Involved in the Biosynthesis of Archaeosine. *Viruses* 10, (2018).
- 46. E. E. Kulikov *et al.*, Genomic sequencing and biological characteristics of a novel Escherichia coli bacteriophage 9g, a putative representative of a new Siphoviridae genus. *Viruses* 6, 5077-5092 (2014).
- 47. P. Sazinas *et al.*, Comparative Genomics of Bacteriophage of the Genus Seuratvirus. *Genome Biol Evol* 10, 72-76 (2018).
- 48. K. M. Kazmierczak, E. K. Davydova, A. A. Mustaev, L. B. Rothman-Denes, The phage N4 virion RNA polymerase catalytic domain is related to single-subunit RNA polymerases. *EMBO J* 21, 5815-5823 (2002).
- 49. S. R. Casjens *et al.*, The pKO2 linear plasmid prophage of Klebsiella oxytoca. *J Bacteriol* 186, 1818-1832 (2004).
- 50. P. Kemp, L. R. Garcia, I. J. Molineux, Changes in bacteriophage T7 virion structure at the initiation of infection. *Virology* 340, 307-317 (2005).
- 51. C. Y. Chang, P. Kemp, I. J. Molineux, Gp15 and gp16 cooperate in translocating bacteriophage T7 DNA into the infected cell. *Virology* 398, 176-186 (2010).
- 52. S. R. Casjens, I. J. Molineux, Short noncontractile tail machines: adsorption and DNA delivery by podoviruses. *Adv Exp Med Biol* 726, 143-179 (2012).
- 53. M. Moak, I. J. Molineux, Peptidoglycan hydrolytic activities associated with bacteriophage virions. *Mol Microbiol* 51, 1169-1183 (2004).
- 54. M. Moak, I. J. Molineux, Role of the Gp16 lytic transglycosylase motif in bacteriophage T7 virions at the initiation of infection. *Mol Microbiol* 37, 345-355 (2000).
- 55. D. Piya, L. Vara, W. K. Russell, R. Young, J. J. Gill, The multicomponent antirestriction system of phage P1 is linked to capsid morphogenesis. *Mol Microbiol* 105, 399-412 (2017).
- 56. N. Jamalludeen *et al.*, Complete Genomic Sequence of Bacteriophage φEcoM-GJ1, a Novel Phage That Has Myovirus Morphology and a Podovirus-Like RNA Polymerase. *Applied and Environmental Microbiology* 74, 516-525 (2008).

- 57. M. Kalischuk, J. Hachey, L. Kawchuk, Complete Genome Sequence of Phytopathogenic Pectobacterium atrosepticum Bacteriophage Peat1. *Genome Announc* 3, (2015).
- 58. Y. Born, L. Bosshard, B. Duffy, M. J. Loessner, L. Fieseler, Protection of Erwinia amylovora bacteriophage Y2 from UV-induced damage by natural compounds. *Bacteriophage* 5, e1074330 (2015).
- 59. M. Demerec, U. Fano, Bacteriophage-Resistant Mutants in Escherichia Coli. *Genetics* 30, 119-136 (1945).
- 60. I. Muller, M. Kube, R. Reinhardt, W. Jelkmann, K. Geider, Complete genome sequences of three Erwinia amylovora phages isolated in north america and a bacteriophage induced from an Erwinia tasmaniensis strain. *J Bacteriol* 193, 795-796 (2011).
- 61. B. Xu, X. Ma, H. Xiong, Y. Li, Complete genome sequence of 285P, a novel T7-like polyvalent E. coli bacteriophage. *Virus Genes* 48, 528-533 (2014).
- 62. J. Michalewicz, E. Hsu, J. J. Larson, A. W. Nicholson, Physical map and genetic early region of the T7-related coliphage, BA14. *Gene* 98, 89-93 (1991).
- 63. B. Kalionis, I. B. Dodd, J. B. Egan, Control of gene expression in the P2-related template coliphages. III. DNA sequence of the major control region of phage 186. *J Mol Biol* 191, 199-209 (1986).
- 64. A. I. Yagubi, A. J. Castle, A. M. Kropinski, T. W. Banks, A. M. Svircev, Complete Genome Sequence of Erwinia amylovora Bacteriophage vB_EamM_Ea35-70. *Genome Announcements* 2, (2014).
- 65. A. Day, J. Ahn, G. P. C. Salmond, Jumbo Bacteriophages Are Represented Within an Increasing Diversity of Environmental Viruses Infecting the Emerging Phytopathogen, Dickeya solani. *Front Microbiol* 9, 2169 (2018).
- V. V. Kutyrev *et al.*, Phylogeny and Classification of Yersinia pestis Through the Lens of Strains From the Plague Foci of Commonwealth of Independent States. *Front Microbiol* 9, 1106 (2018).
- 67. C. Stamereilers *et al.*, Genomic Analysis of 48 Paenibacillus larvae Bacteriophages. *Viruses* 10, (2018).

APPENDIX III: Presentations

- 1. **Sharma R** and Grose JH. Understanding the relationship between bacteriophages of *Enterobacteriaceae* and *Pseudomonadaceae* family. ASM tri-branch meeting, April 2015, Durango CO.
- 2. **Sharma R**, Mooni HI, Putnam MJ and Grose JH. Genomic characterization and comparison of five different phamilies of bacteriophages infecting *Erwinia amylovora*. Phage conference, April 2016, Provo UT.
- 3. Colby BA, Stubbs OA, Bell KA, Rader KA, **Sharma R**, Duncan S and Grose JH. Analysis of interesting proteins in Deimos-Minion bacteriophage family. ASM tri-branch meeting, April 2017, Weber UT.
- 4. Cardinal J, Gille J, Kyle Ke, Salazar EG, **Sharma R** and Grose JH. Discovery of Likely Transcriptional Regulons and Hypothesized Protein Function in Phage RAY of the Deimos-Minion Family through Motif Analysis. ASM tri-branch meeting, April 2017, Weber UT.
- 5. Hughes JF, Loertscher E, **Sharma R**, Duncan S and Grose JH. Genome Comparison of Five *Erwinia amylovora* Bacteriophages. ASM tri-branch meeting, April 2017, Weber UT.
- 6. Judge L, Harley K, **Sharma R**, Duncan S, and Grose JH. Comparative Genomics of Four *Erwinia* Bacteriophages and N4, a Pathogenic Driving Force in E. coli. ASM tri-branch meeting, April 2017, Weber UT.
- 7. Ballard T, Withers J, **Sharma R**, Duncan S and Grose JH. Dots, Dots, Lines: A Dot Plot Comparison of the *Erwinia* Phage Frozen. ASM tri-branch meeting, April 2017, Weber UT.
- 8. Nieman T, Yeates E, Hovenden T, **Sharma R**, and Grose JH. Phinding Phamily for Phage Deimos-Minion: A Phylogenetics Study. ASM tri-branch meeting, April 2017, Weber UT.
- 9. Sharma R and Grose JH. Deimos-Minion: A Phage So Big it is Hard to See. ASM tribranch meeting, April 2017, Weber UT.
- Melhado E, Sarabia R, Loertscher E, Sharma R, Hope S, Breakwell DP and Grose JH. Bacteriophage diversity revelaed by nine novel *Enterobacteriaceae* phages isolated from sewage samples. April 2018, Durango, CO.
- 11. Yeates, EL, Nieman TB, **Sharma R**, and Grose JH. Comparison of three new bacteriophage phamilies infecting *Erwinia amylovora*. April 2018, Durango, CO\\
- 12. Carr E, Melhado E, Loertscher E, Thurgood TL, **Sharma R**, and Grose JH. Discovery of geographical gene variants in related *Pseudomonas aeruginosa* bacteriophages. ASM tribranch meeting, April 2019, Provo UT.