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ABSTRACT 

Promoter Polymorphisms in Interferon Regulatory Factor 5 

Daniel N. Clark 
Department of Microbiology and Molecular Biology, BYU 

Doctor of Philosophy 

The promoter region of interferon regulatory factor 5 (IRF5) contains the rs2004640 T or G 
single nucleotide polymorphism (SNP) and a CGGGG indel. Both of these polymorphisms have 
been implicated as genetic risk factors for several autoimmune diseases, including systemic 
lupus erythematosus, whose pathology involves altered apoptosis and cytokine signaling. The 
polymorphisms’ overall effect is to increase IRF5 levels. IRF5 is a transcription factor of several 
cytokines, including interferon, and is pro-apoptotic. Thus an alteration of cytokine levels and 
apoptosis signaling due to high IRF5 levels is the proposed source of autoimmune risk. 

Each of IRF5’s four first exons (1A, 1B, 1C, 1D) has its own promoter and responds to 
specific stimuli. rs2004640 is a T or G polymorphism; T is the risk allele. The SNP creates a 
sequence-specific recognition site for the spliceosome, making exon 1B spliceable. Analysis of 
the 1B promoter showed putative p53 binding site. IRF5 and p53 are pro-apoptotic transcription 
factors, and the p53 site may provide a positive feedback loop. Apoptosis levels were altered in 
cells with the rs2004640 risk T/T allele when treated with DNA damaging agents (extrinsic 
apoptosis), but not when activating death receptors (intrinsic apoptosis). The 1B promoter was 
the only one to activate expression after inducing DNA damage in a luciferase reporter assay, 
and this activation was abolished after mutating the p53 site. The exon 1A promoter contains 
either three or four copies (4X) of CGGGG; the 4X variant is the risk allele. The 1A promoter is 
constitutively active and is responsive to the Toll-like receptor 7 agonist imiquimod. 

RNA folding analysis revealed a hairpin encompassing exon 1B. Mutational analysis 
showed that the hairpin shape decreased translation five-fold in a luciferase reporter assay. Cells 
with the CGGGG or rs2004640 risk allele exhibited higher levels of IRF5 mRNA and protein, 
but demonstrated no change in mRNA stability. Quantitative PCR in cell lines with either risk 
polymorphism demonstrated decreased usage of exons 1C or 1D, although no other correlated 
splicing events were observed. Also, several mRNA splice variants of IRF5 were sequenced. 

The risk polymorphisms altered cytokine signaling as well. Expression of interferon, Toll-
like receptor, and B cell receptor pathways were affected by a risk haplotype which includes the 
rs2004640 SNP. The CGGGG polymorphism decreased the levels of CC-chemokine receptor 7. 

Specific transcription factor binding sites define promoter activity and thus first exon usage 
and transcription levels. Translation levels are affected by mRNA folding. Overall, the 
rs2004640 SNP and the CGGGG indel cause high levels of IRF5. High IRF5 expression causes 
altered cytokine and apoptosis signaling, and may bias the immune system toward autoimmunity. 

Keywords: autoimmunity, cytokines, apoptosis 
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1. Introduction and literature review

1.1. Systemic lupus erythematosus 

Systemic lupus erythematosus (SLE) is the prototypic disease for the study of systemic 

autoimmunity. It involves the production of anti-nuclear antibodies (ANA). Since the immune 

system recognizes components of the nucleus as foreign, the symptoms can be extremely varied. 

Some of these include skin rash and sun sensitivity, anemia, fatigue, joint pain, kidney and liver 

damage, and neurological symptoms such as headache and depression. Lupus is about ten times 

more common among women. The treatment is directed against the symptoms—as opposed to 

the causes—of  the disease. These treatments are usually immunosuppressants. With current 

medical interventions, the disease is rarely fatal in developed countries. 

SLE is generally diagnosed long after the disease begins. This means that the cause of the 

disease is hard to find, buried in the past. In the search for the elusive causal agents for SLE, one 

candidate is the immune signaling molecule, interferon (IFN). Interferon is a secreted signaling 

protein, or cytokine, which is expressed at higher levels in SLE patients and has been associated 

with incidence and severity of the disease. 

1.2. Genetic risk factors for SLE 

A combination of environmental triggers and genetic susceptibility combine to initiate SLE. 

Support for a genetic component to the disease includes a high sibling risk ratio (λS between 5.8 

and 29), high heritability (greater than 66%), and higher concordance rates between monozygotic 

twins (20 to 40%) compared to other full siblings and dizygotic twins (2 to 5%) [1-3]. A large 

number of genetic risk factors are associated with increased susceptibility to the SLE. This 
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genetically determined increased risk status has been referred to as a threshold liability [4], 

which is a polygenic state that varies between individuals. Environmental factors also affect 

lupus susceptibility and interact with this threshold liability, but just as is the case for genetic 

factors, there is no single environmental cause. An individual may have only a few of the genetic 

risk variations (low threshold liability) and never get SLE despite exposure to environmental 

triggers. In contrast, another person may have many of these variations (high threshold liability) 

and then develop SLE on first exposure to an environmental trigger. 

Although there are many etiological components, they usually converge on a heightened state of 

activation for the immune system, with resultant increases in interferon and other cytokine 

production and signaling. That is to say that immune dysregulation could be thought of as either 

a causative agent, a result of the disease, or both. 

This dissertation will discuss a transcription factor called interferon regulatory factor 5 (IRF5). 

IRF5 is a direct target for interferon and other cytokine signaling and is proapoptotic. We will 

begin with an introduction to the basics of interferon function, and how dysregulation of 

apoptosis can lead to interferon production due to immune complexes. We will then discuss how 

the functioning of the immune system changes in someone with SLE, other genes which are 

associated with risk for SLE, and clinical aspects of interferon in SLE, including anticytokine 

therapies. Finally, we will discuss two genetic risk polymorphisms for lupus: the T allele of the 

rs2004640 single nucleotide polymorphism (SNP) and the four-copy variant of the CGGGG 

indel. These polymorphisms are within the IRF5 gene, and their effect is the focus of this study. 
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1.3. Environmental risk factors for SLE 

Several environmental triggers have been noted for lupus. They include drug treatments such as 

procainamide, isoniazid, and interferon treatments. Although upon discontinuation of treatment, 

the symptoms are generally reversed. Others include UV light exposure and infectious agents 

such as viruses. 

Epstein-Barr virus (EBV) infection is associated with lupus, likely a causal relationship. Lupus 

patients have increased EBV seroprevalence and elevated serum titers of anti-EBV antibodies 

[5]. Among those with SLE, there is also an elevation of anti-EBV antibodies which precedes 

lupus flares [5]. EBV infection is also not controlled in lupus patients as well as it is in controls, 

including up to forty-fold increased viral load and an altered T-cell response [6-7]. 

EBV antigens such as EBV nuclear antigen 1 (EBNA1) are targets of antibodies for the immune 

system. Once the body makes these antibodies, a similarity in protein structure can create a cross 

reactivity with self proteins, such as Sm and RNP, which are important lupus autoantigens [8- 

13]. Since lupus is diagnosed long after the causal events such as antibody cross-reactivity have 

occurred, and since EBV infection is nearly ubiquitous in adults, an association of lupus to EBV 

positivity is not necessarily a strong case for association. However, lupus has been associated 

with prior EBV infection in not just adult lupus patients, but also in pediatric cases [14-20]. 

Since EBV positivity is much lower in pediatric cases, the higher rates of lupus among EBV-

positive pediatric cases is more striking. These changes in viral infection or the response to viral 

infection such as interferon or other cytokine levels may be due to the genetic risk factors 

mentioned above (Section 1.2), or simply a symptom of the disease. 
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1.4. Function of interferon in the context of SLE 

Interferon is a signaling protein which is secreted to activate neighboring cells in response to 

viruses, other infections, or as part of various immune signaling pathways. It is a cytokine, or 

secreted immune signaling protein which allows communication between cells. When a cell is 

infected with a virus, interferon is produced and secreted as a warning to other cells to prepare 

for an infection. Interferons alpha (IFNα) and beta (IFNβ) are the type I interferons, and 

interferon gamma (IFNγ) is the type II interferon (Figure 1). Most of the cells in the human body 

have receptors for type I IFN, whereas only certain immune cells express the receptor for type II 

IFN [21]. The proteins are made by many different cells, but generally speaking, IFNα is of 

leukocyte origin, IFNβ is of fibroblast origin, and IFNγ is made by lymphocytes [22]. Other less 

studied interferons also exist, and interferons are conserved among many species. Both alpha and 

beta types signal through the IFNα receptor (IFNAR), and then through Jak/STAT signaling  

Figure 1. Interferon protein structures. Interferons alpha and beta, the type I interferons, have a 
common structure composed mainly of five alpha helices. Shown are IFNα2a and IFNβ1 monomers 
based on protein data bank (PDB) files 1itf and 1au1, respectively. Although the monomers of each are 
very similar in structure, the functional form of both is a dimer, and the two dimerize differently; IFNα2a 
along homologous surfaces and IFNβ1 on opposing sides of the protein [23]. IFNγ is show in its 
dimerized form, with the two colors representing two intertwined monomers, based on PDB file 1hig. Not 
shown to scale; figures drawn with Jmol [24]. 
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pathways to alter gene expression. IFNα requires the Jak family member tyrosine kinase 2 

(Tyk2), and it thus sends a similar though different signal than IFNβ [25]. This review portion 

(Section 1) will discuss type I interferons, IFNα and IFNβ, which herein may be referred to 

simply as interferon. When interferon gamma (IFNγ) is discussed, it will be noted explicitly. 

 

The main purpose of interferon is to shut down a cell before a virus can take it over, although it 

has many other jobs [26]. Interferon signaling leads to increased apoptosis, which is a normal 

response to control viral spread or to decrease the size of a tumor [27]. If one cell can undergo 

apoptosis before a virus can replicate and infect other cells, the infection is halted [28]. 

 

Interferon can be produced in response to infection, other cytokines, mitogens, and several 

signaling pathways. Once produced it is secreted where it can be recognized by other cells, 

which is called paracrine signaling, or by the cell which produced it, called autocrine signaling. 

One type of cell, the plasmacytoid dendritic cell (pDC), is a natural interferon producer, and its 

ability to make very large amounts of IFNα is incriminated in the pathogenesis of lupus [29]. 

 

Several effects occur when interferon ligates an interferon receptor (Figure 2). Jak/STAT 

signaling pathways are activated which alters gene expression [30]. Interferon causes an increase 

in the expression of both of the major histocompatibility complexes (MHCI and MHCII) for 

presentation of viral peptides to T cells, which can then lead to activation of other cells in order 

to kill infected cells and remove them [31]. Interferon also increases intracellular levels of 

protein kinase R (PKR) which recognizes viral nucleic acids and activates RNase L to degrade 

viral RNAs. PKR also slows protein synthesis by inactivating translational initiation factors, so 
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that viral protein synthesis is slowed [32]. p53 is also activated, which is pro-apoptotic [27]. 

Interferons activate immune cells, especially natural killer cells and macrophages [33]. 

Figure 2. Cell-to-cell interferon signaling and its effects. One cell produces interferon and either 
another cell (paracrine signaling) or the same cell (autocrine signaling) receives the signal. Cellular 
processes that are activated or otherwise altered are indicated in the target cell. ↑: an increase, ↓: a 
decrease, MHC: major histocompatibility complex, PKR: protein kinase R, NK: natural killer cell, MΦ: 
macrophage 

This activation cascade is normally turned off after an infection is cleared to prevent damage to 

uninfected cells. However this activation state is not reduced to the normal levels in individuals 

with SLE, where a higher level of interferon is present [34-35]. This higher amount of interferon 

is also measurable by an increase in the expression of interferon-stimulated genes seen in lupus 

patients, called the interferon response signature [36-38] (See Table 1). When IFN is turned on it 

actively affects how other cells are functioning. 

As a general feature of autoimmune diseases such as SLE, the immune system is in an “always 

on” state, which can lead to a breach in the body’s natural tolerance to self. Once this self 

tolerance is lost, autoimmune disease can result. In addressing why the immune system generates 
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an attack against one’s own body, the over-activation of the immune system—including the 

overproduction of interferon in SLE patients—is a part of this picture. 

 

Table 1. Description of the interferon response signature. The effect of interferon can be measured by 
the changes it produces in downstream gene expression. Lupus patients have an altered interferon 
response signature. 
 

Interferon Response Signature 

• Defined as the list of genes that are upregulated in peripheral blood of many SLE patients 

• Identified using microarray analysis [37] 

• Genes whose expression levels change in response to interferon [39] 

• Confirmed using multiple array systems and RT-PCR [37-40] 

• SLE patient clusters can be generated according to IFN response signature [38, 41] 

 

 

1.5. Apoptosis due to interferon; the connection between SLE and apoptosis 

One effect of interferon production is the release of autoantigens due to increased cell death. This 

release is normally controlled by a process called efferocytosis [42], or apoptotic cell removal, 

where cell debris are processed by immune cells or neighboring cells which remove them by 

phagocytosis (Figure 3). Defects in apoptotic pathways have been noted in individuals with SLE 

[43]. Instances of why this occurs have been studied. For example, in SLE patients there is an 

overexpression of both soluble and membrane-bound Fas. Fas is a receptor which signals a cell 

to undergo apoptosis when complexed with its receptor, Fas ligand (Fas L). The levels of Fas 

also correlate with the amount of apoptotic lymphocytes and disease activity of SLE [44-45]. 

Mouse models of lupus commonly have genetic variations in apoptotic pathways such the 

Fas/Fas L pathway and interferon pathways. 
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Mouse lupus models as well as human SLE patients make antibodies to self antigens. This is 

likely because of over-exposure of potential autoantigens to the immune system. This could be 

due to an increased amount of apoptosis or a decrease in the rate of clearance of apoptotic debris. 

Apoptosis can be induced by interferon, Fas, and other signaling events. However, apoptosis is 

also part of the natural cycle of cellular growth and death for every cell type. Cells undergoing 

apoptosis are recognized as dead by other cells, so that they are cleared [46]. 

Figure 3. Production of interferon due to defects in apoptosis signaling. Apoptotic cells form 
naturally or due to damage. If the apoptotic debris is cleared normally, the debris is efferocytosed by 
neighboring or immune cells such as macrophages, and there is no immune response. In SLE, apoptotic 
debris remains present for the immune system to recognize. This can be due to either an increase in 
apoptosis or a decrease in clearance of apoptotic debris. If contents are released, they can form immune 
complexes with autoantibodies. These immune complexes can cause cells to produce interferon. 

1.6. Mouse models for the study of IFN and apoptosis pathways 

Mouse models have been very useful in understanding the etiology and pathogenesis of lupus. 

Two approaches to experimental mice have been used to generate information about the role of 

interferon in lupus. In the first approach, autoimmune-related genes are knocked out and the 

resulting effects on lupus are studied. For the second, established lupus mouse models are 
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studied on a molecular level for differences in autoimmune pathways such as interferon-related 

effects. These two approaches often overlap, as in cases where interferon-related genes are 

knocked out in lupus-prone mice. Several established lupus mouse models include the Murphy 

Roths Large/lymphoproliferative (MRL/lpr) mice, New Zealand black/New Zealand white 

(NZB/NZW), and others. These are mice that spontaneously develop lupus, and several of them 

have been investigated to understand the role of interferon in their pathogenesis. The following 

are a few illustrative examples which represent the power of these model systems. 

One mouse model that is especially relevant for the study of interferon in lupus is the Black 6 

cross to satin beige/Murphy group of the Jackson laboratory (BXSB/MpJ) or Y-linked 

autoimmune accelerator (Yaa) mouse. These mice spontaneously develop a lupus-like disease in 

a sex-linked fashion because of a duplication of the Toll-like receptor 7 (TLR7) gene on the 

Y chromosome [47]. TLR7 is responsible for inducing interferon in response to viral infection or 

autoantibody production. 

Another interesting mouse for the study of interferon is the NZB/NZW mouse. These mice 

spontaneously develop a lupus-like autoimmune disease. They have been used to investigate the 

role of several interferon-related molecules and cells. For example, treating these mice with 

interferon accelerates disease in a T-cell dependent manner [48-49], while knocking out or 

inhibiting interferon-related genes slows or eliminates the development of lupus-like symptoms 

[50-51]. These mice have been used to clarify the interactions between sex hormones and 

interferon in lupus etiology [52-54], and they serve as an excellent all-around model for 

spontaneous development of lupus. 
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The role of several interferon-related molecules has been examined using a combination of 

mouse models. As an example, consider the gene interferon regulatory factor five (IRF5). This 

gene is an interferon-regulating gene which will be described in Section 1.10 below. It was 

discovered that knocking out Irf5 prevents or inhibits the development of lupus in MRL/lpr mice, 

Fcγ-/- Yaa mice, and pristane-injected mice [55-57]. 

Mouse models for lupus represent a powerful and flexible mechanism for investigating the role 

of multiple aspects of lupus. However, it must be remembered that the mutations or disease 

manifestations in these mice are not necessarily related to those seen in human lupus, and 

therefore the results observed must be interpreted with caution. 

1.7. A cycle of autoantibody production 

When it comes to SLE we may think of interferon production as a cycle which begins when an 

environmental trigger such as a viral infection, UV light damage, or medical treatment activates 

the immune system to produce interferon. 

Normally B cells, which produce antibodies to self-antigens, undergo negative selection where 

they receive signals to die off or become inactivated if they make antibody against a self antigen. 

This self tolerance is breached in SLE [58], and the self antigens released from damaged or 

apoptotic cells during or after initial triggering events become the targets of autoantibodies. 

When autoantibodies are produced, they are either made by B cells or plasma cells. Plasma cells 

are a mature differentiated form of B cells, which secrete antibodies instead of maintaining them 

bound to the cell surface. 
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Autoantibodies stimulate the production of interferon when they form immune complexes, which 

are immunostimulatory [59]. Immune complexes are composed of aggregates of antibody and 

antigen molecules. Since immune complexes must processed by the body, they are a main source 

of SLE pathology, as they obstruct small passages in areas of the body such as kidney glomeruli 

and joints [60]. Immune complexes are a main cause of end organ damage and therefore 

mortality in lupus. However, lupus is less fatal than it once was due to effective treatment of 

symptoms. 

Figure 4. The cycle of altered immune response in SLE. As part of the normal immune response, the 
presence of an antigen results immune activation; this may include interferon production. In blue is a 
cycle which exists in SLE, amplifying the amount of IFN produced. This can happen due to alterations in 
the immune response. If autoantibodies form due to lowered self tolerance or increased apoptosis, 
immune complexes may form which are themselves immunostimulatory. Once this cycle becomes 
sustained, it can leave the immune system in an “always on” state. 

Immune complexes may include the common SLE autoantigens such as RNA-containing protein 

complexes like Sm, RNPs, Ro, and La. These are of nuclear origin and have a combination of 

both nucleic acids and protein [61]. Once complexed with antibody, this combination of 

molecule types means many pathways can be turned on. For example, antibody can stimulate an 
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immune cell through an Fc receptor, nucleic acids can stimulate cells through Toll-like receptors, 

and proteins can be recognized by other antibodies. 

Immune cells are activated by immune complexes and the cycle continues (Figure 4). Interferon 

production is instigated by stimulated immune cells which recognize part of the complex, be it 

the antibody, the antigen, or other associated molecules. 

1.8. Clinical component interferon and SLE 

The body of evidence in this section will describe the clinical data which associate interferon to 

systemic lupus erythematosus. Many researchers have sought to determine if higher levels of 

IFN, which is common in lupus patients, is a cause of lupus or an effect of lupus.  

Intensity of lupus is scored by several different methods: the SLE disease activity index 

(SLEDAI), a common modification of SLEDAI called Safety of Estrogens in Lupus 

Erythematosus National Assessment (SELENA), and the British Isles Lupus Assessment Group 

(BILAG) index. These measure many clinical indicators on a weighted scale. Clinical signs and 

symptoms evaluated include seizure, psychosis, organic brain syndrome, visual disturbance, 

cranial nerve disorder, lupus headache, cerebrovascular accidents, vasculitis, arthritis, myositis, 

urinary casts, hematuria, proteinuria, pyuria, new rashes, alopecia, mucosal ulcers, pleurisy, 

pericarditis, low complement levels, increased DNA binding, fever, thrombocytopenia, and 

leucopenia [62]. 
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An interesting occurrence can happen when someone undergoes treatment with IFNα. The 

presence of increased levels of IFN leads to lupus or a lupus-like syndrome [63-65]. Because the 

lupus symptoms usually disappear after IFN treatment ends, this connection suggests that IFN 

may be more of a cause than an effect. In a small number of cases, some patients also develop 

SLE as a result of these IFN treatments, and in these cases the IFN is also the disease trigger. 

Furthermore, within a family, the levels of interferon among all members correlate, suggesting 

that this is a heritable trait [66]. That is, even the siblings of a lupus patient with high IFN levels 

are more likely to have higher IFN levels. This also supports a causal role for IFN. The causal 

role does not preclude the role of interferon as an effect of the disease as well. 

Clinically, disease activity can be measured and correlated to other observations to determine the 

cause of the different levels of activity. One item linked to SLE activity is IFN, where higher 

levels of IFN in the serum correlated with more severe disease in most cases [38, 67-71]. 

Common lupus autoantibodies also correlate with IFN levels. A very strong correlation is 

consistently observed between IFNα levels and the presence of antibodies directed against 

common SLE autoantigens like Ro, La, Sm, RNP, and dsDNA [72]. 

Another set of findings has to do with properties of the main producer of IFN , plasmacytoid 

dendritic cells (pDCs). High numbers of IFN-producing pDCs have been observed in lupus skin 

lesions [73-74]. Since the cells are present at the scene of the crime, the increased interferon 

could have to do with the pathology in these cases. 
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1.8.1. Clinical trials of anti-cytokine inhibitors 

At the time of writing, two anti-interferon clinical drug trials for SLE are being conducted. They 

are for Sifalimumab and Rontalizumab, which are both anti-interferon monoclonal antibodies in 

phase II trials [75-76]. Another phase II trial is underway, whose drug MEDI-546 targets the 

interferon-α receptor 1 (IFNAR1) [77]. All of these monoclonal antibodies are designed to block 

interferon alpha signaling by preventing its recognition by neighboring cells. If these drugs are 

found to be effective by reducing SLEDAI or BILAG scores, it will further show that IFN plays 

a critical role in the pathogenesis of lupus. 

Of note, the United States Food and Drug Administration recently approved an antibody to 

B lymphocyte stimulator (BLyS, also known as B cell activating factor (BAFF) ) to treat SLE 

[78]. This drug, called Belimumab, is the first new lupus drug in around fifty years and should 

help control B cell activation, selective apoptosis, and autoantibody production to some degree. 

Other anti-cytokine therapies have been or likely will be tried. Several of these target the 

interleukins, a group of important immune cytokines. An example is interleukin-6 (IL-6). IL-6 

levels are higher among lupus patients [79]. Furthermore, the IL-6 which B cells make 

contributes to the production of autoantibodies [80]. Treatment with an antibody directed against 

the IL-6 receptor, called Tocilizumab, led to decreased SELENA-SLEDAI scores in one study 

[81]. This and other cytokine inhibitor drugs have undergone testing in mouse models of lupus or 

human lupus patients (Figure 5). The group of anti-cytokine—including anti-interferon—

antibodies currently being studied will likely become the next generation of lupus drugs. Unlike 

most current treatments, they target the cause of the disease instead of just symptoms. 
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Figure 5. Potential lupus drugs and the pathways they affect. Several pathways involved in lupus 
pathogenesis (gray boxes) are mediated by cytokines (white boxes, each represented by a symbol) which 
are produced by many of the body’s cells as part of normal signaling or during the course of an infection. 
These pathways are blocked by the clinical administration of monoclonal antibodies, or other antibody 
fusion proteins, whose names are listed according to their cytokine target. BAFF: B cell activating factor, 
BP: binding protein, IFN: interferon, IL: interleukin, RA: receptor antagonist, T: Blocks or inhibits 

1.9. Interferon signaling pathway genes identified in SLE genetic risk screens 

We have looked at the disease state of SLE and how the immune system functions improperly to 

instigate disease, and we will now look at genetic risk factors. Pathogenesis begins when an 

environmental trigger works on the genetic background of varying degrees of susceptibility or 

threshold liability. Genetic susceptibility is thought to account for at least 20% of the risk for 

SLE [2]. To find the actual genes involved, studies are performed to determine the linkage or 

association of a variation in the genome to a particular disease. 
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One important method is called a genome wide association study (GWAS). These GWA studies 

genotype thousands of individuals, grouped into SLE patients and healthy controls, comparing 

them at thousands of single nucleotide polymorphisms (SNPs). Other variations, such as 

insertion-deletion sequences (indels) and repeat sequences, can also be screened for association. 

These studies reveal the genomic regions which contain disease-associated genes, because the 

variations are more common in people with the disease. Individual genes or gene pathways are 

pinpointed and can ultimately lead to treatment strategies. Many genes have been identified that 

contain SNPs and other small variations which confer risk to SLE; they will be referred to as risk 

genes in the following sections. 

GWA studies are especially useful for diseases with unknown or complex genetic components. 

The genome is examined for sets of single nucleotide polymorphisms (SNPs). When sets of 

SNPs are usually inherited together in a group—and thus statistically associated—it is called a 

haplotype. When a polymorphism or haplotype is more common in the disease group than in the 

unaffected group, it can be assumed that it is associated with the disease. 

Although specific genes are sometimes found which may predict a disease, it is more likely that 

the information will reveal molecular pathways associated with the disease. Association of genes 

or pathways to diseases such as heart disease, asthma, diabetes, and others have been found using 

this method [82]. The amount of effect is measured as an odds ratio (OR), which is a measure of 

the strength of association of the disease with a haplotype. A median OR value is around 1.3, 

with more causal genes having much higher association ORs. For example, one of the lupus-
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associated haplotypes TREX1, has a published OR of 25 [83]. In such cases, the genetic risk is 

almost certainly associated with the disease. 

Table 2. Description of genome wide association studies. In order to determine the genetic source of a 
polygenic trait or disease, GWAS may be performed. Variations in the genome can be associated to the 
disease or trait being studied. 

Genome-wide association studies (GWAS) 

After completing the Human Genome Project, a logical next step is to find what parts of the genome are associated 

with human diseases. Genome-wide association studies aim to discover the genetic risk component of a disease by 

finding differences in a disease group compared to an unaffected control group. This is especially useful for diseases 

with unknown and complex genetic components. 

The genome is examined for sets of single nucleotide polymorphisms (SNPs) or other polymorphisms. When a 

polymorphisms or haplotype is more common in the disease group than in the unaffected group, then it is associated 

with the disease. 

SNP: single nucleotide polymorphism. These single nucleotide changes are what make one person different from 

another person and may be clues to finding the genetic risk components of disease. 

Odds ratio: A measure of effect size which describes the strength of association between a disease and a genetic 

variation. Mean OR values are 1.3. Two polymorphisms described in Section 1.10.1 are the rs2004640 SNP 

(OR=1.4-1.9, p=5.7*10-7 [84]) and the CGGGG indel (OR=1.4-2.0, p=4.6*10-9 [85]) in the gene IRF5.  

Haplotype: A group of co-inherited genetic variations, such as SNPs, which are grouped together for the purpose of 

studying larger areas of the genome at one time. Statistical association is calculated for verification. Identifying 

co-inherited SNPs allows for testing of a single marker SNP instead of each individual polymorphism. 

An important caveat to these tests is that they answer the question, “What?” but not the question, 

“How?” That is, they identify genetic loci which confer risk to SLE, but then further studies are 

needed to show what functional changes affect people with a risk polymorphism. For most 
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genes, we do not know what functional role they play. However it is promising to note that the 

most genes thus far identified in lupus GWAS are within pathways which have been previously 

associated with lupus. 

Several review articles have reviewed the findings of many lupus GWAS with varying degrees 

of certainty [3, 86-89]. In some cases the indicated susceptibility genes are common in many 

ethnicities and populations, while others are specific to certain groups. The statistical 

significance of many of these genes is well established, while others are novel and need to be 

replicated. For example, an IRF5 SNP rs2070197 has been associated with lupus in Caucasian 

[90], Hispanic [91], and African American populations [92], but no association was found in a 

Korean population [93]. Another study used five different ethnic populations to have a more 

robust result of significance of association to lupus of a CGGGG indel in the IRF5 gene [94]. An 

important finding is that most of the genes that have been identified in GWA studies can be 

grouped into functional pathways. The current focus will be on lupus-risk associated genes in 

two pathways: genes in IFN pathways and genes in apoptosis pathways—those involving 

clearing of apoptotic cells and clearing of immune complexes.  

1.9.1. Interferon production pathways 

Intracellular signaling pathways which control interferon production include the production of 

type I interferons by interferon regulatory factors (IRFs) and the production of type II interferon 

by STAT4. IRFs are activated by TLRs, which are extracellular or endosomal pattern recognition 

molecules. TLRs 7, 8, and 9 recognize foreign nucleic acids and are endosomal. Maintaining 

these TLRs in the endosome instead of the cell surface is an important barrier to too frequent
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TLR activation, since self nucleic acid is difficult to distinguish from foreign nucleic acid. Once 

the nucleic acids are brought into the cells through endocytosis, the TLRs become activated to 

turn on IRFs (Figure 6). TLR 8 and TLR 9 have both been identified as lupus risk genes [95-96]. 

Figure 6. Lupus risk genes that affect interferon production pathways. The  represents genes which 
have been identified as having risk variants associated with lupus. The endosomal TLRs (7, 8, and 9) can 
bind to autoantigenic nucleic acids (squiggly black lines) and signal through a MyD88 complex which 
can be affected by association with osteopontin (OPN). If it is not impeded by TNFAIP3, this activates an 
IRAK signaling complex to phosphorylate IRF5 and IRF7 transcription factors to produce type I IFN. 
Another signaling pathway which activates interferon production is when IL-12 or IL-23 signals through 
the IL-12 receptor, and then Tyk2/Jak2 activate the STAT4 transcription factor to produce type II IFN. 
This signaling pathway is common in T helper cells [97]. 

TLRs begin a signaling cascade through a MyD88 signaling complex. MyD88 activates another 

confirmed locus of SLE risk, the gene which encodes IL-1 receptor-associated kinase 1 

(IRAK1). In Sle1 and Sle3 mouse models of lupus, IRAK deficiency eliminated most lupus 

symptoms [98], which highlights the importance of IRAK1. Since this gene is on the 

X chromosome, it could help explain why lupus is more common among women—who have two 

X chromosomes. The MyD88 complex can be affected by osteopontin (OPN). It regulates IFNα 

production in plasmacytoid dendritic cells, which are the body’s main IFNα producer cell [99]. 

The lupus-risk variant of OPN was tied to high IFNα levels in certain lupus patients [100]. 
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Two interacting proteins are involved in tumor necrosis factor alpha (TNFα) signaling and 

inflammation: TNFα-induced protein 3 (TNFAIP3) and TNFAIP3-interacting protein 1 (TNIP1). 

TNFAIP3 and TNIP1 are also lupus risk loci [101-102]. TNFAIP3 encodes the protein A20, 

which abrogates NF B after an inflammatory response, and lupus-risk variants of this gene are 

associated with blood and kidney manifestations among lupus patients [103]. TNIP1 interacts 

with TNFAIP3 as well as affecting several other signal transduction pathways. 

Interferon regulatory factors are activated next, further downstream of TLRs; they are 

transcription factors which travel to the nucleus to bind DNA to initiate transcription. IRF5 binds 

to a sequence specific region of DNA to induce IFN production. IRF5 polymorphisms have been 

confirmed as risk factors for SLE among several ethnicities [91-92, 104-106]. Among the main 

genetic variants within IRF5, there are two copy number indels and several SNPS [107]. The 

first copy number indel is either three or four copies of a CGGGG repeat [108]; the other is 

either two or four copies of a 30 bp sequence [107]. Some salient SNPs are rs2004640, 

rs10954213, and rs10488631. The rs2004640 SNP allows use of an alternate first exon, although 

this does not change the encoded protein [84]. The SNP rs10954213 creates an early 

polyadenylation sequence, which yields shorter more stable mRNA [109]. The rs10488631 is 

downstream of IRF5, 3’ of the poly-A site, and has no known functional change, although its 

association to lupus is well established [108]. Work has shown that these variants increase the 

amount of IFN in the presence of SLE autoantibodies [110-111]. The IRF5 risk factors generally 

act to increase the levels of IRF5; however the increase in IRF5 expression is not entirely due to 

IRF5’s own polymorphisms [112] which means some trans-acting factors also increase IRF5 
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levels. Study of the rs2004640 SNP and the CGGGG indel are the main focus of this 

dissertation; they are introduced in greater detail in Sections 1.10.1 and 1.10.2. 

 

IRF7 is associated with SLE risk by its proximity to SNPs in the IRF7/KIAA1542 locus [113-

114]. IRF7 SNPs lead to increased IFNα levels, and they change which autoantigens are targeted 

in the autoimmune response [110]. 

 

Signal transducer and activator of transcription 4 (STAT4) is also associated with risk for SLE. It 

is a transcription factor which activates genes in proliferation, differentiation, and apoptosis 

pathways. Two STAT4 SNPs have been examined, rs7574865 increases sensitivity to IFNα 

[115], and rs3821236 causes STAT4 to be transcribed at higher levels and is additive with IRF5 

risk loci so that when both are present, the risk to SLE is multiplied [116-117]. 

 

1.9.2. Genes associated with apoptosis and immune complexes 

Another set of lupus-risk genes can be placed into a functional group of apoptosis-associated 

genes. As described earlier, defects in apoptosis can lead to the presence of potential 

autoantigens. For example, after a cell undergoes apoptosis—if it is not cleared by other cells—

its contents may be released. The cellular contents can contain molecules such as nucleic acids, 

RNA binding proteins, and others which are common lupus autoantigens. If antibodies bind to 

these antigens, a complex of multiple antibodies and multiple antigens can aggregate. The 

resultant immune complexes can be broken down through reactions with complement 

components (Figure 7). Contributing to a lack of immune complex clearance, some complement 

components are found at low levels in SLE patients [118]. If immune complexes are not broken 
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down by complement, they reach areas such as the kidneys or joints, which can be damaged by 

these immune complexes. This is how organ damage usually occurs in lupus patients. 

Figure 7. Genes associated with risk for lupus in the apoptosis pathway. The  represents genes 
which have been identified as having variants which increase risk for lupus. TNFα, CASP10, and IRF5 
are pro-apoptotic whereas OPN and p21 are anti-apoptotic. These genes all have a role in how much 
apoptosis is occurring inside the cell. Once apoptosis has transpired, the cell must be cleared. 
Complement components such as C1q, C2, and C3b can opsonize dying cells or immune complexes for 
removal. Dying cells express altered lipids on their surface for recognition by proteins such as MFG-E8 
and CRP. This system of recognizing apoptotic cells and immune complexes facilitates their removal by 
neighboring cells or immune cells. 

The problem of creating autoantibodies could stem from too much apoptosis or too little 

clearance of apoptotic debris. Genes identified in GWA studies that could alter the amount of 

apoptosis in a cell include TNFα, caspase 10, IRF5, osteopontin, and p21. 

TNFα was identified as a risk factor for lupus in certain ethnicities [119-120]. TNFα is a 

cytokine which is produced and secreted to signal to other cells and is found at high levels in the 

serum of lupus patients [121-123]. Part of its function is to induce apoptosis—when a cell binds 

TNFα, it activates the caspase cascade. Caspases are proteases which are activated in a cascade 

under certain conditions and are a hallmark of apoptosis. They cleave other caspases as well, and 
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the combined proteolytic activity of several different activated caspases breaks down cellular 

components as the cell prepares to die. Caspase 8 is activated by TNF signaling and cleaves 

caspase 10, which then cleaves caspases 3 and 7. Caspase 10 is another lupus susceptibility gene 

[95]. IRF5, as well as being a transcription factor which helps produce IFN, is also a tumor 

suppressor gene which has been shown to be inactivated in certain cancers [124-125]. This is 

because of IRF5’s pro-apoptotic function [126]. 

Osteopontin (OPN) and p21 are also lupus risk genes, both anti-apoptotic. OPN promotes 

proliferation, as well as prevention of death under apoptotic stimuli [127]. p21 is a cell cycle 

inhibitor that is normally activated in response to DNA damage. A mimic of p21 was used in the 

treatment of murine lupus in the NZB/NZW mouse, and it was found to dramatically reduce the 

disease [128]. 

Therefore, there are genes which dysregulate the amount of apoptosis, and they are associated 

with risk for lupus. But this is only half of the picture; the other part is the clearance of apoptotic 

cells or immune complexes (Figure 7). Several SLE susceptibility genes in this pathway have 

been identified as well. Active SLE can be assessed when low levels of complement proteins are 

found in circulation. Complement can function against microbes during an infection, but also 

help to degrade immune complexes—they can recognize and tag them for removal. Other non-

complement proteins function to bind apoptotic cells or immune complexes to facilitate their 

uptake by other cells. This tagging for removal is called opsonization. 
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Integrin αM (ITGAM) has been convincingly associated to SLE [129]. Risk variants of ITGAM 

have been associated with certain clinical manifestations of lupus [130]. It is a cell receptor 

which binds to OPN or to complement C3b. C3b binds to apoptotic cells or immune complexes. 

SLE association with polymorphisms in complement components C1q, C2, C4a, and C4b have 

large OR values, meaning that the risk alleles of these genes are causing a large effect. When 

C1q is expressed at low levels it can lead to lupus, and it was shown to increase the amount the 

of IFN produced due to immune complexes [131]. Complement components function by binding 

immune complexes by the Fc region of antibody or by binding to other parts of apoptotic cells, 

which can opsonize them for easier uptake by other cells. Cells can then remove the immune 

complex or apoptotic debris by endocytosis. Receptors for the Fc region of antibody have also 

been implicated in SLE risk [83]. These receptors can bind to antibody within an immune 

complex. 

Other proteins such as milk fat globule epidermal growth factor 8 (MFG-E8) and C-reactive 

protein (CRP) can bind to apoptotic cells by recognizing phospholipids on their membranes. 

MFG-E8 binds to phosphatidylserine, an “eat me” signal which is present on apoptotic cells. The 

MFG-E8 knockout mouse develops SLE because of failure to remove apoptotic cells [132]. CRP 

binds to phosphocholine, which is present on dying or damaged cells. Both MFG-E8 and CRP 

are lupus risk genes [133-135]. Low levels of mannose-binding lectin (MBL) can lead to higher 

levels of apoptosis in the case of this lupus-risk associated gene [136]. 

24 



The number of genes associated with risk for SLE will likely increase, though we have an 

interesting pool of genes already that point to specific pathways associated with the disease. The 

interferon and apoptosis pathways are certainly important players in the etiopathogenesis of 

lupus. 

1.10. Interferon regulatory factor 5 

The gene of interest in this dissertation is human interferon regulatory factor 5 (Figure 8). IRF5 

was discovered in 1998 by Paula Pitha [137] and first characterized by Betsey Barnes [138]. 

IRF5 is a transcription factor which binds to a GAAAN(N)GAAA repeat, similar to other IRFs, 

which all contain a tryptophan repeat in the DNA binding domain [139]. IRF5 is expressed in B 

cells, macrophages, monocytes, and myeloid cells [21]. IRF5 is conserved among most 

vertebrates; including fish, fowl, amphibians, reptiles, and mammals [140].  

Phosphorylation and dimerization are essential to activate IRF5 in its role as a transcription 

factor, and ubiquitination can also activate it [141-142]. Dimerization unmasks the nuclear 

localization signals (NLS) and masks the nuclear export signal (NES). There are two NLS and 

one NES sequences [143-145]. IRF5 can dimerize with IRF3 and IRF7, which have some similar 

and some distinct transcriptional targets [143, 146]. This dissertation focuses on interferon 

production and apoptosis, both of which are directly affected by IRF5. IRF5 is also involved in 

the production of other cytokines [147], B cell development [148], macrophage differentiation 

[149], and is a cell cycle inhibitor [150]. These important roles echo the many autoimmune 

diseases with which polymorphisms in the IRF5 gene are associated. 
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Figure 8. IRF5 mRNA and protein structures. (A) mRNA folding of IRF5 variant 2 (NM_032643.3) is 
shown and was performed using mfold [151]. The 5’ end of the mRNA is indicated, and a small hairpin 
forms at this end (see Section 2.4.5). (B) The protein folding shows a dimer of the crystal structure of the 
transactivation domain of pseudophosphorylated human IRF5 (PDB file 3DSH). The two colors represent 
the two monomers, and helix 5 extends from one monomer across to the other. This helix 5 is 
autoinhibitory to activation until the protein is phosphorylated and undergoes a conformational change. 
IRF5 can homodimerize or heterodimerize with other IRFs [152]. 

1.10.1. Autoimmune diseases associated with IRF5’s rs2004640 SNP and CGGGG indel 

Linkage or association studies which compare disease groups and unaffected controls have 

revealed several loci in IRF5 that are associated with autoimmune disease. Of IRF5’s many 

disease-associated polymorphisms, only four have been identified as functional polymorphisms 

[112]. Two of these functional polymorphisms are in the promoter region of IRF5, and thus may 

directly affect IRF5 expression. This study examines these two functional promoter 

polymorphisms: the rs2004640 single nucleotide polymorphism (SNP) and the CGGGG indel—a 

copy number variant. There are other SNPs and indels within IRF5 that are associated to disease 

which will not be discussed, although several of the prominent ones are listed in Section 1.9.1. 

The single nucleotide polymorphism (SNP) designated rs2004640 in IRF5 has been convincingly 

associated with systemic lupus erythematosus (SLE) in multiple ethnic groups [84, 90, 92, 106, 
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153]. More recently, this polymorphism has been associated with several other autoimmune 

diseases, such as rheumatoid arthritis [154-155], systemic sclerosis [156], multiple sclerosis 

[157], ulcerative colitis [158], and Sjögren’s syndrome [159]. 

The IRF5 risk T allele at rs2004640 is associated with altered symptoms in autoimmune 

diseases. For example, multiple sclerosis patients with the risk SNP have poor response to 

interferon-β therapy [160]. In rheumatoid arthritis, the rs2004640 T polymorphism is associated 

with anti-citrullinated protein antibody positivity [161]. The IRF5 risk polymorphism is 

associated with anti-topoisomerase antibody positive (ATA+) systemic sclerosis and lung disease 

[156, 162]. In lupus, the rs2004640 risk allele in IRF5 is associated with risk for nephritis [163] 

and the presence of dsDNA antibodies [164]. Importantly, risk haplotypes that include 

rs2004640 are known to correlate with higher IRF5 levels [112, 165], and correlate with higher 

cytokine activity, such as IFNα and TNFα [111, 166]. 

The CGGGG indel is associated with several autoimmune diseases, and part of the risk for either 

of the two polymorphisms could be due to their high linkage disequilibrium, which is around 

0.55 (r2) [85]. The CGGGG polymorphism is associated with several autoimmune or 

inflammatory conditions. It has been associated with SLE [84], Sjögren’s syndrome [108], 

multiple sclerosis [157], Crohn’s disease, and ulcerative colitis [158]. Inflammatory conditions 

may also be affected by the CGGGG indel. One study found it was associated with acute 

coronary syndrome [167]. 
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1.10.2. The rs2004640 SNP and CGGGG indel 

There are several kinds of splicing, including exon skipping, alternative exon usage, and others. 

Most kinds of alternative splicing do not affect transcription levels. However, in the case of 

alternative promoter splicing—using different first exons—there is a direct effect on the levels of 

transcription and translation. Each of the four exon 1 options (1A, 1B, 1C, and 1D) has a distinct 

transcriptional start site, and each is under the control of a different promoter. The rs2004640 

and CGGGG risk polymorphisms directly affect the levels of exons 1A and 1B of IRF5 due to 

their position in the promoter region (Figure 9). 

Figure 9. IRF5 mRNA and the position of the rs2004640 SNP and CGGGG indel. The genomic 
region is shown with exons as boxes and introns as lines. The protein coding and untranslated regions are 
shown at the top. rs2004640 is at the splice acceptor site for exon 1B, and the CGGGG indel is 64bp 
upstream from the transcription start site for exon 1A. Drawn to scale, but with introns reduced in size 
10:1. UTR: untranslated region, SNP: single nucleotide polymorphism 

The rs2004640 SNP is a G/T polymorphism, where the T risk allele creates an alternate splicing 

site for exon 1 [153]. This change creates a sequence-specific recognition site for the 

spliceosome, allowing use of an alternate first exon, called exon 1B (Figure 10A). The T 

nucleotide is within the intron between exons 1 and 2, and it is removed from the mRNA upon 

splicing. Without the risk T allele, exon 1B cannot be spliced onto exon 2 and would encode a 
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non-functional protein. These transcripts are usually targeted by non-sense mediated decay 

[168].  

The CGGGG indel is located within the promoter for exon 1A, 64bp upstream of its transcription 

start site (Figure 10B). There are either three (3X) or four copies (4X) of the CGGGG repeat 

sequence; four copies is the risk variant. This additional copy allows binding of additional 

transcription factors [85]. The CGGGG 4X variant is associated with higher levels of the 

cytokines TNFα, IL- 12p40, IL-8, IL-1b, and IL-10 [166]. IRF5 levels may be affected by this 

indel. One study in thymic tissue found no association between the CGGGG indel and IRF5 

levels, although there was decreased usage of exon 1A [169]. Another study of peripheral blood 

mononuclear cells (PBMCs) showed increased IRF5 levels from CGGGG 4X risk cells [85]. The 

CGGGG indel is also designated rs77571059. It has been described as a GGGGC repeat, since 

C’s flank the repeat sequences. 

IRF5 exons 1A, 1B, 1C, and 1D each have a distinct transcriptional start site, and as is the case 

with every first exon, each exon 1 of IRF5 has its own promoter. The promoter for each exon is 

not well studied, although previous work has shown that promoters for exons 1A and 1C are 

controlled by an IRF element (IRFE) and an interferon stimulatory response element (ISRE), 

respectively [170]. Although most alternative splicing does not directly affect transcription 

levels, alternative promoter splicing—using different first exons—does directly affect the levels 

of transcription. IRF5’s first exon is part of the 5’ untranslated region (5’UTR) and thus does not 

affect the amino acid sequence. Also, using different first exons has not been shown to contribute 

to alterations in amino acid sequence of the IRF5 protein [90]. Instead, the effect of including 
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using different promoters and first exons is likely to be on the mRNA—such as the level of 

transcription, alternative splicing, the mRNA secondary structure, the stability of the mRNA, and 

the efficiency of its translation. All of these effects were investigated in the present study. The 

Figure 10. Functional changes due to IRF5 promoter polymorphisms. (A) The position of the 
rs2004640 SNP on pre-mRNA. Before splicing, the messenger RNA has either a U (encoded by the risk T 
allele) or a G. The colored letters shown at the bottom of panel A are a WebLogo, which represent the 
consensus recognition sites for the spliceosome. The height of the stack represents how often those 
nucleotides are found at that position, and thus the high GT represents a strong preference for recognizing 
GT at the intron boundary. This matches in the risk T allele (GT at the intron boundary), but not the 
protective allele (GG at the intron boundary). A person homozygous for the protective allele cannot splice 
IRF5 mRNA that begins with exon 1B. Instead of a functional protein, the resultant mRNA would encode 
a junk protein and be targeted for non-sense mediated decay. Splice junction WebLogos are from 
Stephens, et al. [171]. (B) The CGGGG indel is an insertion/deletion of a CGGGG repeat upstream of 
exon 1A, and it is part of exon 1A’s promoter. When there are four copies, additional SP1 transcription 
factors—which bind to GGCGG—can bind to the promoter, altering transcription levels. 
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mechanisms of mRNA changes will better explain the pathways that are misfiring in SLE and 

other associated autoimmune diseases 

1.11. Conclusions to the introduction 

SLE is a prototypic disease for studying autoimmunology. Apoptosis, clearance of apoptotic 

cells, the formation of immune complexes, and the production of interferon are all tied to SLE as 

either causes, effects, or both. The actual genetic causes of autoimmune diseases such as SLE are 

being identified through genome wide association studies, and then individually examined. This 

strategy will lead to better understanding and thus better treatments for these complex diseases.  

The gene IRF5 contains several polymorphisms associated with autoimmune diseases including 

SLE. Of IRF5’s many disease-associated polymorphisms, only four have been identified as 

functional polymorphisms. Two of these functional polymorphisms are in the promoter region of 

IRF5, and thus may directly affect IRF5 expression. The two functional promoter 

polymorphisms, the rs2004640 SNP and the CGGGG indel may exhibit functional changes 

which will teach us more about the pathways altered by them. The data presented in summary 

above (Section 1), as well as the research summary and discussion below (Sections 2 and 3), 

support the hypothesis that changes in IRF5 signaling promote an autoimmune state in those with 

the genetic propensity. 
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2. Research sections

2.1. IRF5 genotyping and volunteer demographics 

Convenience sampling was performed under IRB approval to collect blood samples from 

volunteers on or around Brigham Young University (BYU) campus. Demographic data were 

collected to determine gender and ethnicity in order to pair samples. Matching people by other 

variables and only varying the rs2004640 genotype allows the creation of matched sets and the 

use of the Wilcoxon signed rank sum test, which is appropriate for paired data which is non-

parametric [172]. 

For the use of the samples, three separate items were created: serum, DNA, and a lymphoblastoid 

cell line (LCL). The sample of serum was collected from coagulated blood after centrifugation 

(although no data presented herein were obtained by tests of serum). A sample of genomic DNA 

was extracted from peripheral blood mononuclear cells (PBMC). These PBMCs, also known as a 

buffy coat, were removed from blood by ficoll density gradient. Finally, an immortalized cell 

line of LCLS was established for each volunteer by infecting the PBMCs with Epstein-Barr virus 

in the presence of cyclosporin in order to kill T cells. At least two weeks were allowed to 

establish the cell lines before testing began. 

These immortalized cells generated from PBMCs grow indefinitely in culture and allow for a 

repeatable method of testing. Although immune signaling may be dysregulated in LCLs, which 

are transformed by EBV, both risk and protective cells lines always received the same treatment 

when testing and when maintaining cells. LCLs have been found to have very low (0.3%) 
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somatic mutation rate [173] and a 96% concordance rate of SNP calls before and after 

transformation [174]. They are an excellent and convenient model system. 

 

Genotyping was performed by TaqMan-based real-time PCR of genomic DNA with a two-color 

probe set for verifying probe-quencher liberation of either or both colors. Sets of two people 

were created by finding a homozygous risk T/T sample and homozygous protective G/G sample 

and matching on gender and ethnicity. Heterozygotes were not included in this study. 

Genotyping at rs10488631 was also performed using a similar TaqMan-based system, but the 

rs10488631 genotype was not used in forming matched sets; rather it was used for analysis. 

 

Genotyping at the CGGGG indel was performed using primers which flank the indel for 

touchdown PCR, followed by size analysis on a 4% agarose gel. The limitation of this method is 

the apparent preference for the protective genotype’s PCR product. The protective product seems 

to predominate, such that no heterozygous individuals can be reasonably determined, either by 

size determination or sequencing. CGGGG genotyping was only performed on those already in 

rs2004640 sets. 

 

The genotyping results from the three loci are shown in Figure 11. The rs2004640 risk allele is 

found in many individuals (80%), and 30% had the risk factor on both alleles. The CGGGG risk 

4X variant was only found in those who had the rs2004640 T/T allele, and in about half of those 

with the protective G/G allele at rs2004640. There was a 55% linkage disequilibrium of CGGGG 

to rs2004640 in a previous study [85], and our concordance (r2) was 50%. 
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Figure 11. Demographics of samples collected for testing. For matching rs2004640 risk T/T to 
rs2004640 protective G/G, matches were the same gender and ethnicity. The other two genotypes were 
used for stratifying during statistical analysis. Healthy individuals and several lupus patients were 
genotyped, although no lupus patients were used for testing since no lupus patients were found with the 
protective allele at rs2004640. (A) Using a TaqMan-based genotyping assay, the prevalence of the risk 
T/T allele in rs200460 was 30%, with 20% protective G/G. These homozygotes were further subtyped by 
the CGGGG indel found in the 1A promoter (see Figure 11E), although the risk variant which has four 
copies of the indel was only found among those with the risk rs2004640 allele (42%). (B) Using a 
TaqMan-based genotyping assay, the prevalence of the rs10488631 risk C/C allele was 16%, and the 
protective T/T allele 67%. (C) Of all the samples collected most were female (86%). (D) Ethnicities are 
shown as well. Most were European American (64%) (E) Genotyping results at the CGGGG indel. 
Individuals have either three or four copies of a CGGGG repeat. Genotyping was done by amplification 
using touchdown PCR, and size determination on a 4% agarose gel. The primers should yield either a 103 
or 108bp band. Numbers are the identifier for each cell line. L: Ladder, 100bp band shown. 

Once matched sets were established to compare risk and protective individuals, tests were 

performed to evaluate the effect of the risk factor on apoptosis, splicing, mRNA stability, and 

other gene’s expression levels. 
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2.2. IRF5’s four promoters 

IRF5 uses one of four first exons for each molecule of mRNA—either exon 1A, 1B, 1C, or 1D. 

The four first exons of IRF5 would be actively transcribed or not depending on the cellular 

transcription factors that are able to bind it. An analysis of the promoters for each of the four first 

exons of IRF5 was performed. First a list transcription factors that have been shown to actually 

bind the promoter was generated by using the encyclopedia of DNA elements chromatin 

immunoprecipitation sequencing (ENCODE ChIP-Seq) data set [175]. This list represents many 

experiments’ results of transcription factors that bind to this genomic region of DNA 

(Figure 12A). The transcription factors listed have also been associated with specific binding 

sites. WebLogos, which visualize consensus binding sites [176], were generated for each 

ENCODE transcription factor tested and compiled in the online database FactorBook [177]. The 

consensus sites were converted manually into an ambiguous DNA code search term, where for 

example W (weak) represents an A or a T nucleotide (Figure 12B). The consensus search term 

was then used to search the proximal promoters (~200bp upstream from the +1 sites) to 

encounter a proposed binding site. Consensus search term screening was performed using 

MEGA [178]. Several transcription factors binding sites were found in the regions upstream of 

transcription start sites (Figure 12C). The start sites were taken from reference sequences for 

exons 1A, 1B, and 1C, and the sequence for variant 12 of IRF5 for exon 1D (no reference 

sequence exists at present for exon 1D). The source sequences are GenBank IDs: NM_002200.3, 

NM_032643.3, NM_001098627.2, and EU258897.1 for exons 1A, 1B, 1C, and 1D, respectively. 

The workflow and results are shown in figure 12, with TCF12 as an example WebLogo. 

35 

 



Figure 12. Promoter analysis results for each first exon of IRF5. (A) ENCODE data shows ChIP-Seq 
analysis of the promoter region of IRF5. This data was used in conjunction with the FactorBook database 
to define nucleotide searches on the genomic sequence. (B) The consensus search terms generated from 
FactorBook, with the TCF12 consensus binding site as an example. (C) The final analysis of potential 
binding sites is shown along the genomic DNA promoter sequences, with color-coded boxes representing 
the binding sites or transcription factors shown in the key. AP: activator protein, BRE: B-response 
element, CTCF: CCCTC binding factor, TCF: transcription factor, EBF: early B cell factor, IRF: 
interferon regulatory factor, NFκB: nuclear factor kappa light chain enhancer of activated B cells, PAX: 
paired box, PU: purine rich, SP: specificity protein, STAT: signal transducer and activator of proteins, 
TATA: thymidine adenine 

36 

AP-1
BRE

c-Myc
CTCF

E Box (TCF12)
EBF
IRF4

NFκB
p53

PAX5
PU.1
SP1

STAT2
TATA box

ASTMAWW 
SSRCGCC 
CACRHG 
CDSNNGRKGDH 
CASSTG 
CYCWNRRGR 
RRAWSWRRR 
GGKRNWNYYY 
CWWG ~6N'S CWWG 
BHNNYVRDSYRDRNM 
RGAASTG 
DRGGYRKD 
RRRAANNRRAA 
HWDWD (preference for -25 site)

Transcription Factor Consensus search term

A B

CTGCAGTTGCCAGGTCAGTGCGGGGCCCGGAGTGGATTCGCGGGGCGGGGCGGGGCACTGCCCGCGCCCGGAGCTCAGCAGCAGCTGCCCAGGGGCGGGGGCGGCAAGACGCGGAAGTGCCCGGCAGG

GACAGGTGGGTCCCGGCCGCCGCGCTCTCCTCTCTGCGTCCGCGCCCGGCGCGCCCCGAGGGTGGCGGGAGCGGTGCCGGCTACTGCCCCCAAGTCTAGGCCTAGACTGGGCCCCGCGCCCCCCAGGCACCTGCGGGCGGCGGGATGAAGACTGGAGTAGGGCGGGGTCCGC

CCCTCATTTGTGTGCAGCCCCGGAGGACCAGAGTGGGGAAGCACCCCACCCTCTCCCAGGGCCCAACTAGGATGAGAAAGGCACAGAGTGACTAGAGGATTCCCGCCTGCAAGCACATCTGGAAGGGGTGTCTGGATCCTGGGGGCAGCGACTGTGTTCTAGGGCGAGAGCCACCCTCGCCAGGGGTGTAGGCAGGCGAGAGGAGGGCCTGGAGCTGTGGGTCGGCCACACTGCGCCCTCATTTGTGTGCAGCCCCGGAGGACCAGAGTGGGGAAGCACCCCACCCTCTCCCAGGGCCCAACTGAGCACTGCA

TGGGTGGGTGCACACCCATGTTATAAACCACACTAAATGCACAAAAACTGTCTGCAAGTTTGGGGTGCGGGGAACAGCTCTGGGTGGGAGGTTGGAAATTTGGTCTGGGGGACCCACTCGGCTCCCTCCCTCAGCCCACAGTGAGTCTGGTTTCTGAGTTGTCCCGGTCTAGCCACTTTCGTTTCCCCTGGGGCCGGGTGGAGGCTGGGGCAGAAAGCGGAACTGAGCCCGCGTGTTCTGAGGCCAGGGCAGGGCTGGAGCGTTCTG

C

FOXA1_(C-20)
HNF4G_(SC-6558)

FOXA1_(SC-101058)
HNF4A_(H-171)

Pol2-4H8
TAF1
TBP

IRF4_(M-17)
Pol2
EBF

HA-E2F1
TAF1

ELF1_(SC-631)
EBF1_(C-8)

ZNF263
Egr-1
c-Myc
NFKB
CTCF

Nrf1
Pol2-4H8

NFKB
Pol2

Oct-2
POU2F2

TAF1
NFKB

EBF1_(C-8)
Pol2

Pol2-4H8
USF-1

PU.1
IRF4_(M-17)

EBF
NFKB

ELF1_(SC-631)
PAX5-C20
PAX5-N19

Znf143_(16618-1-AP)
Pol2

BCL11A
YY1_(C-20)

CTCF
CTCF_(C-20)

Pol2
NFKB

TBP
EBF1_(C-8)
YY1_(C-20)

BATF
SP1

MEF2A
c-Myc
NRSF
PU.1
EBF

BCLAF1_(M33-P5B11)
IRF4_(M-17)

Sin3Ak-20
TCF12

ZEB1_(SC-25388)
ELF1_(SC-631)

PAX5-C20
SRF
Max

Oct-2
POU2F2

PAX5-N19
BCL11A

TAF1
ELF1_(SC-631)

Pol2
Pol2-4H8

EBF1_(C-8)
NFKB

Postition on Chr 7

Human IRF5 mRNA

128,580,000

L
L
L

L
Ggh

g
G
G

Gaaeggmggggggr
G

m
g
GLK
G

t
G
m
g

m
G1

Ggg
GggGgggg
Gggmgggggg

G
G
Gg

GggGgggg
G

ggg
Ggg

GL
Gg
G
G

GgggGgggg
G
Gg
G

G
Ggggggg
G
G

Lmgggggg
G

Gggggggggnr
ggggg
G
G
G
G
G
G
n
H
GKg

G
G
G
G
G
G
G
Ggg
G
n
G
G

G
G

gg
G

Gggggggg
g
G

gg

128,578,000

Exon 1D
Exon 1A

Exon 1B
Exon 1C Exon 2

TCF12

0

1

2

+
1

 s
ite

1
A

1
B

1
C

1
D



The promoters for the four first exons of IRF5 have different potential binding sites. The 1A 

promoter contains putative binding sites for PAX5, PU.1, SP1, and TCF12 which binds to 

enhancer boxes (E box). An extra SP1 binding site appears in those with the CGGGG 4X indel. 

Exon 1B’s promoter was the only IRF5 promoter with a p53 binding site. This is discussed in 

more detail in Section 2.2.3 below. 1B also has SP1, TCF12, IRF4, and EBF sites. The 1C 

promoter was the only promoter with STAT2, AP1, and Myc binding sites; it also has SP1 and 

IRF4 sites. The 1D promoter evaluation showed only four potential binding sites for transcription 

factors: SP1, CTCF, IRF4, and NFκB. 

  

The promoters were cloned using PCR to transfer onto a luciferase reporter plasmid. There are 

two versions of the 1A promoter, one having the 4X variant of the CGGGG indel (1A risk) and 

the other having the 3X variant (1A protective). The 1B promoter was cloned using a nested 

PCR. The first round primers annealed outside of an inverted repeat mentioned in Section 2.2.2 

below, and the inner nested primers amplified the promoter itself. The 1D promoter was 

successfully cloned only after the current writing, therefore it was not included in the current 

analysis. 

 

A luciferase assay was performed using the pGL4 plasmid, with the promoters of IRF5 placed in 

front of luciferase. The activity levels of the promoters were analyzed in different cell types since 

different transcription factors would be active in different cells. Immune cells were 

electroporated, or epithelial cells were calcium phosphate cotransfected with one of the 

luciferase plasmids as well as a plasmid which expresses a green fluorescent protein (GFP), 
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which was included as a transfection control. Values for luciferase expression were then 

normalized to account for transfection efficiency. 

Figure 13. Transcriptional activity of each promoter of IRF5. Preliminary data from one experiment 
shows activity of the promoters listed on the x-axis. The luciferase plasmids were cotransfected by the 
calcium phosphate transfection method into HEK293T cells and by electroporation into Raji cells. A 
control green fluorescent protein-expressing plasmid was measured (relative fluorescence units, RFU) in 
each sample to normalize transfection efficiency. The levels of transcription were lower in epithelial HEK 
cells, where IRF5 is not normally expressed [142], and higher in Raji cells, a B cell line (IRF5 is normally 
expressed in B cells [21]). HEK: human embryonic kidney, RLU: relative luminescence units 

The activity level of four promoters was measured in HEK293T cells, a human embryonic 

kidney line expressing the Simian virus 40 large T antigen. This represents potential expression 

levels of each promoter in epithelial cells. Raji cells are a Burkitt’s lymphoma B cell line and 

represent potential expression in immune cells. The 1A risk promoter showed high activity in 

both cell types. The promoter for exon 1B showed moderate activity, and the 1C promoter was 
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transcribed at the lowest level in both cases (Figure 13). This data should be considered 

preliminary, since it was not repeated. 

 

2.2.1. Activity of IRF5’s exon 1A and 1D promoters affected by TLR7 ligation 

IRF5 expression increases due to several signaling pathways including TLR7. TLR7 is an 

endosomal receptor, as opposed to the majority of TLRs which are expressed at the cell surface. 

Endosomal TLRs such as TLR7 require the ligand to be first endocytosed into the cells, and then 

merged with the endosome that contains TLR7. Most endosomal TLRs bind to nucleic acids. 

Single stranded RNA is the natural agonist for TLR7. TLR7 can also be activated by the small 

synthetic compounds such as the imidazoquinolines called imiquimod and resiquimod. 

Imiquimod is a TLR7 ligand and resiquimod is a ligand for TLR7 and TLR8 [179]. Imiquimod is 

used clinically as a topical cream for treatment of genital warts and certain cancers. It activates 

the immune system, which recruits inflammatory mediators to kill the virus-infected or 

cancerous cells [180]. Imiquimod treatments were thus performed to increase IRF5 levels, and 

then determine which promoter was being activated. 

 

Cells were treated with imiquimod at 25μg/ml for 24h, and then cDNA was prepared from an 

RNA extract. This was done for lymphoblastoid cell lines (LCLs) generated from twenty healthy 

individuals. As expected, the levels of IRF5 increased by 1.9 fold when cells are treated with 

imiquimod (Figure 14A). 

 

The amounts of each first exon were measured and normalized to both a housekeeping gene and 

to the total amount of IRF5. This measures both the level of each first exon and the proportional  
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Figure 14. Activation of IRF5 transcription through exon 1A and 1D promoters upon imiquimod 
treatment. All mRNA levels were measured in LCLs generated from healthy individuals. Since 1B 
primers didn’t work in the SYBR green-based assay, the levels of IRF5 first exons were measured in both 
a SYBR green- and TaqMan-based quantitative PCR. (A) IRF5 levels were measured using SYBR green-
based quantitative PCR. The levels of IRF5 were 1.9-fold higher in treated cells (p=0.0002) after 
normalizing to a housekeeping gene. (B) Using TaqMan-based quantitative PCR, the levels of exons 1A 
increased 2.2 fold (p=0.030) and 1D increased by 2.8 fold (p=0.033) after normalizing to a housekeeping 
gene. (C) Using SYBR green-based quantitative PCR, the levels of 1C were lower by 2.3-fold (p=0.0064) 
after normalizing to total IRF5 levels. (D) Using a TaqMan-based quantitative PCR assay and 
normalizing to total IRF5 levels, the levels of 1B and 1C were decreased, however these data did not 
reach statistical significance. Taken together, the levels of exons 1A and 1D increase, and in turn the 
levels of 1B and 1C are proportionally lower. Numbers in parentheses are the sample size. Statistical 
significance determined by the Wilcoxon signed rank sum test. IRF: interferon regulatory factor 
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level of each first exon. By including a comparison of the total to the sum of its parts, we get a 

better picture of proportional changes in first exon usage. 

The levels of exons 1A and 1D increased by at least two fold when compared to a housekeeping 

gene (Figure 14B). When the levels of each first exon were compared to the total IRF5 levels 

(and not to a housekeeping gene), exon 1B and 1C levels decreased and the others remained the 

same (Figures 14C and 14D). Taken together, the increase in total IRF5 is due to increased 

overall usage of 1A and 1D. 

2.2.2. Inverted repeat encompasses IRF5 exon 1B and its promoter 

During cloning experiments dealing with exon 1B and its promoter, several sequencing reactions 

showed less than 100% sequence identity to the target. It was soon discovered that the primers 

were annealing to an upstream inverted repeat sequence. This repeat necessitated nested PCR for 

cloning the 1B promoter and ordering synthesized oligos instead of cloning the 1B 5’UTR (Table 

4). The repeat length is 1.8kbp, and the two copies have 82.8% identity [181] (Figure 15). The 

function of this repeat is unknown, but repeated sequences can act as decoys for transcription 

factors, lowering transcription of the intended target [182]. 

Figure 15. Inverted repeat in the promoter region of IRF5. The repeat is 1.8kpb long, and the two 
versions match at 82.8% of bases. The right repeat begins in the last 80bp of exon 1A. It extends through 
the promoter for exon 1B, exon 1B itself, and then 1473bp past exon 1B. Exons are shown in blue. Drawn 
to scale. 
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2.2.3. Putative p53 binding site in IRF5’s exon 1B promoter 

The promoter analysis described in Section 2.2 above revealed a potential p53 binding site. p53 

binds as a tetramer to two copies of the sequence rrrCwwGyyy, with a spacer of 0-13 nucleotides 

between the copies [183]. A near match for this sequence was found in the 1B promoter (Figure 

16B). This is very important due to the role of apoptosis dysregulation in SLE. p53 is a main 

controller of apoptosis, which is why it is so commonly mutated in cancers [184]. IRF5 is also 

pro-apoptotic in a p53 independent manner, and thus if p53 activates IRF5, apoptosis levels will 

be additively altered. If p53 can actually control the 1B promoter, and since the 1B promoter is 

only used in cells with the rs2004640 risk allele, apoptosis would be altered in rs2004640 risk 

cells. This could be a key to understanding the source of autoimmune risk when using exon 1B. 

In all body cells p53 is constantly transcribed and translated, but also constantly sequestered and 

degraded. Signals of DNA damage, oxidative stress, or abnormal cell cycle can all activate p53. 

p53 is activated by removing the inactivating protein MDM2. p53 is further activated by 

phosphorylation, tetramerization, and translocation to the nucleus. It then acts as a transcription 

factor to alter gene expression. Its three-fold mission is to activate DNA repair, halt the cell 

cycle, and activate apoptosis. In this seemingly contradictory set of activation programs, the cell 

is induced to either repair and live or fail to repair and die [185]. 

To test p53 activity in the 1B promoter compared to the other promoters, HEK293T cells were 

calcium phosphate transfected with the promoter luciferase plasmids. After allowing 24 hours for 

expression, DNA damage was induced by treating the cells with UV light (75 cm from a 254 nm 

UV bulb for 90 seconds) and incubating the cells for three hours; as a control some cells received 
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no UV exposure. The amounts of luciferase were then measured to determine promoter activity. 

The luciferase levels decreased for the 1A promoters and the 1C promoter, but increased for the 

1B promoter (Figure 16A). The decrease may be due to the cell cycle-inhibitory and apoptosis-

inducing signaling induced by UV damage. These data should be considered preliminary, since a 

control for transfection efficiency was not included in the analysis. 

Figure 16. p53-dependent activity of IRF5’s 1B promoter upon DNA damage. (A) Preliminary data 
from three replicates of a luciferase reporter assay. HEK293T cells were transfected with the indicated 
promoter plasmids. Promoters for exons 1A and 1C decrease in activity three hours after a 90 second UV 
exposure, but the 1B promoter of IRF5 increases in activity. (B) The putative p53 binding site in IRF5’s 
exon 1B promoter, with a WebLogo of the p53 consensus binding site [186] to indicate important bases 
and matches. The height of the base represents the frequency of that nucleotide. Site-directed mutagenesis 
was performed to mutate the binding site at the critical C and G bases as highlighted by boxes. (C)
Preliminary data from a luciferase reporter assay. Three different LCLs generated from healthy volunteers 
were electroporated with the 1Bwt or the 1Bp53* promoter luciferase plasmid. Cells were treated with 
0.5 mM etoposide or left untreated. The plasmid with the intact (wild type) p53 binding site shows an 
increase in activity, but the mutated version that should not be able to bind p53 decreases after a 48 hr 
etoposide treatment. UV: ultraviolet, wt: wild type, : mutant 
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To test whether the p53 binding site is the cause of the increase, the 1B plasmid was mutated 

using site-directed mutagenesis to change the wild type sequence to an altered sequence to which 

p53 should not be able to bind. The consensus binding site contains four conserved C or G bases 

which were mutated to A or T on the luciferase plasmid (Figure 16B). The wild type and p53-

mutant luciferase plasmids were transfected by electroporation into three different LCLs 

generated from healthy volunteers. After 24 hours to allow for plasmid expression, cells were 

either treated with etoposide or left untreated for 48 hours. The levels of luciferase activity again 

increased with the 1B promoter, but decreased when using the p53 mutant version. Again these 

data should be considered preliminary, since a control for transfection efficiency was not 

included in the analysis. 

 

The p53 binding site appears to be able to bind p53. Therefore we sought to test apoptosis levels 

in cells with the rs2004640 risk T/T genotype compared to the protective G/G genotype. 

 

2.3. The rs2004640 SNP’s role in apoptosis 

As described in Section 1.10.2 above the rs2004640 risk T allele allows use of exon 1B. 

Furthermore, the promoter for exon 1B contains a p53 binding site (see Section 2.2.3). Taken 

together, there should be altered levels of apoptosis in cells that can use exon 1B—those with the 

rs2004640 risk T allele. To this end, apoptosis was induced, and counts of apoptotic cells were 

measured in the matched sets described above (Section 2.1). 

 

Four apoptotic agents were used to increase apoptotic death in LCLs. They were etoposide, 

5-fluorouracil (5FU), activating antibodies to TNFα-related apoptosis-inducing ligand (TRAIL), 
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and activating antibodies to Fas receptor. Etoposide and 5FU both induce intrinsic apoptosis; the 

TRAIL-Ab and Fas-Ab both induce extrinsic apoptosis. Etoposide is a topoisomerase inhibitor 

which causes dsDNA breaks [187]. 5FU is a nucleotide analog which blocks thymidine synthesis 

[188]; TRAIL-Ab and Fas-Ab are activating antibodies which mimic ligation of these death 

receptors. As a control for equalizing the drug effect on individual cells in the population, 

hydroxyurea (HU) was used to synchronize the cell cycle in the cell population. Cells were 

treated for 40 hours with 0.2 mM HU, which was washed off before treatment. All the data 

collected were the apoptotic index, which is the change in apoptosis levels compared to untreated 

cells. 

 

For detection of apoptosis, cells were assayed using a dual-color flow cytometry analysis. Cells 

that were positive for Annexin V, which binds to phosphatidyl serine (PS), were considered to be 

in early stages of apoptosis, since PS flipping to the outer leaflet of the cell membrane is an early  

apoptotic event [189]. Annexin V itself is not fluorescent, so a fluorescein isothiocyanate (FITC) 

conjugate is attached to it. Cells positive for propidium iodide (PI) are considered late-stage 

apoptosis, since this DNA intercalator is not membrane permeable, and therefore only dead cells 

without an intact membrane will stain [190]. 

 

The levels of apoptosis were lower in rs2004640 T/T risk cells when a low concentration of 

etoposide was used. However, when an increased dosage of etoposide was used, the levels of 

apoptosis were higher in cells with the risk allele. Large doses of etoposide yielded more 

apoptosis in risk cells after two days (Figure 17); this is consistent with the hypothesis that p53 

activation can increase apoptosis. However, apoptosis levels were higher in protective cells when 

45 

 



small doses of etoposide were administered for two days (Figure 17), and after 12 hour 5FU 

treatments (Figure 18). In either case, the risk allele did alter the levels of apoptosis in LCLs 

after inducing DNA damage. 

Figure 17. Altered apoptosis levels due to the rs2004640 polymorphism in IRF5. LCLs from healthy 
individuals were cell cycle-synchronized by treating with 0.2mM hydroxyurea for 40 hours. This was 
removed by washing the cells before applying the etoposide at the concentrations indicated for 48 hours. 
To detect apoptosis, propidium iodide (PI) and Annexin V were applied. Propidium iodide stains DNA in 
cells without an intact cell membrane, and Annexin V binds to phosphatidylserine (PS) present on the 
outer leaflet of the cell membrane. Cells that are healthy maintain the PS on the inside on the cell on the 
inner leaflet of the membrane and remain unstained. Annexin V was conjugated to the fluorescent 
molecule fluorescein isothiocyanate (FITC). (A) Compared to cells with the protective G/G allele, cells 
with the risk T/T allele at rs2004640 exhibited a decrease in apoptotic cells at 0.1 mM etoposide, but an 
increase at 1mM etoposide, as indicated by the levels of Annexin V-FITC fluorescence or PI 
fluorescence. (B) A representative plot from one matched set is shown from each set of experiments. 
Statistical significance determined by the Wilcoxon signed rank sum test. 

The apoptosis pathways affected by the IRF5 rs2004640 SNP appear to be the intrinsic pathways 

only. Cells were treated with either the intrinsic apoptosis inducer 5FU or by activating extrinsic 

apoptosis through the death receptors TRAIL and Fas. When comparing rs2004640 risk to 
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protective LCLs, no difference in apoptosis was found for extrinsic apoptosis inducers, but the 

levels of apoptosis were lower in risk cells treated with 5FU (Figure 18). 

Figure 18. Altered intrinsic but not extrinsic apoptosis levels in rs2004640 risk T/T cells. LCLs from 
healthy individuals were cell cycle-synchronized by treating with 0.2 mM hydroxyurea for 40 hours. This 
was removed by washing the cells before applying the treatments at the concentrations indicated for 
12 hours. To detect apoptosis, propidium iodide (PI) and Annexin V were applied. Propidium iodide 
stains DNA in cells without an intact cell membrane, and Annexin V binds to phosphatidylserine (PS) 
present on the outer leaflet of the cell membrane. Cells that are healthy maintain the PS on the inside on 
the cell on the inner leaflet of the membrane and remain unstained. Annexin V was conjugated to the 
fluorescent molecule fluorescein isothiocyanate (FITC). Compared to cells with the protective G/G allele, 
cells with the risk T/T allele at rs2004640 exhibited a decrease in apoptotic cells at 1.5 mg/ml of 
5-fluorouracil, but no change at 1 μg/ml TRAIL-activating antibody or at 5 μg/ml Fas-activating 
antibody, as indicated by the levels of Annexin V-FITC fluorescence after the 12 hour treatment. 
Statistical significance determined by the Wilcoxon signed rank sum test. TRAIL: tumor necrosis factor-
related apoptosis-inducing ligand 

2.4. Effect of risk polymorphisms on IRF5 mRNA 

The rs2004640 SNP and the CGGGG indel are in the promoter region of IRF5. Their position on 

the genome, however, does not necessarily cause any change to the amino acid composition of 
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the IRF5 protein. Any changes will be in protein levels, mRNA levels, or mRNA composition. 

Tests of this hypothesis are in the following sections (Sections 2.4.1 through 2.5). 

 

2.4.1. Increased IRF5 expression levels in cells with the rs2004640 risk T/T allele and the 

risk 4X allele at the CGGGG indel 

Both the CGGGG 4X variant and the rs2004640 T variant have been associated convincingly 

with autoimmune disease. Both have been dubbed functional polymorphisms, since a logical 

functional effect can be suggested for each. The proposed source of association with autoimmune 

disease is an increase in the levels of IRF5. The rs2004640 risk T polymorphism increases IRF5 

levels in LCLs and PBMCs [112, 165], and the CGGGG risk 4X polymorphism has been shown 

to increase IRF5 in PBMCs [85], but decrease 1A-specific IRF5 transcripts in thymic cells [169]. 

We measured IRF5 transcription levels in order to compare average expression and perform 

regression modeling. This identifies the source of changes according to each polymorphism’s 

effect. 

 

Quantitative PCR was performed on cDNA from cells with risk or protective alleles at each 

polymorphism. Healthy individuals were used, which removes potentially confounding factors 

due to existing autoimmune disease. The cells used were from volunteers that were all female, 

with 58% European American, 33% Hispanic, and 8% Asian. PBMCs were converted into 

lymphoblastoid cell lines (LCL) by transformation with Epstein-Barr virus (EBV). LCLs are 

transformed B cells, a cell in which IRF5 is normally expressed [21] and thus a good model. 
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Figure 19. Doubled IRF5 mRNA and protein levels in cells with the rs2004640 or CGGGG risk 
polymorphisms. (A) Average expression of IRF5 in cells with autoimmune polymorphisms normalized 
to levels of β-glucuronidase. IRF5 mRNA was 2.7-fold higher in lymphoblastoid cells lines (LCLs) 
generated from healthy individuals with the rs2004640 risk T/T allele compared to those with the 
protective G/G allele (p=0.0018). IRF5 mRNA was 2.1-fold higher in LCLs with the risk 4X/4X CGGGG 
indel compared to those with the protective 3X/3X allele (p=0.030). All data were calculated using the 
2-ΔΔCT method (fold difference) by setting the rs2004640 protective sample to 1. (B) Western blotting was 
used to compare protein levels. On average, IRF5 protein is 1.8-fold higher in rs2004640 risk LCLs 
(p=0.040) after normalizing to β-actin levels; CGGGG risk cells had 1.6-fold higher IRF5 protein levels, 
however this only approaches statistical significance (p=0.053). A representative blot is shown. All error 
bars represent standard error. Statistical significance determined by t-test. 

mRNA expression levels of IRF5 were 2.7-fold higher in those with the rs2004640 risk allele 

(p=0.0018), when normalized to the levels of β-glucuronidase. For the CGGGG indel, risk cells 

were 2.1-fold higher (p=0.030) (Figure 19A). Western blots were performed on protein extracts 

from risk and protective cells. The levels of IRF5 protein were 1.8 fold higher in rs2004640 risk 

cells (p=0.040) and 1.6-fold higher in CGGGG risk cells (p=0.053, which only approaches 

significance), supporting the mRNA data (Figure 19B). For both the protein and mRNA data, 

regression modeling using a backward selection showed that the rs2004640 was the better 
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predictor of IRF5 levels, with the better model excluding the CGGGG effect. The CGGGG indel 

was not sufficient alone to explain IRF5 mRNA or protein levels (ANOVA, p>0.05), although 

the rs2004640 SNP was sufficient alone (ANOVA, p<0.05). IRF5 levels were not affected by the 

rs10488631 genotype (data not shown), although our sample size for the risk allele at this locus 

was small. 

2.4.2. IRF5 mRNA stability not affected by the rs2004640 SNP or CGGGG indel 

One further test of IRF5 mRNA was to evaluate its stability in cells. Actinomycin D was applied, 

which inhibits RNA polymerase and thus mRNA production. IRF5 mRNA levels were measured 

Figure 20. IRF5 mRNA stability not affected by the rs2004640 or CGGGG risk polymorphisms. (A)
LCLs generated from healthy individuals were treated with Actinomycin D to measure IRF5 mRNA half-
life comparing cells with the rs2004640 risk allele to those without. A SYBR green-based quantitative 
PCR was used to measure total IRF5 mRNA levels and normalized to GAPDH mRNA levels. No 
statistical difference was observed between the slopes comparing rs2004640 risk to protective. However, 
IRF5 mRNA expression in rs2004640 risk cells was consistently higher (p<0.001) by the Wilcoxon 
signed rank sum test. (B) Actinomycin D-treated LCLs were used to measure mRNA half-life of each 
first exon of IRF5. All cells included in the analysis had the risk T/T allele at rs2004640, so that the 
stability of exon 1B could also be measured (exon 1B is not used in cells with the G/G allele). A TaqMan-
based quantitative PCR was used to measure first exon levels normalized to total IRF5. No statistical 
difference was observed among slopes by paired t-test. Values are changes in threshold cycle (ΔCT) 
which are high when expression is low. Therefore, for ease of viewing the y-axis is reversed and the x-
axis was set below the highest value. All error bars represent standard error. Similar results were obtained 
for the CGGGG indel (not shown). 
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at two, six, and 24 hours after treatment of LCLs. Using a SYBR green-based quantitative PCR, 

the IRF5 mRNA levels were consistently higher in rs2004640 risk cells (p<0.001). However, no 

statistically significant difference in half-life was observed—all cell types had the same half-life 

slope over 24 hours (Figure 20A). Similar results were found for the CGGGG polymorphism as 

well (data not shown). 

 

Using the same actinomycin D-treated samples, the relative stabilities of the first exons of IRF5 

were evaluated using a TaqMan-based quantitative PCR assay by comparing the first exon to the 

total IRF5 expression level (Figure 20B). Cell lines that could use exon 1B (rs2004640 T/T) 

were evaluated so that the relative levels of exon 1B could be assessed with the other first exons. 

The mRNA was more difficult to detect when amplifying the first exon, with no first exons 

measurable by 24 hours. No first exon seemed to confer added stability compared to other first 

exons, since no statistically significant differences were observed among slopes. 

 

2.4.3. Altered exon 1 usage in cells with the rs2004640 risk allele 

The first exon of IRF5 can be any of four options: exons 1A, 1B, 1C, or 1D. This alternative 

promoter splicing may be used so that a single protein may be produced in response to many 

different stimuli. Depending on the cell type and the signals the cell receives, any or all of the 

promoters may be activated to produce IRF5. The expression level of each first exon was 

measured in unstimulated LCLs generated from healthy volunteers. 
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For a proportional analysis of first exon usage, levels of each first exon were measured by 

TaqMan-based quantitative PCR and normalized to the total amount of IRF5. To calculate 

proportions, the inverse of the ΔCT was used since CT values are low when expression is high. 

Figure 21. Decreased usage of exon 1C and 1D and increased 1B in cells with the rs2004640 risk 
allele; decreased exon 1D usage in cells with the CGGGG risk allele. (A) TaqMan-based quantitative 
PCR measured IRF5 mRNA expression levels specific to first exon usage. The total amount of IRF5 
mRNA was used to normalize the levels, thus showing a proportion of the total IRF5 expression. Since 
ΔCT levels are low when expression is high, the inverse of the ΔCT value was used to generate the graphs. 
The area of each graph is also proportional to the overall IRF5 expression levels (see Figure 19A). In 
lymphoblastoid cells lines (LCLs) generated from healthy individuals with the rs2004640 risk T/T allele, 
exon 1B was used in 22% of IRF5 mRNA, which is absent from cells with the protective G/G genotype. 
Numbers in parentheses are sample size. (B) SYBR green-based quantitative PCR measured IRF5 mRNA 
expression levels specific to first exon usage, in proportion to total IRF5 expression. Usage of exon 1C 
was 2.9-fold lower (p=0.026) and 1D was 2.8-fold lower (p=0.0056) in LCLs with the risk compared to 
the protective allele at rs2004640 by the Wilcoxon signed rank sum test. LCLs with the risk compared to 
the protective version of the CGGGG indel had 3.2-fold lower 1D levels (p=0.00055) by t-test. Values are 
calculated using the 2-ΔΔCT method (fold difference) by setting the lowest expression for each genotype to 
1. Error bars represent standard error. 
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Considering cells homozygous for the 4X CGGGG polymorphism (4X/4X), the proportions of 

the first exon usage did not differ greatly compared to 3X/3X cells, with exon 1D being having 

the greatest change, 5% lower in risk (Figure 21A). The effect of the rs2004640 genotype was 

more pronounced, due to exon 1B usage only in risk cells. In cells with the protective SNP, 35% 

of total IRF5 mRNA contained exon 1A, 28% contained exon 1C, and 37% had 1D. In cells with 

the risk allele 1A was found in 30% of mRNA, only 20% used 1C, and only 28% used 1D. Exon 

1B was used exclusively in risk cells and comprised 22% of the 1/ΔCT levels of mRNA (Figure 

21A). 

 

Relative mRNA concentrations were compared between risk allele-containing and protective 

allele-containing cells using a SYBR green-based quantitative PCR assay. Total IRF5 was used 

to normalize the levels for a proportional analysis. For the rs2004640 SNP, 1C levels were 2.9-

fold lower in risk (p=0.026) and 1D levels were 2.8-fold lower in risk (p=0.0056). The CGGGG 

indel affected only exon 1D, which was 3.2-fold lower (p=0.00055) (Figure 21B). 

 

2.4.4. Effect on translation due to usage of the four distinct 5’UTRs of IRF5 

Testing the effect of the rs2004640 and CGGGG risk polymorphisms moved downstream from 

the promoter to the mRNA. Since the rs2004640 risk allele affects which first exon of mRNA 

can be used and the CGGGG indel affects the levels of usage, we surmised that the changes 

would be measurable in mRNA studies. IRF5 can encode the same protein regardless of the first 

exon with which it begins [90]. Assuming there is no effect on the protein—since the first exon 

is non-coding—we performed experiments to assay the effect of the 5’UTR, which can affect 

translation of the mRNA. 
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Since IRF5 mRNA may begin with one and only one of four different first exons, we evaluated 

the translational efficiency of mRNA depending on which first exon was used. It should be noted 

that exon 1B can only be used by individuals with the risk allele at rs2004640, but the SNP itself 

was not included on the luciferase plasmid (described in the next paragraph), since the SNP is 

eliminated from the RNA upon splicing onto exon 2. 

 

Different from the promoter luciferase assays described above (Figures 13 and 16), 5’UTR 

luciferase assays were performed to determine the effect of different 5’UTRs on translation 

efficiency. The 5’UTRs of IRF5 contain exon 1A, 1B, 1C, or 1D and the untranslated part of 

exon 2. Each was inserted into a luciferase vector and used to compare the effect on translational 

efficiency. Instead of different promoters, the luciferase expression was driven by the SV40 

promoter in all cases. HEK293T cells, which do not express IRF5 normally [142], were 

transfected by the calcium phosphate method with one of the four luciferase plasmids as well as 

a plasmid which expresses a DsRed fluorescent protein, which was included as a transfection 

control. Values for luciferase expression were then normalized to account for transfection 

efficiency. 

 

The entire 5’UTR was added in front of luciferase, which includes the first exon and 11 bases of 

exon 2 (Figure 22A). Sequencing verified an exact match to published IRF5 5’UTRs (GenBank 

IDs: NM_002200.3, NM_032643.3, NM_001098627.2, and EU258897.1 for exons 1A, 1B, 1C, 

and 1D, respectively). Exon 1B was least-well translated, especially when compared to exon 1A 

(28-fold lower, p=0.048) and when compared to 1D (16-fold lower, p=0.022) (Figure 22B). 
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Figure 22. Different translational activity levels among the four 5’UTRs of IRF5 first exons. (A) The 
four 5’UTRs are shown color-coded for exon 1; exon 2 is shown in gray until the start codon, ATG, 
which is shown in white. (B) Four different 5’UTRs, including each first exon of IRF5 were inserted 
before a luciferase reporter gene, although each had the same promoter, to assay translation efficiency. 
These plasmids were cotransfected into HEK293T cells with a control red fluorescent protein-expressing 
plasmid to normalize transfection efficiency. Exon 1B was translated relatively weakly, whereas exon 1A 
was 28-fold higher (p=0.048) and 1D was 16-fold higher (p=0.022) by paired t-test. Bars represent 
standard error. Averages are from four independent experiments. RLU: relative luminescence units, RFU: 
relative fluorescence units, UTR: untranslated region. 

2.4.5. Exon 1B translation inhibited by a hairpin 

The low levels of protein made when using the 1B 5’UTR may be due to the secondary structure 

of the mRNA. Therefore a folding analysis was performed using mfold [151]. For IRF5 exon 1B, 

folding analysis predicted a hairpin which includes all of exon 1 and three bases of exon 2 

(Figures 23 and 24). This hairpin was predicted when analyzing either the 5’UTR alone or the 

entire mRNA of IRF5 variant 2 (GenBank ID: NM_032643.3), which begins with exon 1B.

The secondary structure of mRNA is often important in translational efficiency, especially near 

the 5’ end, where translation initiates [191]. Therefore, DNA with the sequence of the IRF5 exon 

1B was synthesized and inserted into a luciferase expression vector to investigate if the hairpin 

would inhibit initiation of translation. 
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Figure 23. 5’ hairpin in exon 1B-containing IRF5 mRNA. mRNA folding analysis was performed 
using mfold [151]. The numbers between bases represent the ΔG value for each base pairing. The 
strongest bonds are indicated with yellow boxes. The numbers outside the hairpin represent the 
ribonucleotide position. The 5’ end is indicated. 

Within the hairpin, three G-C base pairs had the strongest ΔG value (Figure 23). At these bases, 

a guanosine was mutated to adenosine using custom-made oligonucleotides. These G-to-A 

mutations were predicted to disrupt the hairpin when full-length IRF5 variant 2 mRNA folding 

was analyzed (Figure 24A). The mutated exon 1B was not predicted to self anneal, but instead it 

annealed to distal areas of the mRNA (Figure 24B). In order to confirm that the effect of the 

hairpin is shape-specific and not sequence-specific, a variant was constructed with 

complementary changes to allow the hairpin to reform, but with an altered sequence (Figure 

24C). Folding analysis also placed each 5’UTR with the luciferase gene instead of IRF5, and the 

hairpins were predicted to be intact in the wild type and complementary mutant versions. 

The three versions of IRF5 exon 1B 5’UTRs were inserted directly upstream of the luciferase 

coding region in individual plasmids. Again, all were under the control of the same promoter and 

cotransfected into HEK293T cells with a red fluorescent protein-expressing plasmid to account 
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for transfection efficiency. Elimination of the hairpin structure resulted in a 5-fold increase in 

translation (p=0.0021). Reconstruction of the hairpin by complementary mutations abolished the 

increase in translation (p=0.030) (Figure 24D). 

Figure 24. Inhibition of exon 1B translation efficiency by a hairpin structure. (A) Folding predictions 
of IRF5 variant 2 (GenBank ID: NM_032643.3) were made for wild type exon 1B using mfold software. 
A hairpin was predicted to form which includes all of exon 1B. (B) Three guanosine nucleotides (orange) 
were mutated to adenosine (green) to eliminate the hairpin structure. (C) Complementary bases were 
changed to uracil (blue) to re-form the hairpin, with the folding predictions shown. Numbers represent 
nucleotide positions; exons and start codons indicated. (D) These three versions of the IRF5 1B 5’UTR 
were inserted into a luciferase vector, but each had the same promoter to assay translation efficiency. 
These plasmids were cotransfected into HEK293T cells with a control red fluorescent protein-expressing 
plasmid to normalize transfection efficiency. Luciferase activity represents translational efficiency. 
Variant 1Bm was translated 4.8-fold higher than 1Bwt (p=0.0021) and 8.1-fold higher than 1Bcm (p=0.030) 
by paired t-test. Bars represent standard error; values are averages from at least six independent 
experiments. RLU: relative luminescence units, RFU: relative fluorescence units, UTR: untranslated 
region. 
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2.5. Five novel splice variants sequenced from IRF5 PCR amplicons 

Alternative splicing is common for IRF5 mRNA, not only the first exon, but downstream as well. 

Splicing of IRF5 is more common in PBMCs from SLE patients, which has been attributed to 

increased expression of splicing components such as small nuclear ribonucleoproteins (snRNP) 

[165]. 

 

Reverse-transcription PCR of IRF5 was performed on LCLs generated from healthy individuals. 

PCR used exon 1-specific primers and a common reverse primer in exon 7. After electrophoresis, 

several bands were observed that were smaller than the predicted size for full-length IRF5. 

Bands were gel extracted, purified, and then sequenced to reveal what parts of the RNA had been 

spliced out. Five new splice variants were observed. They were sequenced and named variants 

13 through 17 (GenBank IDs: JQ950681-JQ950685). Two variants, 13 and 14, exactly match the 

previously identified variant 8, except with a different first exon. All five novel splice variants 

exhibited skipping within exon 6. Exon 6 contains most of the nuclear export signal (NES) [144] 

and the instability domain [143]; also referred to as the proline, glutamic acid, serine, and 

threonine (PEST) domain. Variants 15, 16, and 17 change the frame and would produce a protein 

with an early stop codon, truncating the transactivation domain. This is similar to previously 

identified variants 9, 11, and 12. All newly identified variants are shown in Figure 25, with 

previously identified variants for comparison. 
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Figure 25. IRF5 mRNA variants organized by splicing events, including five novel variants. For the 
new splice variants shown in orange, LCLs generated from healthy volunteers were used to make cDNA 
libraries. PCR products were separated by size on agarose gels and sequenced. Boxes represent exons; 
lines are introns. Functional areas of the encoded protein are indicated at the bottom; exons at the top. The 
four possibilities for exon 1 are 1D, 1A, 1B, and 1C; and exon 1B is only found in cells with the 
rs2004640 risk T allele. The first 12 splice variants were discovered previously (blue), variants 13-17 in 
the current study (orange). Boxes were placed around groups based on common splicing events. The 
common start codon is 12bp into exon 2, except for variant 7—which lacks exon 2 and begins in frame in 
exon 3. Variants 9, 11, 12, and 15 to 17 include frameshift splicing events and have early stop codons 
(yellow asterisks). Some variants do not show sequences past the stop codon. The 3’ ends of most 
variants are not fully sequenced, or their length is variable due to two possible polyadenylation signals. 
Drawn to scale, but introns were reduced in size 10:1. UTR: untranslated region, NLS: nuclear 
localization signal, NES: nuclear export signal 
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2.6. Altered expression levels of associated genes due to the rs2004640 and CGGGG risk 

factors 

In collaboration with the Oklahoma Medical Research Foundation, a microarray study was 

performed to evaluate the effect of a risk haplotype in EBV infected or non-infected B cells 

[192]. The haplotype included both the rs2004640 SNP and the rs10954213 SNP. The 

rs10954213 SNP is an A or G polymorphism. It alters the polyadenylation sequence, producing 

shorter, more stable mRNA in those with the risk A allele [109]. Blood samples from ten 

volunteers were assayed for mRNA expression in a ~25,000 gene microarray. Five IRF5 high-

risk (three controls, two patients) and five IRF5 protective (two controls, three patients) gender- 

and ethnicity- matched volunteers were recruited to obtain samples of PBMCs for testing. 

 

An analysis was performed to determine if any association exists between the risk haplotype and 

specific signaling pathways. This was done by grouping the genes by pathways which exhibited 

differential expression between risk and protective haplotypes. These groups were included in a 

global pathway analysis using the Ingenuity Pathway Analysis system. This analysis uses the 

curated Ingenuity Knowledge Base to associate sets of genes and expression data with 

established gene pathways. Fisher’s exact-test showed statistically significant association 

(p<0.01) in three pathways: interferon, Toll-like receptor, and B cell receptor pathways 

(Table 3). Each of these signaling pathways has significant implications for autoimmune disease.  

 

For interferon pathway genes (Figure 26A), the greatest difference in expression due to the risk 

haplotype was an increase in the expression of interferon beta. IFNβ was 27-fold lower in risk 
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Table 3. Genes exhibiting differential expression between risk and protective cells in the canonical 
pathways identified through Ingenuity Pathway Analysis. Fold up/down column is positive in the case 
that the gene expression is higher in the risk haplotype cells and negative in the case that gene expression 
is higher in the protective cells. Akt: Ak strain transforming, CD: cluster of differentiation, Fos: feline 
osteosarcoma, GSK: glycogen synthase kinase, IFITM: interferon induced transmembrane, IFN: 
interferon, LY96: lymphocyte antigen 96, MAPK: mitogen activated protein kinase, MX1: myxovirus 
resistance 1, NFAT: nuclear factor of activated T cells, NFκB: nuclear factor kappa light chain enhancer 
of activated B cells, OAS: 2'-5'-oligoadenylate synthetase, PIK3CA: phosphoinositide-3-kinase catalytic 
alpha, prot.: protective haplotype, RAC: Ras-related C3 botulinum toxin substrate, STAT: signal 
transducer and activator of transcription, TLR: Toll-like receptor, TNFAIP: tumor necrosis factor alpha-
induced protein 
 

Signaling 
Pathway Gene 

Mock infected 16 hours EBV live virus infected 16 hours 
Avg. 
prot. 

Avg. 
risk Ratio Fold 

change 
Avg. 
prot. 

Avg. 
risk Ratio Fold 

change 

Interferon 

IFNB1 104.95 3.89 0.04 -26.99 5.79 9.15 1.58 1.58 
STAT1 71.08 52.84 0.74 -1.35 184.29 244.12 1.32 1.32 
OAS1 56.04 84.55 1.51 1.51 49.87 107.78 2.16 2.16 
MX1 3179.14 5161.02 1.62 1.62 3409.35 6199.20 1.82 1.82 

IFNAR2 959.14 1637.11 1.71 1.71 1437.47 1094.97 0.76 -1.31 
IFITM1 439.88 944.41 2.15 2.15 2128.61 2602.68 1.22 1.22 

Toll-like 
Receptor 

IFNB1 104.95 3.89 0.04 -26.99 5.39 9.15 1.70 1.70 
FOS 116.48 53.84 0.46 -2.16 90.05 120.60 1.34 1.34 

MYD88 281.53 152.57 0.54 -1.85 181.06 226.62 1.25 1.25 
TNFAIP3 439.96 321.29 0.73 -1.37 728.35 377.23 0.52 -1.93 

TLR1 26.50 46.76 1.76 1.76 67.59 116.37 1.72 1.72 
LY96 (MD-2) 560.79 1274.32 2.27 2.27 1128.47 1208.54 1.07 1.07 

CD14 401.17 1272.53 3.17 3.17 139.53 450.09 3.23 3.23 

B Cell 
Receptor 

CD79B 2222.90 991.48 0.45 -2.24 797.14 827.44 1.04 1.04 
CD79A 41.32 19.08 0.46 -2.17 6526.62 5973.72 0.92 -1.09 
RAC1 1407.29 930.84 0.66 -1.51 4.36 2.64 0.61 -1.65 

MAPK9 105.87 71.02 0.67 -1.49 62.50 80.35 1.29 1.29 
AKT1 512.79 353.65 0.69 -1.45 13.02 6.74 0.52 -1.93 

NFKB2 6.44 4.85 0.75 -1.33 495.75 147.18 0.30 -3.37 
PIK3CA 25.86 40.05 1.55 1.55 79.96 49.71 0.62 -1.61 
NFAT5 123.74 222.63 1.80 1.80 5.14 2.70 0.52 -1.91 
GSK3B 68.58 123.65 1.80 1.80 177.23 91.07 0.51 -1.95 
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cells, although this difference disappeared in cells once EBV infection occurred. The mRNA for 

interferon-induced transmembrane protein 1 (IFITM1) was strongly expressed in the risk cells in 

the absence of EBV (2.1-fold difference). STAT1 was expressed at lower levels in risk cells 

before EBV infection (1.3-fold), but after EBV, expression increased in risk cells (1.3-fold). 

IFNAR2 was opposite—it was higher in the risk cells without EBV (1.7-fold), but lower in the 

risk cells after EBV infection (1.3-fold). IFNAR2 is one of the receptors for the IFN cytokine 

and thus can respond directly to IFN signaling. In both the unstimulated and EBV treated 

conditions, 2'-5'-oligoadenylate synthetase 1 (OAS1) was overexpressed in the risk cells (1.5-

fold and 2.2-fold, respectively), as well as MX1 (1.6 and 1.8-fold). 

 

The TLR pathway was also affected by the IRF5 risk haplotype (Figure 26B). TLR1, CD14, and 

LY96 were upregulated in risk cells, and TNFAIP3 was downregulated regardless of EBV 

presence. TNFAIP3 expression increases upon inflammation to modulate the inflammatory 

response, and it is crucial to limiting inflammation by turning off NFκB responses [193]. As 

noted above (Section 1.9.1), polymorphisms in TNFAIP3 have been associated with lupus [101-

103, 194-195]. TNFAIP3 suppression has been noted in tumors, especially lymphomas [196-

199]. Expression of the transcription factor Fos and the signal transducer MyD88 was lower in 

risk cells when infected with EBV, but higher when EBV was absent. 

 

The B cell receptor pathway also exhibited differences in gene expression due to the IRF5 risk 

haplotype (Figure 26C). The B cell receptor itself is a complex of membrane-bound antibody, 

CD79A, and CD79B. CD79A and CD79B were downregulated 2.2 fold in the uninfected risk 

cells, but this difference disappeared after EBV infection. Ras-related C3 botulinum toxin  
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Figure 26. Altered expression of genes in the interferon, Toll-like receptor and B cell receptor 
pathways due to an IRF5 risk haplotype. The genes which exhibited changes in expression levels due 
to the IRF5 risk haplotype are shown by red to blue color mapping. The colors represent expression levels 
according to the included legend. (A) Interferons are produced in response to infection. Ligated 
interferons signal through receptors to activate JAK/STAT transcription of targets in the nucleus. (B) Toll 
like receptors are either extracellular or endosomal and inform cells of possible infection. They use 
adaptor proteins such as the MyD88 complex and alter transcription by signaling through IRFs and other 
transcription factors. (C) The B cell receptor (BCR) consists of a membrane bound immunoglobulin and 
CD79. It also consists of co-receptors such as the CD19/21/81 complex, CD45, or CD22. The Fcγ 
receptor II (FcγRII) also feeds into BCR signaling by binding Ig molecules. Transcription is altered 
though MAPK, NFκB, and NFAT pathways. BLNK: B cell linker, CaM: calmodulin, CN: Calcineurin, 
ERK: extracellular signal regulated kinase, FCGR2B: fragment crystallizable γ receptor 2B, GRB2: 
Growth factor receptor-bound 2, GSK3: glycogen synthase kinase 3, IFIT3: interferon-induced with 
tetratricopeptide repeats 3, IFITM1: interferon induced transmembrane 1, IFN: interferon, IFNAR: 
interferon α receptor, IKB: inhibitor of NFκB, IKK: IκB kinase, IP3: inositol triphosphate, IRAK: 
interleukin-1 receptor-associated kinase, IRF: interferon regulatory factor, JAK: Janus kinase, JNK: JUN 
N-terminal kinase, LBP: lipopolysaccharide binding protein, LY96 (MD-2): lymphocyte antigen 96, 
MALT1: mucosa associated lymphoid tissue lymphoma translocation gene 1, MYD88: myeloid 
differentiation primary response gene 88, MEKK: mitogen activated protein (MAP)/Erk kinase kinase, 
MKK: MAP kinase kinase, NEMO: NFκB essential modulator, NFAT: nuclear factor of activated T-cells, 
NFκB: nuclear factor κ-light-chain-enhancer of activated B cells, NIK: NFκB inducing kinase, OAS1: 2'-
5'-oligoadenylate synthetase 1, PI3K: phosphatidylinositol 3-kinase, PKC: protein kinase C, PLCγ2: 
phospholipase Cγ2, PPARα: peroxisome proliferator-activated receptor α, RAC: Ras-related C3 
botulinum toxin substrate, SHIP1: SH2-containing inositol phosphatase 1, SHP: Src homology 2 tyrosine 
phosphatase, SOCS: suppressor of cytokine signaling, STAT: signal transducer and activator of 
transcription, SYK: spleen tyrosine kinase, TAB: TAK1 binding, TAK1: transforming growth factor-β-
activated kinase 1, TIRAP: Toll-interleukin 1 receptor domain adaptor protein, TLR: Toll-like receptor, 
TNFAIP3: tumor necrosis factor alpha-induced protein 3, TRAF6: TNF receptor-associated factor 6, 
TRIF: Toll-interleukin 1 receptor domain adapter-inducing interferon-β, TYK2: tyrosine kinase 

substrate 1 (RAC1), a gene involved in lymphocyte differentiation and survival [200] was 

overexpressed in risk cells under all conditions (1.5-fold in mock infected cells, 1.7 fold in EBV 

infected cells). The signaling protein Akt1 and the transcription factor NFκB2 were 

downregulated in EBV infected cells with the IRF5 risk haplotype (1.9 and 3.4 fold, 

respectively). In three other genes the risk haplotype led to a 1.5- to 1.8-fold increase in 

expression: the phosphatidylinositol 3 kinase catalytic subunit alpha (PIK3CA), nuclear factor of 

activated T cells 5 (NFAT5), and glycogen synthase kinase 3β (GSK3B). However, when EBV 

was present, the risk haplotype showed a decrease of 1.6 to 1.9 fold of the same genes (Table 3). 
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In a separate set of experiments, several genes were evaluated for changes in expression due to 

either the rs2004640 or the CGGGG risk polymorphisms. The matched sets described in Section 

2.1 were treated with the TLR7 ligand imiquimod, or left untreated to see if the response differed 

in risk allele-containing cells compared to protective. TLR7 lies upstream of IRF5, and the 

experimental design was to activate IRF5 pathways with imiquimod in order to see if risk-

versus-protective differences could be observed in stimulated cells that could not be observed in 

Figure 27. Decreased CCR7 expression in LCLs with the IRF5 CGGGG indel 4X/4X genotype by 
quantitative PCR. Expression of several genes was evaluated by SYBR-green based quantitative PCR 
using glyceraldehyde-3 phosphate dehydrogenase as the housekeeping gene. cDNA was from imiquimod 
treated LCLs generated from healthy volunteers. Sample sizes are indicated in gray circles. (A) No 
difference in gene expression due to the rs2004640 risk allele was observed by Wilcoxon signed rank sum 
test (B) The CGGGG indel affected CCR7, a cell receptor involved in cytokinesis. CCR7 levels were 2-
fold lower in risk cells (p=0.019) by t-test. No difference due to the CGGGG risk indel was found in other 
genes. BZLF1, EBNA1, LMP1, and LMP2 are Epstein-Barr virus genes; the rest are human genes. 
BamHI fragment Z leftward reading frame, CCR C-C chemokine receptor, EBNA: Epstein-Barr nuclear 
antigen, IFIT: interferon induced protein with tetratricopeptide repeats, IFN: interferon, IL: interleukin, 
LMP: latent membrane protein, Trim: tripartite motif 
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resting cells. Some EBV genes were also tested to see if the risk factors affected expression of 

these viral genes. 

 

The CGGGG risk 4X polymorphism had no effect on any genes, except that CCR7 expression 

was lower in cells with the CGGGG risk 4X/4X genotype compared to those with the protective 

3X/3X genotype (Figure 27). The rs2004640 risk T/T genotype did not affect the expression of 

any genes. The results in Figure 27 are from imiquimod treated cells. Genes were chosen based 

on their proposed differential effect when comparing IRF5 to IRF7 transcription induction. IRF7 

performs a similar role to IRF5, and the two genes affect expression of some similar and some 

distinct genes [147]. The genes tested were the EBV genes BamHI fragment Z leftward reading 

frame 1 (BZLF1), EBNA1, and two latent membrane proteins (LMP), LMP1 and LMP2. mRNA 

expression levels were evaluated for the human genes Calreticulin, CC-chemokine receptor 7 

(CCR7), interferon induced with tetratricopeptide repeats 3 (IFIT3), IFNα1, IL-6, IL-10, IRF7, 

Noxa, and tripartite motif 22 (Trim22). 

 

3. Summary and discussion 

The effects of the risk haplotype can be summarized in four main categories: promoter 

differences, apoptosis differences, mRNA differences, and downstream expression differences.  

 

3.1. Promoter differences 

The CGGGG indel is within the 1A promoter. This polymorphism has previously been shown to 

alter transcription factor binding. When cells have the 4X variant, an additional SP1 binding site 

is created. This has been shown to increase IRF5 protein levels in PBMCs [85], but decrease 1A-
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specific IRF5 transcripts in thymic cells [169]. Both versions of the 1A promoter showed activity 

in HEK293T cells and Raji cells. As expected, SP1 sites were found in our analysis of the 1A 

promoter, including an extra SP1 binding site in those with the CGGGG 4X indel. SP1 is active 

during development, cell growth, apoptosis, differentiation, immune responses, and DNA 

damage responses [201]. 

 

The 1A promoter has a paired box 5 (PAX5) binding site, a gene that activates B cells at early, 

but not late stages of development [202]. There is an E-box, and transcription factor 12 (TCF12) 

is a member of the basic helix-loop-helix group of transcription factors which binds to E-boxes 

[203]. TCF12 was shown to bind somewhere in the promoter region of IRF5 in the ENCODE 

dataset [175], and the E box in 1A’s promoter is a likely site. TCF12 is known to be expressed in 

B cells and T cells [21]. A PU.1 site is in the 1A promoter as well; PU.1 activates gene 

expression during B cell development and in myeloid cells [204]. The 1A promoter showed 

increased activity when cells were stimulated with the TLR7 agonist imiquimod. This may be 

through the PU.1 site through IRF7. IRF7 is known to be activated by TLR7 [205], and PU.1 

binds to a similar GAAN(N)GAA motif to IRFs. Further work is necessary to determine in which 

cell types or with which stimuli the 1A promoter is most active, and also if the CGGGG 4X risk 

variant alters this activity. 

 

A previous report by Mancl, et al. evaluated the 1A and 1C promoters [170]. The 1A promoter 

was stimulated by herpes simplex, Newcastle disease, and vesicular stomatitis viruses in 

PBMCs, Daudi, and THP-1 cells, respectively; as evidenced by increased transcription of IRF5. 

A luciferase reporter gene assay in the same report also showed that IRF5’s 1A promoter is 
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constitutively active and contains an IRF-E consensus binding site. However, the promoter 

region used was different—a 596 bp region determined by a 5’ rapid amplification of cDNA 

ends (5’RACE) experiment. It is 939 bp upstream of the GenBank reference sequences for exon 

1A and even extends past the 1D exon by 714 bp. The results of their luciferase assay cannot 

therefore be compared with the promoter analysis performed in this work. 

  

The 1B promoter is not affected by the rs2004640 SNP per se. The promoter may function the 

same way in risk and protective individuals. Instead, the effect is to allow splicing of a promoted 

transcript onto exon 2 in those with the risk T allele. The rs2004640 SNP does therefore affect 

the outcome of using the 1B promoter. This is evidenced by the fact that the risk T allele at 

rs2004640 correlates with higher levels of IRF5 and higher levels of exon 1B usage. 

 

IRF5’s 1B promoter was predicted to contain a p53 binding site. In preliminary experiments, the 

only promoter tested which increased in activity after inducing DNA damage was the 1B 

promoter. The others showed a reduction in luciferase activity, likely because of the death, cell 

cycle inhibition, or apoptosis of the cells due to the DNA damage. Even a mutated version of the 

1B promoter, which contained an altered p53 binding site, showed a decrease in luciferase 

activity instead of an increase. There were also differences in apoptosis in cells with the 

rs2004640 risk T/T allele. These are presumed to be due to the p53 binding site in the promoter 

for exon 1B, since only those with the T allele can use exon 1B. This is discussed in greater 

detail below in Section 3.2. The 1B promoter contains SP1, IRF4, TCF12, and early B cell factor 

(EBF) binding sites. EBF is a B cell-specific transcription factor [206]. Further work is necessary 

to reveal the stimuli or cell types that use the 1B promoter. 
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Usage of exon 1C is lower in cells with the rs2004640 autoimmune risk factor, which is likely 

due to less promoter activity. The 1C promoter contains putative SP1, IRF4, and EBF sites. It 

was the only promoter with activator protein 1 (AP1), Myc, and STAT2 binding sites. AP1 is a 

heterodimer of Fos and Jun proteins, among others, which are common in immune signal 

transduction [207]. Myc is a proto-oncogene and is essential for B cell proliferation [208]. 

STAT2, when complexed with STAT1 and IRF9, is known to be activated by type I interferon 

[209]. The STAT2 binding sites agree with a previous report on the 1C promoter of IRF5 by 

Mancl, et al., which said the promoter is interferon responsive [170]. The current analysis 

identified the same STAT2 binding site in the 1C promoter. The difference in the two analyses is 

the assumed placement of the initiation site. The analysis by Mancl, et al. uses 5’RACE to 

determine the initiation site and they calculate the STAT2 binding site is 96bp downstream of 

that transcription initiation site. According to our initiation site—taken from the GenBank 

reference sequences which use exon 1C—the site was 47bp upstream of the initiation site, which 

is a more likely placement for promoter activation. Also of note, cells treated with imiquimod 

had lower 1C levels in proportion to the total IRF5. 

 

Usage of exon 1D is lower in cells with the rs2004640 T allele and in cells with the CGGGG 4X 

allele, which is likely due to less promoter activity. The 1D promoter evaluation showed only 

four transcription factors’ binding sites: CTCF, IRF4, NFκB, and SP1. NFκB is a target of TLR7 

[210], and thus should be activated by imiquimod treatment. This was the case, and the 1D 

promoter nearly tripled in usage after imiquimod treatment. The IRF5 promoter analysis also 

showed a CCCTC binding factor (CTCF) binding site. It is interesting that the 1D promoter has 

putative CTCF sites and is the furthest in the 5’ direction, since CTCF is known to block the 
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spread of CpG methylation by acting as an insulator [211]. This may keep the other first exons—

which are downstream and have high GC content—free from heterochromatin. 

 

3.2. Apoptosis differences 

IRF5 is proapoptotic in a p53-indepent manner [150, 212]. This does not preclude activation by 

p53, and a p53 enhancer site in exon 2 of IRF5 has been shown to activate IRF5 [213]. p53 is a 

main regulator of apoptosis. Exon 1B’s promoter was the only one with a putative p53 binding 

site, and cells with the rs2004640 risk T allele are the only cells that can use exon 1B. We 

therefore hypothesized that apoptosis levels would be altered in cells with the risk T allele. 

Homozygous risk T/T cells did exhibit altered levels of intrinsic apoptosis, but not extrinsic 

apoptosis, when compared to homozygous G/G protective cells. However, death receptor-

induced cell death is known to be facilitated by IRF5 [126]. We did observe more living cells in 

rs2004640 risk T/T cells when treating with TRAIL for 24 hours, however this was not 

statistically significant (p=0.069). Death receptor-induced apoptosis, such as through Fas and 

TRAIL, signal more directly through caspases; whereas the intrinsic pathways involve 

mitochondrial membrane permeability before caspase induction [214]. Thus the pathways 

affected are likely mitochondrial permeability genes of the B cell lymphoma 2 (Bcl-2) family, 

although this requires further testing. 

 

Compared to protective cells, the levels of apoptosis were higher in rs2004640 risk cells after 

two day etoposide treatments. This agrees with the promoter luciferase data. However the levels 

of apoptosis were lower in rs2004640 T/T risk cells after low concentration 48 hour etoposide 

treatments and after 12 hour 5FU treatments. These results appear to be contradictory. They may 
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be due to a threshold level of activation being reached in the large dose etoposide treatment. 

Also, p53 can act as both a repressor or activator of transcription depending on local factors 

[215]. In any case, the levels of apoptosis are affected by the rs2004640 risk T/T allele. 

 

3.3. mRNA differences 

Both the CGGGG indel and the rs2004640 polymorphisms are in the promoter region of IRF5, 

affect IRF5 expression, and affect first exon usage. In LCLs, the levels of IRF5 mRNA and 

protein were approximately doubled by these polymorphisms. The rs2004640 had the greater 

effect on both mRNA and protein levels. There was, however, overlap of risk genotypes—some 

samples had both the rs2004640 risk allele and the CGGGG risk allele—and thus repeating these 

experiments with a larger sample size may detect independent effects better. 

 

The relative stability of IRF5 mRNA is not significantly affected by the rs2004640 or CGGGG 

polymorphisms. In addition to being quantified as a whole, IRF5 transcripts were also measured 

according to first exon usage. Measuring first-exon specific mRNA stability did not demonstrate 

that one first exon yields RNA that is more or less stable than another first exon. Instead, similar 

trends to those seen in Figure 20A were observed over time, with exons 1A and 1D higher and 

1C low throughout. We conclude that in LCLs, IRF5 stability is not affected by the rs2004640 or 

CGGGG promoter polymorphisms, or by the first exon used. 

 

In proportion to the total amount of IRF5 mRNA in a cell, the CGGGG 4X variant did little to 

change the balance of first exon usage, although exon 1D was used less in risk cells. Cells with 

the rs2004640 T allele used exons 1C and 1D less than protective cells. Taken together, this 
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establishes an rs2004640 splicing profile: risk allele-containing cells exclusively use exon 1B, 

and use less exon 1C and exon 1D. The risk rs2004640 allele increases IRF5 in spite of low 

translational efficiency, because it drives a two-fold increase in overall transcription. This high 

transcription in persons with the risk allele suggests a role for the effect of exon 1B usage on 

overall protein expression. An association between autoimmunity and these IRF5 

polymorphisms has been established. Increased IRF5 expression is the likely source of risk. 

 

Levels of 1A were proportional between risk and protective cells at both polymorphisms. This 

excludes the result that there is double total IRF5 in risk cells, therefore the total level of 1A may 

be higher. When measuring the total level of each exon 1 (comparing to β-glucuronidase instead 

of IRF5), exon 1A was used at 4.0-fold higher levels in rs2004640 risk cells, however this only 

approached significance (p=0.081, data not shown); the CGGGG indel exhibited a similar trend. 

 

The spacing between these promoters may be crucial for nucleosome positioning, since 

transcription start sites are often nucleosome free, allowing transcription factors to bind [216]. 

The 1D, 1A, and 1B exons are very close on the genome (see Figure 9). The space between 1D 

and 1A is 276bp, and the space between 1A and 1B is 226bp. The nucleosome wraps 

approximately 147bp of DNA with a linker of less than 160bp [217]; thus the 1D-1A-1B spacing 

is sufficient for a nucleosome to bind in between each. However, they are close enough that if 

one transcription site is being used, the neighboring sites may be occluded. This could explain, 

for example, why exon 1D usage decreased when the 1A promoter can bind additional 

transcription factors due to the CGGGG 4X variant. Exon 1C is 2,501bp downstream from 1B 

and is not likely affected as directly. 
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IRF5 transcripts originating with exon 1B, which forms a hairpin, are translated five-fold less 

efficiently compared to a structure without the hairpin. This is likely due to the inability of the 

ribosome to bind to the occluded 5’ end of exon 1B of IRF5 and initiate translation. When 

compared to the translation levels of the other exon 1 transcripts of IRF5, exon 1B was translated 

at the lowest levels. This contradicts a previous report by Kozyrev, et al. [90], who have a much 

higher value for the 1B 5’UTR, although other translation levels are in agreement. This 

difference is likely due to their use of 5’RACE-amplified UTRs whereas our 5’UTRs used 

reference sequences for exons 1A through 1C and variant 12’s 5’UTR for exon 1D (see 

Section 2.4.4). 

 

All of the novel 1B variants came from individuals with the rs2004640 risk T/T genotype. The 

two new 1C variants came from a risk T/T individual and a protective G/G individual. No effect 

on splicing is assumed to be due to the CGGGG polymorphism, and none were directly tested or 

observed. The usage of exon 1B, that is the presence of the rs2004640 T genotype, may have an 

effect on splicing events other than exon 1, since some splicing is linked. Examples of patterns of 

splicing include mutually exclusive exon use, tissue-specific exon use, and developmental-

specific exon use [218-220]. However, except that only one exon 1 can be used per molecule, 

none of these concomitant splicing events were seen. For example, three 1B variants have 

exactly the same amino acid sequence as three 1A variants—1B variants 2, 10, and 13 encode 

the same protein isoforms as 1A variants 6, 4, and 8 respectively. 

 

Variants 8, 9, and 12 have been shown to be constitutively nuclear [170, 221] since they lack the 

NES in exons 5 and 6. Although they have not been analyzed, it is likely that variants 11 and 13 
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through 16 are also constitutively nuclear due to similar patterns of missing amino acids. They 

also have an intact DNA binding domain. In fact, only one identified variant has any splicing 

truncation in the DNA-binding domain, variant 7. It is interesting that many of the variants can 

bind DNA, but have truncations in either the instability domain or the transactivation domain. If 

DNA binding is active but transactivation is not, the encoded protein will likely be dominant 

negative. 

 

IRF5 exhibits a high degree of alternative splicing, and alternative splicing of IRF5 was shown to 

be higher in lupus patients [165]. The ability to alternatively splice IRF5 likely allows a fine-

tuned response to a variety of immune signaling events [170], but in conjunction with 

autoimmune disease this high degree of alternative splicing may be detrimental. Although there 

are currently 17 known variants of IRF5, there are likely dozens more ways to splice IRF5. 

Splicing may occur in response to specific stimuli that would further explain the varied levels of 

first exon usage and changes in overall levels of expression. 

 

3.4. Downstream expression differences 

Several gene pathways were affected in cells with an IRF5 lupus-risk haplotype. Since IRF5 is a 

transcription factor, these polymorphisms likely affect B cells’ response to infection or their 

action in autoimmune disease. The pathway analysis placed gene expression changes in three 

main pathways: interferon, Toll-like receptor, and B cell receptor pathways. This pathway 

analysis is valuable because it allows a broader look into gene networks than simply looking at 

individual genes.  
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The interferon pathway was affected by the risk haplotype. Interferon alpha is an important 

cytokine in lupus etiopathogenesis [26]. The interferon alpha pathway is affected by genetic 

variation in the IRF5 gene, and multiple interferon signaling genes could be targets for 

understanding interferon dysregulation in autoimmune disease. Toll-like receptors are involved 

in response to infection through the recognition of pathogen-associated molecular patterns. 

Additionally, Toll-like receptors are important in the pathogenesis of lupus. They are capable of 

recognizing endogenous nucleic acids in the context of immune complexes found the sera of 

lupus patients, which stimulates dendritic cell maturation and IFNα production [222-229], a 

process which also involves IRF5 itself [229]. IRF5 is an interesting transcriptional regulator in 

that it acts as both an activator when homodimerized with itself, and its activation is blocked 

when heterodimerized with IRF7 since IRF5/IRF7 heterodimers mask both transcription factors’ 

DNA binding domains [138, 146]. This mechanism of action may help to explain how some of 

these pathways can exhibit relative upregulation or downregulation depending on the other 

conditions in the cell. The B cell receptor pathway was also affected. The B cell receptor 

recognizes antigen. Stimulating a B cell through the BCR provokes the survival, maturation, and 

proliferation of B cells. B cells are the source of autoantibodies, and in some way the tolerance to 

self must be broken in order to produce these antibodies. 

 

The pattern of gene expression observed suggests that the IRF5 risk haplotype makes these cells 

appear more activated in the resting state. An activated basal state would be likely to promote 

inappropriate cellular responses and possibly heightened sensitivity to self antigens, including 

those recognized by TLRs. 

 

75 

 



EBV was used in several experiments to create LCLs from PBMCs. It was used to evaluate an 

infected state and to see any effect on EBV gene expression due to IRF5 risk polymorphisms. 

EBV itself could be involved in the etiology of lupus by affecting several pathways. The three 

pathways identified here are all involved in EBV infection. EBV may stimulate these pathways 

through several mechanisms, including both infection and binding of virions to the receptors 

involved in these pathways.  

 

The CGGGG indel decreased the expression of CCR7. CCR7 was first named Epstein-Barr virus 

induced 1, since it was found to be overexpressed upon EBV infection [230]. CCR7 is involved 

in immune cells migration, and EBV infection is known to alter migration [231]. Further work is 

necessary to determine if CCR7 levels are lower in EBV negative cells. If the risk CGGGG risk 

factor decreases CCR7 levels, the migration of immune cells might decrease. Irf5 knockout mice 

are known to exhibit large changes in migration [56-57, 232-233]. 

 

3.5. Conclusion 

A key effect of these promoter polymorphisms, therefore, is to increase the levels of IRF5, at 

both the mRNA and protein levels. Several studies have shown that an rs2004640 risk haplotype 

causes increased expression of IRF5 mRNA or IFN-pathway genes in lupus patients [106, 153]. 

Our experimental design using healthy controls with and without the risk polymorphisms 

provided us the advantage of measuring the effect of the risk allele without the confounding 

factors of disease, since all of our data about promoter, apoptosis, and mRNA differences come 

from those with the risk factor for autoimmune disease, but not the disease itself. We thus infer a 

causal relationship between high IRF5 levels and autoimmune disease. This is corroborated by 
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Irf5 knockout mice, which are protected from lupus-like disease and have altered cytokine 

responses [56-57, 232-233]. 

 

High amounts of IRF5 would affect all the roles of IRF5, but depend on the cells in which it was 

expressed. Our study involved the use of lymphoblastoid cell lines. As stated above (Section 

2.1), immune signaling may be dysregulated in LCLs, which are transformed by EBV. However 

both risk and protective cells lines received the same treatment. LCLs have very low (0.3%) 

somatic mutation rate [173] and a 96% concordance rate of SNP calls before and after 

transformation [174]. LCLs are a good model for B cell gene expression, but care should be 

taken in applying these results to other cells, which would transcribe the four first exons at 

different rates. These LCLs showed high levels of exon 1A and exon 1D usage. Another cell 

type, PBMCs, also shows a pattern of high 1A and 1D usage among lupus patients [165]. 

 

The different roles of IRF5 align with the range of autoimmune diseases it is involved in. As 

examples, IRF5 functions as a cytokine transcription factor [143, 149] and as a p53-independent 

pro-apoptotic regulator [126, 212, 234]. Dysregulation of cytokine levels and apoptosis are 

features of SLE [122, 235-236], the disease with which the rs2004640 SNP was first associated. 

Also, IRF5 has been shown to be an important mediator in macrophage differentiation towards 

pro-inflammatory M1 macrophages [149]. With high levels of IRF5 there would be more pro-

inflammatory cytokines, which would provoke a greater immune response. This has been 

confirmed by association of the rs2004640 risk SNP in IRF5 with macrophage activation 

syndrome [237]. 
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The etiologies of autoimmune diseases are complex, but various genetic and environmental 

factors contribute to their onset. Studies of genetic risk factors such as the rs2004640 SNP and 

CGGGG indel in IRF5 point to the pathways involved in disease and therefore to therapies 

which will allow for more effective treatments. 

 

4. Material & Methods 

4.1. Plasmid construction and luciferase assay 

For assaying translational efficiency, oligonucleotides representing the 5’UTR with the 

sequence for wild type and mutated exon 1B were synthesized (Integrated DNA Technologies), 

annealed, and inserted into the pGL3-Promoter vector (Promega). The longer 5’UTRs which 

include exons 1A, 1C, and 1D were PCR amplified from cDNA using ExTaq (Takara) and the 

primers listed in Table 4. Each 5’UTR was ligated into the pGL3 vector. All vectors were 

sequenced to confirm the proper sequence. The plasmids pSIREN-DNR-DsRed or pMax-GFP 

(Clontech) express the DsRed and eGFP fluorescent proteins, respectively, and were used to 

measure transfection efficiency. HEK293T cells were cotransfected with both a luciferase 

plasmid and a fluorescent protein-expressing plasmid using the calcium phosphate method. LCLs 

were electroporated using a Nucleofector device (Lonza). The electroporation buffer was 5 mM 

KCl, 15 mM MgCl2, 15 mM HEPES, 140 mM Na2HPO4, pH 7.2. Transfected cells were lysed 

and assayed for fluorescence levels before assaying luciferase activity using the Luciferase 

Assay System (Promega) on a Fusion αHT plate reader (Packard). Luciferase activity was 

evaluated in proportion to the transfection efficiency except where noted in preliminary data. 
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4.2. Cell lines 

Peripheral blood samples were obtained from healthy volunteers after informed consent 

following an IRB-approved protocol. Peripheral blood mononuclear cells were isolated using 

lymphocyte separation medium (Mediatech). These cells were induced to form lymphoblastoid 

cell lines (LCLs) by incubation with Epstein-Barr virus (B95-8 strain) and 2 ng/ml cyclosporin A 

(Torcris Biosciences). Raji cells were from ATCC. Cell lines were maintained in RPMI (Sigma) 

with 10% fetal bovine serum (PerBio) with penicillin/streptomycin/amphotericin (Calbiochem) 

at 5% CO2 and passaged at least weekly. HEK293T cells were a gift from Dr. Bradford Berges, 

and were maintained under the same conditions, but with DMEM as the base media. 

4.3. Genotyping of volunteers and formation of paired samples 

Genomic DNA was extracted (Qiagen) from peripheral blood mononuclear cells and 

genotyped using TaqMan reagents (Applied Biosystems (ABI)) on a StepOnePlus real-time PCR 

machine (ABI) at the rs2004640 SNP (ABI SNP Assay C9491614). Homozygous risk or 

protective individuals were matched by gender and ethnicity. Heterozygotes were not included in 

the study. Genotyping at the CGGGG indel was performed by PCR amplification and 4% 

agarose gel size determination. Genotyping at rs10488631 (ABI SNP Assay C2691242), which 

has also been shown to affect IRF5 expression [238] was also performed, Heterozygotes were 

not included in the study. The primers and PCR conditions are in Table 4. 

4.4. Cell treatments 

The Toll-like receptor 7 (TLR7) ligand imiquimod, also known as R-837, was used to 

activate IRF5 for some experiments. Cells were treated for 24 hours with 25 μg/ml imiquimod 

(InvivoGen). Actinomycin D, an inhibitor of RNA polymerase, was used to test mRNA stability. 

Cells were treated for 24 hours with 5 μg/ml actinomycin D (Fisher), and also analyzed at 
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2 hours and 6 hours [239]. cDNA preparation, quantitative PCR, primers, probes, and conditions 

are described in Section 4.5. UV light exposure was performed after removing media by placing 

the cells 75 cm from a 254 nm UV bulb for 90 seconds. Etoposide was used at 0.1 mM and 

1 mM concentrations and applied for 48 hours. 5FU was used at 1.5 mg/ml, and the activating 

antibodies to TRAIL and Fas were used at 1 μg/ml and 5 μg/ml, respectively. All treatments used 

106 cells per milliliter. For apoptosis level testing, the cells were treated with 1 μg/ml PI (Sigma) 

and Annexin V-FITC was applied per kit instructions (Life Technologies). 

4.5. cDNA libraries and PCR 

cDNA preparations were made by extracting RNA using the RNaqueous system 

(Ambion), followed by DNase treatment (Promega), then reverse transcription using SuperScript 

III reverse transcriptase (Invitrogen Life Technologies). cDNA preparations were used as 

template for quantitative PCR. Glyceraldehyde-3 phosphate dehydrogenase (GAPDH) was used 

as a housekeeping control for calculating comparative CT values; however, total IRF5 was used 

as the control value when comparing first exon usage. SYBR green reagents (ABI) were used in 

all cases. In order to maintain linear relationships between CT values for first exon proportional 

analysis in the SYBR green-based assay, all primer sets were designed to produce amplicons of 

nearly equal length (size range: 98 to 109 bp, see Table 4). For IRF5 splice variant analysis 

Takara Taq was used. For cloning of 5’UTRs the template cDNA was used with Takara ExTaq. 

For cloning promoters the template genomic DNA from Section 4.3 was used with the NEB 

High GC PCR kit. Primers and oligos were purchased from Integrated DNA Technologies. 

Sequences and PCR conditions are shown below in Table 4. 
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Table 4. List of primers and oligonucleotide sequences, and PCR and annealing conditions. All are 
listed in 5’-to-3’ orientation. Restriction enzyme cut sites or overhangs are indicated in lowercase. For 
quantitative PCR primers, amplicons’ lengths and %GC contents are also listed. fwd: forward primer, 
GAPDH: glyceraldehyde 3-phosphate dehydrogenase, IRF5: interferon regulatory factor 5, rev: reverse 
primer, RT: real time, UTR: untranslated region 
 

 

Oligonucleotides: 
IRF5 5’UTR 1B wild type luciferase top: 
agcttGTCCAGCTGCGCCTGGAAAGCGAGCTCGGACCCCTCTGc 
IRF5 5’UTR 1B wild type luciferase bottom 
catggCAGAGGGGTCCGAGCTCGCTTTCCAGGCGCAGCTGGACa 
IRF5 5’UTR 1B mutant luciferase top: 
agcttGTCCAACTGCACCTGGAAAGCGAGCTCGAACCCCTCTGc 
IRF5 5’UTR 1B mutant luciferase bottom: 
catggCAGAGGGGTTCGAGCTCGCTTTCCAGGTGCAGTTGGACa 
IRF5 5’UTR 1B complementary mutant luciferase top: 
agcttGTTCAACTGCACCTGGAAAGTGAGTTCGAACCCCTCTGc 
IRF5 5’UTR 1B complementary mutant luciferase bottom: 
catggCAGAGGGGTTCGAACTCACTTTCCAGGTGCAGTTGAACa 
Annealed at 95°C for 1 min, 72°C for 2 min, 37°C for 2 min, 25°C for 2 min. 
 

First exon 5’ UTR cloning primers: 
IRF5 1A 5’UTR fwd: TaagcttGCCCGGCAGGTTGGCGGA 
IRF5 1C 5’UTR fwd: TaagcttGAGCGTTCTGAACACCTCCC 
IRF5 1D 5’UTR fwd: TaagcttAGTTTTGCCATTCCAGATTG 
IRF5 common 5’UTR rev: CTGGTccatggCAGAGGGGTCT 
pGL4 sequencing fwd: CTAGCAAAATAGGCTGTCCC 
Conditions: 94°C 2 min, 40 cycles of [94°C 15 s, 60°C 1 min, 72°C 20 s], 72°C 1 min 
 

 

Splice variant amplification primers: 
IRF5 1A fwd: CCTGGCGCAGCCACGCAGGCGCA 
IRF5 1B fwd: GCGCCTGGAAAGCGAGCTCG 
IRF5 1C fwd: CTAGGCAGGTGCAACCCCAAAA 
IRF5 1D fwd: GAGGCTCAGCCCGGATCTGC 
IRF5 common rev: CTTGATCTCCAGGTCGGTCA 
Conditions: 94°C 4 min, 37 cycles of [94°C 1 min, 63.9°C 1 min, 72°C 1:30], 72°C 5 min 
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TaqMan-based quantitative PCR primers: 
IRF5 exon 2 RT fwd: CCACCTCAGCCCTACAAGAT 
IRF5 probe: FAM-TCCAATGGCCCTGCTCCCAC-TAMRA 
IRF5 exon 3 RT rev: CTCCTCTCCTGCACCAAAAG 
IRF5 1A TaqMan RT fwd: ACGCAGGCGCACCGCAGACA 
IRF5 1B RT fwd: AGCTGCGCCTGGAAAGCGAGC 
IRF5 1C TaqMan RT fwd: AGGCGGCACTAGGCAGGTGCAAC 
IRF5 1D RT fwd: GAGGCTCAGCCCGGATCTGC 
IRF5 exon 1 probe: FAM-CCATGAACCAGTCCATCCCAGTGGCTCCCACC-TAMRA 
IRF5 exon 2 common RT rev: TCGTAGATCTTGTAGGGCTGAGGTGGCA 
β-glucuronidase fwd: CTCATTTGGAATTTTGCCGATT 
β-glucuronidase probe: FAM-TGAACAGTCACCGACGAGAG-TAMRA 
β-glucuronidase rev: CCGAGTGAAGATCCCCTTTTTA 
Conditions: 52°C, 95°C for 10min, 52 cycles of [95°C for 15s, 65°C* for 1 min] with 
500 nM primers, 250 nM probe 
*primer annealing temperatures were 60°C for β-glucuronidase; 65°C for IRF5, 1A, and 
1B; 66°C for 1C, and 69°C for 1D 
  
 

SYBR green-based quantitative PCR primers: 
IRF5 exon 2 RT fwd: CCACCTCAGCCCTACAAGAT (99 bp, 58.6% GC) 
IRF5 exon 3 RT rev: CTCCTCTCCTGCACCAAAAG 
IRF5 1A SYBR RT fwd: GCAGGCGCACCGCAGACA (98 bp, 71.4% GC) 
IRF5 1C SYBR RT fwd: CTAGGCAGGTGCAACCCCAAAA (108 bp, 68.5% GC) 
IRF5 1D RT fwd: GAGGCTCAGCCCGGATCTGC (109 bp, 69.7% GC) 
IRF5 exon 2 common RT rev: GCCACCAGCCAGGGCTTCAG 
GAPDH fwd: TGCACCACCAACTGCTTAGC 
GAPDH rev: GGCATGGACTGTGGTCATGAG 
Conditions: 95°C for 10 min, 40 cycles of [95°C for 15 s, 60°C for 1 min] 
  
 

CGGGG genotyping 
CGGGG fwd: GCAGCGGGAGGTACGGG 
CGGGG rev: GCTCTGCCCAGGCTGCG 
Conditions: 95°C for 2 min; 12 cycles of 94°C for 30 s, 62°C for 30 s (with a decrease of 
0.5°C per cycle), and 72°C for 1 min; 30 cycles of 94°C for 30 s, 56°C for 30 s, and 72°C 
for 1 min; 72°C for 5 min. 
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Promoter cloning primers†: 
IRF5 1A prom fwd: CTGCgctagcCAGGTCAGTGCGGGGC 
IRF5 1A prom rev: CCTGagatctACTTCCGCGTCTTGCCGC 
Conditions: 94°C 30 s, 40 cycles of [94°C 15 s, 62.0°C 1 min, 68°C 30 s], 68°C 5 min 
 
IRF5 1B prom fwd: GCGCgctagcGACAGGTGGGTCCCGGCCGC 
IRF5 1B prom rev: GCAGagatctGCGGACCCCGCCCTACTCCA 
Nested PCR first round: IRF5 1A prom fwd + IRF5 1B prom rev 
Conditions: 94°C 30 s, 40 cycles of [94°C 15 s, 59.3°C 1 min, 68°C 30 s], 68°C 5 min 
Nested PCR second round: IRF5 1B prom fwd + IRF5 1B prom rev 
Conditions: 94°C 30 s, 40 cycles of [94°C 15 s, 66.0°C 1 min, 68°C 30 s], 68°C 5 min 
 
IRF5 1C prom fwd: TAGTgctagcGCTGGTTTCCTCAGGTCCT 
IRF5 1C prom rev: CAGAagatctCAGCCCTGCCCTGGCCT 
Conditions: 94°C 30 s, 40 cycles of [94°C 15 s, 60.8°C 1 min, 68°C 2 min], 68°C 5 min 
 
IRF5 1D prom fwd: ACATgctagCACCTGCTGCCTGTTGACC 
IRF5 1D prom rev: TGGCagatctGTCATTTGACAACCCC 
Conditions: 94°C 30 s, 40 cycles of [94°C 15 s, 59.4°C 1 min, 68°C 1 min], 68°C 5 min 
 
pGL4 sequencing fwd: CTAGCAAAATAGGCTGTCCC 
†PCR for these GC-rich promoters was performed using a High-GC kit (NEB) according 
to package instructions, with 10% enhancer solution included for all reactions except exon 
1D. 
4.6. Sequencing 

For cloning of IRF5 splice variants, Takara Taq was used with LCL cDNA as template 

for reverse transcription PCR. After size separation on a 1.5% agarose gel, DNA was extracted 

from individual bands using a gel band extraction kit (Qiagen). Sequencing of IRF5 variants was 

performed using the forward or reverse primer used in PCR amplification. Plasmid sequencing 

used purified plasmid DNA and a primer upstream of the insertion site. Sequencing reactions 

used Big Dye terminator reagents and the 3730xl DNA analyzer (ABI). See Table 4 for primers. 

4.7. Statistical analysis 

An unpaired t-test or the Wilcoxon signed rank sum test was used to compare means for 

mRNA and protein data, as noted. A paired t-test was used for imiquimod treated versus 

untreated samples. Regression modeling of the polymorphisms’ effect on mRNA and protein 
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levels used backward selection, and included calculating the ANOVA. Paired t-test was used for 

luciferase levels. An alpha of 0.05 and two-tailed p-values were used in all cases. For comparing 

mRNA half-life slopes, regression modeling was performed for analysis of covariance. 

4.8. Computer Programs 

RNA folding analysis was performed using mfold [151] under standard settings. 

Alignments and viewing of sequencing files were completed using MEGA 4.0 [178]. 

Densitometry on western blots was calculated using Quantity One software (BioRad). An 

analysis of the promoters for each of the four first exons of IRF5 was performed using the 

ENCODE ChIP-Seq data set [175] for determining actual binding factors on the genomic region, 

followed by determining a consensus site using the WebLogo data in FactorBook [177]. The 

consensus site was then used to search the proximal promoters (~200bp upstream from the +1 

sites) to encounter a proposed binding site. Consensus site screening was performed using a 

custom searches of ambiguous nucleotides with MEGA [178]. This involved searching using the 

find function, which allows for searching using the ambiguous nucleotide code. For example, a 

search for GAW would highlight both GAA and GAT. 

4.9. Western blotting 

IRF5 protein levels were was analyzed in untreated cells that were washed in phosphate-

buffered saline and lysed in Laemmli buffer. Lysates were triturated with a 25-gauge needle and 

boiled. Equal amounts of whole-cell lysate were loaded onto a 10% sodium dodecyl sulfate-

polyacrylamide electrophoresis gel and transferred to a nitrocellulose membrane. The membrane 

was probed with antibodies to IRF5 (Abcam). The secondary antibodies used were horseradish 

peroxidase-conjugated anti-mouse antibodies (Thermo Scientific). Protein bands were visualized 
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with the ECL system (General Electric). Membranes were stripped for reprobing with anti-

β-actin antibody (NeoMarkers) and visualized again with the ECL system. 

4.10. Enzyme-linked immunosorbent assay (ELISA) 

The levels of IL-10 and IL-6 were quantified using commercial ELISA kits from 

eBiosciences. Plates were read on a Biotek plate reader. 

4.11. Information about microarray data 

The experiments which resulted in the pathway figure (Figure 26) were done in 

collaboration with the Oklahoma Medical Research Foundation (OMRF); writing and data 

analysis were performed by Daniel Clark at BYU. The following materials and methods section 

is from the published paper [192]. 

Genetic testing was performed on samples obtained from the lupus family registry and 

repository at the Oklahoma Medical Research Foundation. Volunteers were selected based upon 

their IRF5 risk and protective haplotypes using genotypes at single nucleotide polymorphisms 

rs2004640 and rs10954213. Five IRF5 high-risk (three controls, two patients) and five IRF5 

protective (two controls, three patients) gender- and ethnicity- matched individuals were 

recruited. The study was approved by the institutional review board at all institutions, and 

informed consent was obtained from all subjects in the study. Total cellular mRNA was purified 

from lysates of infected versus mock-infected cells using the Ambion RNaqueous-Micro Kit 

(ABI) according to the manufacturer’s protocol. Two-rounds of in vitro transcription were 

performed and RNA expression was analyzed on the Illumina platform using whole genome 

arrays (~25,000 genes). 

The microarray data were analyzed using gene set enrichment analysis and pathway 

analysis to investigate changes in a gene networks. These analyses were followed by comparison 
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of individual gene expression differences inside these networks. Pathway analyses were 

generated through the use of Ingenuity Pathways Analysis (Ingenuity Systems). A data set 

containing gene identifiers and corresponding expression values was uploaded into in the 

application. Each gene identifier was mapped to its corresponding gene object in the Ingenuity 

Pathways Knowledge Base. The expression values entered were the normalized log (intensity) 

values of IRF5 protective and risk haplotype individuals. 

Canonical pathways analysis identified the pathways from the Ingenuity Pathways 

Analysis library of canonical pathways that were most significant to the data set. The 

significance of the association between the data set and the canonical pathway was measured in 

two ways: 1) A ratio of the number of genes from the data set that map to the pathway divided by 

the total number of genes that map to the canonical pathway; 2) Fischer’s exact-test was used to 

calculate a p-value determining the probability that the association between the genes in the 

dataset and the canonical pathway is explained by chance alone. 

Appendix A. Effect of imiquimod 

While testing the samples from Section 2.1 above, our experimental design was to stimulate cells 

with imiquimod to activate IRF5 through TLR7. This imiquimod treatment was used to evaluate 

whether the effect of the risk polymorphisms could be seen in a stimulated state that may not 

have been detectable in a resting state. In addition to our experimental design of activating IRF5, 

the imiquimod treatments also allow us to evaluate the effect of imiquimod itself. Expression of 

several genes was affected by imiquimod whether measured by SYBR green-based quantitative 

PCR (Figure 28A and 28B) or by ELISA (Figure 28C and 28D). 

86 



Figure 28. Altered gene expression due to imiquimod treatment by PCR or ELISA. (A) Genes whose 
expression increased and (B) genes whose expression decreased are shown by setting the untreated 
sample to 1 and -1, respectively. (C) Secreted IL-10 protein levels increase upon imiquimod stimulation 
by ELISA. (D) Secreted IL-6 protein levels increase in a dose-dependent manner upon imiquimod 
treatment by ELISA. ***: p<0.001, **p<0.01 by paired t-test 

One interesting result was the decrease of IRF7 levels due to imiquimod. This is unprecedented 

to the author’s knowledge. IRF7 is a lupus-risk gene, as noted above (Section 1.9.1). We assume 

that this could be due to the fact that the LCL cells used are EBV positive, and EBV’s LMP1 

gene interacts with IRF7 [221]. We then performed some experiments to evaluate what would 
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happen to the levels of these genes in the Ramos cells and primary B cells, since they are both 

EBV negative. The Ramos cells decreased in IRF7 levels as well (data not shown), although they 

are a Burkitt’s lymphoma cell line, so they were once EBV positive and could have many 

changes due to the virus or the cancer state. B cells did show an increase in IRF7 levels, as is 

expected for TLR7 stimulation (data not shown). One possible interaction is with Epstein Barr 

virus induced 2 (EBI2), a human gene. EBI2 has been shown to be key to IRF7 signaling 

pathways [240]. Further work is needed to reveal if and how Epstein-Barr virus interferes with 

TLR7 and IRF7 signaling, and to determine what effect EBI2 has in these pathways. 

Appendix B. Herpes simplex virus typing assay affected by region-specific phylogenetic 

changes 

See attached publication [241]. This work was performed in collaboration with Dr. Brent 

Johnson, BYU, to determine why a commercial typing test failed. Upon testing, a small genetic 

change within herpes simplex virus 1 (HSV) glycoprotein G was determined to be the cause, 

changing the affinity of the typing antibody. Further analysis was performed to relate all of the 

then available glycoprotein G sequences phylogenetically. The phylogenetic tree was branched 

geographically, indicating a potential failure of this typing test in certain geographic regions. 

The work is related to the other studies since it is another herpes virus, like EBV. HSV is not to 

the author’s knowledge, an environmental trigger for SLE like EBV is. 
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SHORT REPORT Open Access

Characterization of herpes simplex virus clinical
isolate Y3369 as a glycoprotein G variant and its
bearing on virus typing
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Abstract

Background: Herpes simplex viruses exist as two major serotypes, type 1 (HSV-1) and type 2 (HSV-2).
Determination of type, either HSV-1 or HSV-2, is important in accurate diagnosis and clinical control of
transmission. Several tests are available for typing HSV, including a monoclonal antibody specific for glycoprotein G
and several PCR assays.

Findings: A clinical isolate was identified as herpes simplex virus, but tested negative for both HSV-1 and HSV-2
antigens using type-specific monoclonal antibody assays. The isolate was determined to be HSV-1 by PCR analysis.
A mutation which likely caused the monoclonal antibody non-reactivity was found in glycoprotein G. Phylogenetic
analysis revealed two groups of HSV, one with the mutation and one without. Three population studies examining
mutations in HSV-1 glycoprotein G were analyzed by chi-squared test. To this point, the epitope which the
monoclonal antibody recognizes was only found in HSV-1 isolates from human European populations (p < 0.0001).

Conclusions: These findings suggest that the PCR-based methods for HSV typing may be more useful than the
standard monoclonal antibody test in areas of the world where the variant in glycoprotein G is more prevalent.

Keywords: Herpes Simplex Virus serotyping, glycoprotein G

Findings
Herpes simplex viruses exist as two major serotypes, type
1 (HSV-1) and type 2 (HSV-2). Determination of type,
either HSV-1 or HSV-2, is important in accurate diagno-
sis and clinical control of transmission. Tests which can
determine HSV type include viral antigen tests, serologi-
cal tests of human antibodies and PCR [1,2]. The impor-
tance of glycoprotein G as the test analyte is emphasized
by the 2002 STD Treatment Guidelines from the CDC:
“Accurate type-specific assays for HSV antibodies must
be based on the HSV-specific glycoprotein G2 for the
diagnosis of infection with HSV-2 and glycoprotein G1
for diagnosis of infection with HSV-1.” [3].
A clinical sample of a herpes simplex virus, designated

Y3369 was isolated and proved refractory to typing. The

isolate was obtained from an infected genital tract of a
48-year-old female patient. It was submitted to Richards
Laboratories, Inc., Pleasant Grove, Utah, USA for diag-
nostic workup. The sample was incubated overnight,
and then stained for virus-infected cells using a type-
common polyclonal primary antibody and visualized by
the immunoperoxidase technique using a rapid culture
method [4,5]. The culture showed an abundance of cells
positive for antibody labeling and had HSV-typical cyto-
pathic effects, confirming the presence of HSV in the
specimen (results not shown).
The Y3369 isolate was then tested using the Wampole

type-specific viral antigen test for HSV glycoprotein G. A
viral stock culture was generated by inoculation of a por-
tion of the rapid culture isolate into a culture of MV1Lu
cells (mink lung, ATCC CCL-64). The specimen was also
incubated in C1008 cells (Vero subline, ATCC CRL-
1586) and subjected to similar serotypic analysis by stain-
ing with virus-specific monoclonal antibodies (mAbs)
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against HSV type 1 and type 2. These tests failed to yield
a positive identification of the isolate as either HSV-1
or HSV-2 using type-specific mAb assays (Wampole
Laboratories). The immunofluorescence result was
negative against both reagent antisera in MV1Lu cells
(Figure 1). The virus was also untypable in C1008 cells
(not shown). The laboratory strains HSV-1 McIntyre and
HSV-2 strain 333 were tested with mAb reagents and
expected monotypic results were observed in these
controls.
Determination of HSV type was done by PCR specific

for the HSV pol gene using a common forward primer
and type-specific reverse primers as performed by Abra-
ham, et. al [6] and Kimura, et al. [7]. DNA was extracted
(Invitrogen PureLink viral DNA/RNA mini kit) from
purified virus of HSV-1 (McIntyre strain), HSV-2 (Strain
333), and from the Y3369 isolate. PCR products were
then analyzed on a 1% agarose gel (Figure 2), which
revealed that clinical isolate Y3369 contains the pol
gene of an HSV-1 virus. To confirm the analysis, DNA
was then extracted from the gel (QIAquick gel extrac-
tion kit, Qiagen) and sequenced (Parallab 350, ABI
3730xl). DNA sequencing confirmed Y3369 specimen
was a strain of HSV-1 with the sequenced amplicon
having 100% identity when compared to the published
HSV-1 pol gene sequence (GenBank accession #X04771)
and only 85% homology with the HSV-2 sequence.

Confirmation of the isolate as an HSV-1 strain was
done by successful PCR amplification of HSV-1 genes
UL1, UL10, UL22, glycoprotein D, and glycoprotein G
(data not shown, see Table 1 for PCR conditions and
primers).
Glycoprotein G was PCR amplified (see supplementary

table) and sequenced. Examination of the sequences
showed that the probable cause for the non-reactivity of
the mAb assay was the presence of a valine residue in
glycoprotein G at amino acid (AA) 111. This valine is
near the immunodominant region of antibody binding
during normal immune response [8]. Sequencing results
were deposited [GenBank:HQ833203], and compared to
other isolates on GenBank. Sequencing revealed that the
clinical isolate Y3369 contains an amino acid sequence
consistent with a common HSV-1 sequence found in
many parts of the world [9] (Figure 3).
A meta analysis of three population studies which

have sequenced this region of the HSV-1 US4 gene was
conducted to determine the prevalence of valine at posi-
tion 111, as was identified in our sample [9-11].
Included were isolates from individuals from China,

Figure 1 Non-reactivity of strain Y3369 to HSV-1 and HSV-2
monoclonal antibodies. MV1Lu cells infected with known HSV
types (HSV-1 strain McIntyre; HSV-2 strain 333) and clinical isolate
Y3369 were examined for reactivity of type-specific monoclonal
antibodies (mAb). Negative reactivity is indicated by the red Evan’s
blue counterstain. Infection of C1008 cells yielded similar results.

Figure 2 Isolate Y3369 is an HSV-1 strain, not an HSV-2 virus
by PCR of the HSV pol gene. Viral DNA was isolated and the pol
gene region was amplified by PCR using primers specific for either
the HSV-1 or the HSV-2 sequence. PCR results were electrophoresed
and compared between the Y3369 isolate and the McIntyre HSV-1
strain and the 333 HSV-2 strain. Image was edited to change lane
order for ease of comparison.

Table 1 PCR condistions and Primers

Primer Sequence

UL1 for

UL1 rev

UL10 for

5’-GAGACCCCCTCGGCTATAAA-3’

5’-CGTTTCTGTTTCCTGGGTGT-3’

5’-GAGCCTTGTGGGCACTTATG-3’

5’-GTGATCTGCAGCAACCAAGA-3’

5’-AAACAAAAGCGCTCCTCGTA-3’

UL10 rev

UL 22 for

UL22 rev 5’-GACAGACCCATGGTTTTTGG-3’

5’-GCTGTTTGCGGGTTGGCACA-3’

5’-TCCCCCGCCCCATACCCTAC-3’

glycoprotein G for

glycoprotein G rev

glycoprotein D for

glycoprotein D rev

5’-TTTGTGTGGTGCGTTCCGGT-3’

5’-TCCCATCCCAACCCCGCAGA-3’

PCR conditions for all reactions:

94°C 2 min, 40 cycles of [94°C 15 s, 57°C 15 s, 72°C 1:15], 72°C 2 min.
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Japan, Kenya, South Korea, Sweden, and the United
Kingdom. We discovered the valine at position 111 to
be present in all HSV-1 isolates (100%, N = 141) taken
from human populations from Asia and Africa. The
other populations, from the UK and Sweden, contained
the valine at position 111 in 36% (N = 185) of isolates
(Figure 3). This valine at position 111 is located within
the binding site for a commonly used typing mAb,
which recognizes the epitope AFPL [10]. The phenylala-
nine is replaced to form the sequence AVPL in this
variant.
Sequences for the middle region encoding AA 110 to

164 of glycoprotein G were analyzed and a phylogenetic
tree created (Figure 4). Phylogenetic analysis groups our
isolate Y3369 as an HSV-1 with sequence V (represent-
ing valine at 111) which contains the sequence AVPL
instead of AFPL, as well as other common nucleotides
as shown in Figure 4. All isolates from populations from
Africa and Asia, as well as 36% of the European popula-
tion contained the sequence AVPL, which would not be
recognized by the mAb which tests for the AFPL epi-
tope. Another study found that all isolates with a valine
residue at position 111 of glycoprotein G were untyp-
able when assaying viral antigens [10]. This specific test
would not be likely to function diagnostically in these
African or Asian populations.
Our analysis of these studies provides evidence that

glycoprotein G variation is likely significant in clinical
typing discrepancies and also in isolate variations. Ana-
lysis of the amino acid sequences of Y3369 and other
isolates indicates that there is a shared significant

variation among HSV-1 strains that alters viral antigen
assay specificity. PCR analysis is likely to succeed in
HSV typing where the isolate is not recognized by the
monoclonal antibody. In addition to results presented
here, PCR has been used to type HSV samples on other
occasions. In one study, 75 HSV-positive isolates yielded
two which were untypable using type-specific antibody
tests, later confirmed HSV-1 by PCR [12]. Another
study yielded 1 untypable isolate of 37 tested HSV-posi-
tive isolates, which was also confirmed as HSV-1 by
PCR [13]. These represent about 2% of the HSV-positive
isolates in these two studies.
We have determined the presence of two phylogenetic

groups of glycoprotein G. One group was only found in
Europe (Figure 4, sequence F), and all the isolates in
this group contain the epitope AFPL, which a common
assay uses to type HSV-1. The other group (Figure 4,
sequence V) was found in all tested regions, which
include Africa, Asia and Europe. This group was charac-
terized by the AVPL sequence. Y3369 is a member of
this group. The two sequences differ by location statisti-
cally (c2 = 142.8, p < 0.0001).

Figure 3 Two groups of glycoprotein G are unequally
distributed. Of 185 isolates taken from Sweden and the UK, 64%
contain sequence F, and this 64% represents the isolates which
would properly type using the mAb which recognizes AFPL. By
contrast, 100% of the 141 isolates taken from people in outside
Europe, but only 36% of the European isolates contained the valine
at position 111 (see sequences in Figure 4). These sequences differ
statistically by location using c2, p < 0.0001.



Figure 4 Phylogenetic analysis reveals two groups of
variations within HSV-1 glycoprotein G by region. The
evolutionary history was inferred using the UPGMA method. The
tree is drawn to scale, with evolutionary distances in the units of
base substitutions per site. There were a total of 165 positions,
coding for AA 110 to 164. Phylogenetic analyses were conducted in
MEGA4 [15]. Labeled branches represent the number of isolates
from the specified region. Sequences shown at the bottom are
from the branches highlighted with colored dots, which represent
the most common sequence. Positions where sequences V and F
differ are in color. The immunodominant region of glycoprotein G is
enclosed by a box. The epitope AFPL (underlined, present
exclusively in sequence F) is recognized by a common anti-
glycoprotein G-1 mAb. The clinical isolate Y3369 discussed herein
contains sequence V.
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The identification of these two groups, as well as their
localization to different parts of the world, may aid in
developing strategies for clinical viral antigen assays for
HSV typing. Although the isolates included in the meta
analysis which have the AVPL sequence were not tested
by us, they would likely fail to type as HSV-1 using this
same test. It should be considered that tests for the viral
antigen epitope AFLP be used with caution in Africa or
Asia.
This variation may also alter the interaction of virus

with host. The presence of the variations in the immu-
nodominant region of the protein suggests these muta-
tions could be a result of viral immune evasion. These
mutations may also affect the functioning of glycopro-
tein G, which involves attachment and entry [14].
Further tests are being performed to study what other
effects this mutation has on the virus’s efficiency of
infection.
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Appendix C. Review of interferon alpha in systemic lupus erythematosus 

See attached publication [26]. This work was a review article written in collaboration with 

members of the lab of Timothy Niewold. This work was not directly included in the dissertation, 

although some of the same information may be mentioned. 
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The pleiotropic cytokine interferon alpha is involved in multiple aspects of lupus etiology and pathogenesis. Interferon alpha
is important under normal circumstances for antiviral responses and immune activation. However, heightened levels of serum
interferon alpha and expression of interferon response genes are common in lupus patients. Lupus-associated autoantibodies can
drive the production of interferon alpha and heightened levels of interferon interfere with immune regulation. Several genes in
the pathways leading to interferon production or signaling are associated with risk for lupus. Clinical and cellular manifestations
of excess interferon alpha in lupus combined with the genetic risk factors associated with interferon make this cytokine a rare
bridge between genetic risk and phenotypic effects. Interferon alpha influences the clinical picture of lupus and may represent a
therapeutic target. This paper provides an overview of the cellular, genetic, and clinical aspects of interferon alpha in lupus.

1. Introduction

In systemic lupus erythematosus, a finely tuned system of
cells and signals is dysregulated, and the balance between
tolerance and autoimmunity is disrupted. Cytokines, as a
fundamental mechanism through which the immune system
is kept in balance, play an important role in the etiology and
pathogenesis of lupus. An example of an important cytokine
involved in lupus etiology and pathogenesis is interferon
alpha (IFNα).

IFNα is a pleiotropic cytokine that can affect multiple
cell types involved in lupus. Several genes in the interferon
pathway are associated with risk for lupus, suggesting a role
for this pathway in etiology. Additionally, increased IFNα
levels and expression of IFN response genes are often found
in lupus. IFNα may affect the clinical manifestations of lupus
and is a promising target for therapeutic interventions.

2. Cellular Aspects of IFNα in Lupus

Interferon alpha (IFNα) is a key molecule in immune
regulation. It is produced by multiple cell types in response

to viral infection. Plasmacytoid dendritic cells have a special
role in the production of IFNα and are the main sources of
serum interferon [1]. IFNα has the potential to dramatically
influence the development, progression, and pathogenesis of
SLE as it can influence the function and activation state of
most major immune cell subsets and function as a bridge
between innate and adaptive immunity.

2.1. Toll-Like Receptors and Interferon. One of the principal
mechanisms through which IFNα is produced is through
Toll-like receptor (TLR) signaling [2, 3]. TLR7 recognizes
single-stranded RNA, culminating in interferon regulatory
factor (IRF) 5 and IRF7 activation [4] and production of
IFN [5–7]. Excessive TLR 7 signaling produces lupus-like
autoimmunity in male Yaa mice, where an extra copy of the
TLR7 gene is present on the Y chromosome [8–10]. The
autoimmune phenotype conferred by the Yaa genotype is
dependent on IFN α, and addition of IFNα can partially
duplicate the Yaa phenotype [11]. Additionally, knocking out
the IRF7 gene or inhibiting its action with pharmacologic
agents inhibits antibody production against RNA-containing
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Figure 1: Putative source and effects of interferon alpha in lupus.
RNA-containing complexes from apoptotic cells are bound by
autoantibodies. These immune complexes are internalized after
binding to FC receptors on plasmacytoid dendritic cells and
stimulate toll-like receptors in the endosomes. Toll-like receptor
ligation drives production of interferon alpha, leading to alteration
of T-cell profiles, disruption of regulatory T-cell networks, and
alteration of B-cell development.

nuclear components [12], suggesting that TLR7 is essential
for this type of autoantibody production.

A characteristic of many cases of lupus is the production
of antibodies against RNA-containing protein complexes
such as Sm, nRNP, Ro, and La. In fact, antibodies against the
spliceosomal protein Sm are so specific for lupus that they
are used as a diagnostic criterion. The RNA found in these
complexes is capable of promoting the production of IFNα
through the stimulation of TLR7 [3, 13] (Figure 1).

Because TLR7 is located in the endosomes, RNA-
containing complexes must access the interior of the cell
before they are able to act as activators. Autoantibodies
specific for these lupus-associated riboproteins can bind with
antigens derived from apoptotic cells and form antibody-
protein-RNA complexes. The Fc portions of the immune
complexes are recognized and internalized by cells with Fc
receptors, providing a route of entry for RNA to reach TLR7,
resulting in interferon alpha production [3, 14]. This process
is especially well established in PDCs [15, 16]. Interestingly,
in addition to being produced as a result of TLR7 ligation,
IFNα enhances TLR7 signaling in PDCs [17, 18], forming a
positive feedback loop.

Despite these data and the strong association between
SLE-associated autoantibodies and serum IFNα, SLE-
associated autoantibodies are not sufficient for high serum
IFNα in humans in vivo [19]. Healthy subjects with anti-Ro
antibodies do not have high serum IFN-α, while a significant
proportion of anti-Ro positive patients with SLE or Sjogren’s
syndrome do have high serum IFNα, suggesting that these
autoantibodies require other disease-associated factors to
result in high serum IFNα in humans.

2.2. IFNα and Adaptive Immune Regulation. Excess serum
IFNα and IFN-response gene expression are characteristics
of lupus and are most likely the result of excessive PDC
activation. Such high levels of interferon could contribute
to lupus by promoting immune activation rather than
tolerance. Dendritic cells are the primary activators of T cells,
and affect both T-cell tolerance and activation, depending on
the state of the dendritic cell. When treated with interferon
alpha, dendritic cells mature and become more prone to
activate T cells [20, 21]. Myeloid dendritic cells from lupus
patients are able to phagocytose and present self-antigens to
T cells in a stimulatory, rather than regulatory manner, a
process which is interferon-dependent [22]. Such a process
likely contributes to loss of T-cell tolerance to self-antigens
and subsequent autoimmunity.

Exposure of the dendritic cell to IFNα contributes to
T cell polarity. When CD4+ T cells are activated in the
presence of IFNα-producing dendritic cells, their polarity
is shifted towards IFN-γ producing cells rather than IL-4
producing cells [23, 24], which may promote autoimmunity
or immune dysregulation. The T-cells activated by IFNα-
treated dendritic cells also are enriched for T-follicular helper
cells, a recently described cell type which are adept at
activating B cells and driving antibody production [25].

Regulatory T cells (T-reg) are attracting increased atten-
tion as a mechanism of immune regulation and suppression
of autoimmunity. In lupus, T-regs are often, though not
always, found in lower numbers than in controls [26–
31]. Those T-regs that are present in lupus are inefficient
at suppressing inflammation and T-cell proliferation [27,
29, 30, 32]. T-reg development is suppressed by treatment
of dendritic cells with IFNα [33]. In lupus patients, T-
reg activity is diminished, due at least in part to the
action of IFNα [34] indicating that increased IFNα levels in
lupus patients is likely contributing to the development or
maintenance of autoimmunity through suppression of T-reg
cells.

B cells are important in lupus, since humoral autoim-
munity is a hallmark of the disease. IFNα can prevent
apoptosis and enhance proliferation of primary B cells,
even in the absence of mitogenic stimuli [35]. Interestingly,
isolated B cells are inhibited from developing into antibody-
producing plasma cells by IFNα treatment [36]. However,
this inhibition is reversed if the B cells are allowed to come
into contact with monocytes, in which case IFNα actually
stimulates B-cell development and antibody production
[37].



The ability of IFNα to influence the activation and func-
tion of many major immune cell subsets is a testament to the
wide and far-reaching effects of this cytokine. It is clear that
interferon is dysregulated in lupus and that overexpression
of IFNα can result from the autoantibodies present in lupus.
Many components of the molecular pathways through which
IFNα and TLRs drive immune activation include genetic risk
factors for lupus, further implicating IFNα in lupus etiology
and pathogenesis.

3. IFN and IFN-Related Genes
Associated with SLE Risk

Lupus involves a combination of both environmental and
genetic factors. Support for a genetic component includes a
high sibling risk ratio [8–29], high heritability (greater than
66%), and higher concordance rates between monozygotic
twins (20 to 40%) as compared to other full siblings and
dizygotic twins (2 to 5%) [38, 39]. A large number of genetic
risk factors are associated with increased susceptibility to
the SLE. This genetically determined increased risk status
has been referred to as a “threshold liability” [40], which is
expected to be highly polygenic in nature and widely variable
between individuals. Environmental factors also affect lupus
susceptibility and likely interact with this “threshold liabil-
ity”, but as in the case of genetic factors, there is no single
environmental cause. A person may have only a few of the
genetic risk variations and never get SLE despite exposure
to environmental triggers. In contrast, another person may
have many of these variations and then develop SLE on first
exposure to an environmental trigger.

3.1. Lupus-Associated Risk Loci. Research into the etiopatho-
genesis of SLE has recently been advanced by several large
scale case-control genetic studies, including genome-wide
association scans. There is now a pool of approximately
30 genes that have been associated with SLE susceptibility
with a high degree of statistical certainty and many others
with probable evidence for association (reviewed in [41–
45]). With this large number of SLE-associated genes, we
can begin to group the list of identified SLE associated
genes which should provide insight into initial disease
pathogenesis into functional categories. These categories
include TLR and IFN signaling, apoptosis and clearance of
immune complexes, and B- and T-cell signaling. Several
genes affecting the interferon pathway have been associated
with risk for lupus. The Interferon pathway normally serves
an important function in defense against viral infection.
Yet in people with genetic predisposition, environmental
triggers such as viral infections may tip the scales in favor
of autoimmunity.

Once a genetic variation is identified, functional infer-
ence then characterization is necessary to move from iden-
tification to an understanding of how the variation affects
the etiology or pathogenesis of SLE. Since most of the genes
involved in genetic susceptibility to SLE have been identified
only recently, there remains much work to identify the
functional differences in the genetic associations. However,

work done thus far in human cohorts is promising, and the
categories of genes and loci associated with risk of lupus
already suggest pathways that are of high importance.

3.2. Interferon Regulatory Factors. Certain lupus-associated
genetic variations have been shown to directly increase IFNα
levels or response to IFNα signaling. Interferon regulatory
factor 5 (IRF5) has been confirmed as a risk locus in several
different ethnic groups [46–50]. Three main functional
variants in IRF5 have been described, which combine to form
a risk haplotype in individuals of European descent [51].
One of these loci, at rs2004640, creates an alternate splice site
(exon 1B) in the untranslated first exon. Another is a copy
number variation of a 30-bp insertion/deletion sequence in
exon 6, and the final is rs10954213, which creates an alternate
polyadenylation site, resulting in shorter, stabler mRNA
[52].

Since IRF5 activates IFNα production, these more stable
variants may pose a risk due to their ability to produce excess
IFNα. In fact, studies of this gene in human SLE cohorts
have shown that the risk variant predisposes to greater
serum IFN-α, supporting the idea that the risk haplotype
is a gain-of-function variant [53]. IRF5 itself is activated by
IFNα signaling, producing a potential positive feedback loop.
Another IRF, IRF7, has been highlighted by the association
of the IRF7/KIAA1542 locus with lupus in recent studies
[54, 55]. Several SNPs in this area were shown to correlate
with IFNα levels and alter autoantibody profiles in certain
ethnicities [56].

IRF5 and IRF7 are activated by signaling through the
endosomal toll-like receptors (TLRs) 7, 8, and 9. Interest-
ingly, both of the IRF variants which are implicated in SLE
predispose to higher serum IFN-α, but only in the presence
of SLE-associated autoantibodies [53, 56] suggesting that
these autoantibodies may provide chronic stimulation of the
endosomal TLR pathway of IFN-α generation that when
combined with gain-of-function polymorphisms in the IRFs
results in dysregulation of the pathway in vivo. Additionally,
TLRs 8 and 9 were identified in recent studies as containing
susceptibility loci to SLE [57, 58]. The role of TLRs in the
interferon production was discussed above.

3.3. Interferon-Associated Genes. Another confirmed locus
of susceptibility is in the gene encoding IL1 receptor-
associated kinase 1 (IRAK1). This kinase is part of the
signal transduction which follows TLR ligation. In a mouse
model of lupus, IRAK deficiency eliminated most lupus
symptoms, showing the importance of this key intermediate
[59]. Since this gene is on the X chromosome, gene dosage
may contribute to the risk and the prevalence of the disease
in women [59].

Two interacting proteins involved in inflammation,
TNFα-induced protein 3 (TNFAIP3) and TNFAIP3-inter-
acting protein 1 (TNIP1), have been identified as risk loci
[60–64]. TNFAIP3 encodes the protein A20, which helps
turn off signaling through NFκB after an inflammatory
response [65, 66]. TNIP1 interacts with TNFAIP3 and is
involved in several signal transduction pathways.
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Figure 2: Multiple genes involved in interferon production and
regulation are associated with risk for lupus. Shown are components
of the signal transduction pathway from TLR stimulation by
nucleic acids to IFN production. Genes that have been associated
with risk for lupus are marked (∗). IFN: interferon, IRAK:
interleukin-1 receptor-associated kinase, IRF: interferon regulatory
factor, MyD88: myeloid differentiation primary response gene 88,
OPN: osteopontin, pDC: plasmacytoid dendritic cell, TLR: toll-like
receptor, TNFAIP3: tumor necrosis factor alpha induced protein 3,
TNIP1: TNFAIP3 interacting protein 1, and TRAF6: tumor necrosis
factor receptor-associated factor 6.

Signal transducer and activator of transcription 4
(STAT4) is another risk locus with direct links to the inter-
feron pathway. It is involved in proliferation, differentiation,
and apoptosis. STAT4 has 2 risk loci, one at rs7574865 which
has been shown to increase sensitivity to IFNα [67], and
another at rs3821236 which increases STAT4 transcription
and interacts with IRF5 susceptibility loci [68]. The presence
of both of these risk alleles gives an additive effect, increasing
risk to SLE [69]. Osteopontin (OPN) is a key molecule for
IFNα production in pDCs [70]. Presence of a lupus risk-
associated form of this gene was recently tied to high IFN
levels in males and young-onset female lupus patients [71].

Possible interactions of the IFN-associated genes that
have been linked to lupus are shown in Figure 2. The risk
variants of these genes influence the production of and
response to IFNα, likely driving the increased levels seen in
lupus patients and affecting the clinical manifestations of the
disease.

4. Clinical Aspects of IFNα in Lupus

Lupus primarily affects women in the reproductive years;
however people of all ages, genders, and ancestral back-
grounds are susceptible. Disease features range from mild
manifestations such as rash or arthritis to life-threatening
end-organ manifestations such as glomerulonephritis or
thrombosis, and it is difficult to predict which manifestations
will affect a given patient.

4.1. IFN-α as a Causal Factor in Human Lupus. A num-
ber of patients treated with IFNα have developed lupus
or lupus-like syndrome [72–74]. In these reports, many
specific manifestations of idiopathic lupus such as malar or
discoid rash, oral ulcers, photosensitivity, renal involvement,
and anti-Sm and anti-dsDNA antibodies were represented,
suggesting that these cases were not “drug-induced” SLE but
instead resembled idiopathic SLE [73]. Discontinuation of
IFNα typically resulted in remission of SLE symptoms [73],
supporting a causal relationship with IFN-α. While only a
minority of patients treated with IFNα develop SLE (<1%
of patients) [75], these data support the idea that IFNα can
be sufficient to induce SLE in some individuals. Many more
IFNα-treated individuals develop a “lupus-like” syndrome
[74], with some SLE symptoms which are insufficient to
meet formal diagnostic criteria for SLE [76]. IFN-induced
SLE can be severe, and there are reports of life-threatening
multiorgan SLE involvement including glomerulonephri-
tis, serositis, discoid rash, myopericarditis, and vasculitis
[77, 78].

Another finding which supports the hypothesis of IFNα
as a primary causal factor in human SLE is the clustering
of high serum IFNα in lupus families [79]. Patients with
lupus and their healthy relatives have higher serum IFNα
activity as compared to healthy unrelated individuals [79].
Strong familial correlations in serum IFNα were observed
regardless of disease status (affecteds versus unaffecteds), and
SLE probands in the same family tended to have similar IFNα
levels [79]. Spouses of SLE patients did not have high serum
IFNα activity, and taken together these data suggest that high
serum IFNα is a heritable risk factor for SLE. Interestingly,
age-related patterns of serum IFNαwere also observed in SLE
families in which the ages of highest IFNα mirrored the ages
of peak SLE incidence [80, 81]. The discovery of several lupus
risk loci in IFN-related genes provides further support for the
above observation that serum IFN-α is heritable, and the SLE
risk variants of each of these genes result in a gain of function
increase in IFNα signaling as detailed above.

4.2. Clinical Correlations with IFN Alpha. A very strong
correlation is consistently observed between the presence
of SLE-associated autoantibodies, such as anti-Ro, anti-La,
anti-Sm, anti-RNP, and anti-dsDNA [79, 82]. Lupus patients
with high serum IFNα had a significantly higher prevalence
of cutaneous and renal disease in most studies [82–84]. It
is interesting that both of these clinical manifestations share
an association with a particular serology (rash with anti-Ro
and nephritis with anti-dsDNA), and whether these clinical
manifestations are associated independent of serology has
not been shown to our knowledge.

A number of studies have shown that IFNα correlates
with disease activity when assessed cross sectionally [82–85].
Results are conflicting regarding the potential fluctuation of
IFNα with disease activity in SLE, and there are a number
of studies which did not find a longitudinal correlation [86,
87]. In these studies, a cross-sectional relationship between
IFNα and disease activity is still observed, suggesting that
IFNα may indicate those patients who generally have higher



disease activity as compared to other patients. A recent
prospective study evaluated the utility of serum interferon-
regulated chemokine levels as potential biomarkers of SLE
disease activity [88]. In this study, IFNα-induced chemokines
correlated with disease activity cross sectionally, rose at the
time of a flare, and decreased as the disease remitted [88]. In
this same study, high chemokine levels were predictive of SLE
flare over the next year in a subset of patients.

4.3. Anti-IFNα Therapies in Lupus. Given all of the studies
presented above, there has been considerable interest in
therapies which block IFNα. To date there is one published
study describing a phase I trial of a fully human monoclonal
antibody that binds to the majority of the subtypes of
human interferon alpha [89]. Treatment with this anti-
IFN antibody resulted in a dose-dependent inhibition of
interferon-induced gene expression in peripheral blood cells
as well as skin lesions in patients with mild to moderate
SLE [89]. No obvious safety signals were reported during
the phase I trial of anti-IFN therapy, and the proof-of-
principle analyses supported a biological effect blocking the
IFN pathway in humans. Phase two trials to assess efficacy
of these agents in treating SLE are currently underway.
There are many known predictors of high serum IFNα in
SLE patients, including both serologic and genetic markers
outlined in this paper. We anticipate that incorporation
of these variables into clinical trial design would enhance
efficacy and potentially minimize side effects by targeting
the most relevant patient group. Long-term safety data will
be important, since IFNα is such a highly conserved and
important immunological mediator of viral defense.

5. Conclusions

IFN-α is associated with SLE through multiple lines of
evidence. These include genetic, immunological/serological,
and clinical associations, as described in this review. It
is likely that IFN-α plays a key role in SLE etiology,
pathogenesis, and/or disease persistence. Despite this large
body of evidence associating IFN-alpha with lupus, the
association between interferon alpha and SLE is largely infer-
ential. The exact cellular and immunological mechanisms
through which IFN affects lupus also remain undiscovered
for the most part. These mechanisms and pathways are
potentially fertile areas for future investigation. Such studies
will likely lead to new therapeutic targets as well as a greater
understanding of lupus as a disease.
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G. V. Alm, and L. Rönnblom, “Induction of interferon-
alpha by immune complexes or liposomes containing systemic
lupus erythematosus autoantigen- and Sjogren’s syndrome
autoantigen-associated RNA,” Arthritis and Rheumatism, vol.
54, no. 6, pp. 1917–1927, 2006.

[4] A. Schoenemeyer, B. J. Barnes, M. E. Mancl et al., “The
interferon regulatory factor, IRF5, is a central mediator of toll-
like receptor 7 signaling,” Journal of Biological Chemistry, vol.
280, no. 17, pp. 17005–17012, 2005.

[5] K. Hoshino, T. Sugiyama, M. Matsumoto et al., “IκB kinase-
α is critical for interferon-α production induced by Toll-like
receptors 7 and 9,” Nature, vol. 440, no. 7086, pp. 949–953,
2006.

[6] T. Kawai, S. Sato, K. J. Ishii et al., “Interferon-α induction
through Toll-like receptors involves a direct interaction of
IRF7 with MyD88 and TRAF6,” Nature Immunology, vol. 5,
no. 10, pp. 1061–1068, 2004.
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See attached publication [242]. This review of current literature was written with members of the 

Poole laboratory. This copyrighted work was summarized, and an alternate figure was included 

in this dissertation (Section 1.8.1).

102 



REVIEW

Cytokine inhibition as a strategy for treating systemic
lupus erythematosus
Daniel N. Clark, Jillian L. Markham, Chad S. Sloan, Brian D. Poole⁎

Department of Microbiology and Molecular Biology, Brigham Young University, 857 WIDB, Provo, UT 84602, USA

Received 2 September 2012; accepted with revision 4 November 2012

KEYWORDS
Cytokine Inhibitors;
Lupus

Abstract Cytokines regulate and control the immune system. In systemic lupus erythematosus,
several of these cytokines are overexpressed and contribute to the pathogenesis of the disease.
Cytokine inhibition has been successfully used to treat other rheumatic and autoimmune diseases,
and several cytokines are currently being investigated to determine whether inhibition would be
therapeutic in lupus. The cytokines discussed in this review have all undergone clinical trials, and
include TNF-α, IL-1, IL-6, IL-10, IL-15, IL-17, IL-18 and IL-23. Inhibition of the majority of these
targets was safe and showed some efficacy in treating lupus. Cytokine inhibition strategies have
just started to realize their potential for the treatment of this difficult disease, and show great
promise for the future.
© 2012 Elsevier Inc. All rights reserved.
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1. Introduction

Systemic lupus erythematosus (SLE) is a highly complex and
diverse disease. Despite substantial research, the etiology
and pathogenesis of lupus are still not well understood.
Additionally, the course of lupus, with its remission and
flares, makes evaluation of therapies difficult. Due to these
obstacles, treatment for lupus has lagged behind many other
diseases, with only one new medication for lupus treatment
approved by the United States Food and Drug Administration
(FDA) in the last 50 years.

Infusion with monoclonal antibodies or other specific
proteins, such as soluble receptors that specifically target
and inhibit cytokines is revolutionizing the practice of
rheumatology. These agents have been used with good
effect in the treatment of rheumatoid arthritis and other
autoimmune or inflammatory disorders such as Crohn's
disease and psoriasis. Given the importance of inflammation
and immune control in lupus, these agents hold great
promise for treating lupus as well. Inhibition of several
cytokines as therapeutics for lupus is under investigation,
and one has met with success and FDA approval. However,
given the complexity and course of lupus, the results of
these trials have been somewhat mixed. This review will
summarize the current approaches and strategies for
inhibiting cytokines as a therapeutic mechanism in the
treatment of lupus, and will include a discussion of cytokine
inhibitors that have been tested in lupus as well as those
which are applicable to lupus and have been tested in other
diseases.

2. Current cytokine inhibitors undergoing trials
as lupus treatments

Two of the most promising cytokines that have been
inhibited as a treatment for lupus, BLyS and IFN-α, will be
discussed in other articles in this special issue, therefore
they will not be included here. Instead, the cytokines IL-6,
TNF-α, IL-1 and IL-10, inhibitors of which have undergone
clinical trials for lupus, will be discussed.

2.1. Interleukin 6

IL-6 is a cytokine produced by many cell types. It has multiple
effects on many target cells, inducing CD4+ T cell differen-
tiation, B cell development, and the production of acute
phase proteins. It also drives production of IL-17-producing T
cells [1]. IL-6 is found at increased levels in lupus patients
compared to controls [1], and is also higher in lupus patients
with nephritis compared to either controls or lupus patients
without renal involvement [2]. B cell-produced IL-6 has been
shown to contribute to autoantibody production [3]. Certain
IL-6 promoter polymorphisms may contribute to genetic risk
for lupus [4].

IL-6 deficient mice are resistant to lupus. IL-6-deficient
MRL-Fas(lpr) mice have delayed onset nephritis and much
higher survival than control mice, along with decreased
cellular infiltration, complement deposition, and Ig deposition
[5]. Other IL-6 deficient mice showed that anti-DNA antibody
production was dependent on IL-6 in pristane-induced lupus,
although the development of antibodies against RNA-binding
proteins was not [6], suggesting different pathways for
autoantibody production in lupus (Fig. 1).

An anti-IL-6 receptor antibody, Tocilizumab, is approved
for use in rheumatoid arthritis, with seven phase three trials
completed [7]. The safety profile and effectiveness of IL-6
blockade in rheumatoid arthritis is therefore well-established.
There has been one successful open-label phase I dose-
escalation trial of Tocilizumab in SLE [8]. The major side
effect of treatment was neutropenia, with 56% of participants
experiencing neutropenia at the highest dose (8 mg/kg). One
participant was withdrawn because of neutropenia, however,
no neutropenia-related infections were identified [8].
Neutropenia was also noted in the studies of Tocilizumab for
rheumatoid arthritis, but in those studies was also not
associated with infection or malignancy [7], although there is
a higher risk of infection with Tocilizumab treatment (Table 1).

Tocilizumab showed promise in treating lupus, with
effects that seemed directed at autoantibody production.
The modified SELENA-SLEDAI scores decreased moderately
but significantly from a mean of 9.5 to 5.5 [8], with most of
the improvement in rash and arthritis. Anti-dsDNA levels
decreased by a mean of 46.8%. This decrease in autoanti-
bodies may be associated with decreased circulating plasma
cells. Circulating plasma cells decreased by nearly 36% in the
treated individuals, and remained at this low level during
follow up [8]. It may be the case that the drop in plasma
cells and therefore autoantibodies is responsible for the
decreased rash and arthritis in treated volunteers, but these
clinical responses may also be due to some other aspect of
IL-6 blockade.

2.2. Tumor necrosis factor-α

TNF-α is a proinflammatory cytokine with pleiotropic effects
on multiple cell types. TNF-α activates macrophages, induces
the release of further proinflammatory cytokines, regulates
apoptosis of lymphocytes and other cells, and aids in cell
migration [9]. In lupus, TNF-α acts as a growth factor for B
cells stimulating production of IL-6 and IL-1. NZB/Wmice with
low expression of TNF-α develop severe lupus-like disease, but
addition of TNF-α later in disease also exacerbates lupus
[10–12]. These results suggest that TNF-α aids in preventing
the development of lupus, but once established, worsens the
resulting inflammation and pathogenesis.

Inhibition of TNF-α has met with substantial success in
treating rheumatoid arthritis, as well as other inflammation-
mediated diseases such as Crohn's disease and spondyloarthritis.
Lupus would seem at first glance to be a good candidate for
TNF-α inhibition, since TNF-α is significantly increased in the
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serum of lupus patients [2,13,14]. Some initial studies showed
that treatment of lupus patients with TNF-α inhibitors had a
therapeutic effect, especially in combinationwith other agents.
However, inhibition of TNF-α can also have a stimulatory effect
on lupus. Treatment with TNF-inhibitors can induce lupus-like
autoimmunity, which in some cases may be severe enough to be
diagnosed as lupus. After discontinuation of the anti-TNF-α
treatment, the lupus-like autoimmunity normally resolves
[15–17]. Also, switching to a different TNF-α inhibitor often
resolves the lupus-like autoimmunity [18,19].

The reason why TNF-α inhibitors induce lupus-like
autoimmunity is not clear. One explanation is that TNF-α is
necessary at a threshold level to suppress the production of
Interferon-α (IFN-α) [20–22]. Therefore, when TNF-α levels
decrease, more IFN-α may be available to drive lupus-like
autoimmunity.

Dysregulation of apoptosis and clearance of apoptotic
cells also likely contributes to the development of lupus-like
disease after TNF-α inhibition. Anti-TNF-α antibodies inhibit
proteins, such as amyloid P and complement components
C1q and C4b, that aid in the clearance of apoptotic cells
[23–27]. Another possibility for the mechanism of TNF-
inhibitor-induced lupus is the altered apoptosis of mature
lymphocyte populations [28], contributing to excessive
apoptotic debris [29]. Genetic predisposition is also involved,
with lupus-prone mice exhibiting altered TNF-α receptor
signaling molecules. This leads to loss of apoptotic control of
autoreactive cells. Decreased apoptosis of these cells is likely
to contribute to escape from tolerance of autoreactive
lymphocytes in the absence of the apoptotic signal produce
by TNF-α [29,30].

Despite the ability of TNF-α inhibitors to induce lupus-like
syndrome, there are currently multiple clinical trials under-
way investigating the use of TNF-α inhibitors for the treatment
of lupus. For example, two studies investigating the use of
Infliximab to treat lupus patients showed significant improve-
ment in SLEDAI scores, and had no significant reported safety
concerns, although these studies only examined 27 and 6 lupus
patients, respectively [31,32], Increased anti-nuclear anti-
bodies were observed in one of the treated groups in one study
[32]. A phase II trial of Etanercept in treating lupus was
terminated. The variable and somewhat contradictory results
of these studies mean that TNF-α inhibitors remain a
complicated but potentially important part of the future of
lupus treatment.

2.3. Interleukin 10

IL-10 is a somewhat contradictory cytokine. It is generally
considered an anti-inflammatory and immunosuppressive
cytokine. However, it is overexpressed in lupus and in some
cases acts as a lupus-promoting molecule. When considering
IL-10 as a potential target for inhibition, therefore, it is
important to balance its role in promoting lupus with its
general role in regulating the immune system.

Multiple cell types produce IL-10. These include Type 1
regulatory T (TR1) cells, some FoxP3+ regulatory T cells,
macrophages, myeloid dendritic cells, and B cells, as well
as many other cell types [33]. IL-10 produced by TR1 cells
functions primarily to reduce inflammation and control
immunopathogenesis [33,34]. IL-10 suppresses the antigen-
presenting and T-cell stimulatory capacity of macrophages
and dendritic cells, limiting and controlling the subsequent T
cell response [35].

Elimination of IL-10 in mouse models can lead to excessive
inflammation. IL-10 knockoutmice develop inflammatory colitis
[36]. Knocking out IL-10 in the lupus model MRL-Fas(lpr) mice
led to faster disease development, more severe disease, and
more mortality than in IL-10 competent mice [37].

In contrast to the suppressive activities of IL-10, on antigen
presenting cells especially, IL-10 can have substantial activating

Table 1 Cytokine inhibition-based therapies and their
effects on lupus.

Cytokine
inhibited

Drug Name Current Phase of
clinical Trial

Therapeutic
results

TNF-α Infliximab Phase I complete
(lupus)

SLEDAI score
improvement
Worsened
autoantibody
levels

Adalimumab
Certolizumab
Golimumab
Etanercept

IL-1 Anakinra

Phase II terminated
(lupus)
FDA approved
(Rheumatoid
arthritis)

Decreased
muscle pain
Decreased
Arthritis
Variable
complement
levels

Canakinumab FDA approved
(CAPS)

Rilonacept FDA approved

IL-6
(CAPS)

Tocilizumab Phase II SLEDAI score
improvement
Decreased
autoantibody
levels

IL-10 B-N10 Phase I equivalent
complete

Improved
M-SLEDAI
Decreased
steroid use

IL-15 HuMax-IL15/
AMG 714

Phase I/II
complete
(Rheumatoid

N/A for lupus

IL-17
arthritis)

Ixekizumab Phase III complete
(Psoriasis)

N/A for lupus

Secukinumab Phase III complete
(Psoriasis)

Brodalumab Phase II complete

IL-18
(Psoriasis)

R h IL-18BP Phase I complete
(Rheumatoid arthri-

N/A for lupus

IL-23

tis and Psoriasis)
GSK1070806 Phase I (Obesity)
Ustekinumab Phase III complete

(Psoriasis)
N/A for lupus
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effects on other cell types. Human B cells are especially prone
to IL-10 stimulation, where it acts as a potent growth factor and
stimulates production of immunoglobulin [38]. IL-10 also
induces class switching and differentiation into plasma cells
[39]. The finding that IL-10 is present in higher concentrations in
lupus patients than controls, and is still higher in lupus patients
with active disease compared to inactive, supports the idea that
IL-10 contributes to lupus [40,41].

Inhibition of IL-10 has been tried in vitro, in mouse
models, and in human lupus patients. Inhibition of IL-10 in
human serum from lupus patients prevents apoptosis from
being induced by that serum, indicating that the excess IL-10
in lupus patient serum may contribute to apoptosis [42].
SCID mice injected with PBMCs from human lupus patients
produced less IgG when treated with anti-IL-10 antibodies
[43], and similar mice showed less renal impairment after
IL-10 blockade [44].

One clinical trial of IL-10 blocking antibodies as a therapy
for lupus was reported [45]. The antibody was administered to
six lupus patients over a period of 21 days, and followed up at
six months. One patient developed chills attributable to the
treatment, which was stopped for that patient. No other
treatment-related adverse events were noted. Disease activ-
ity was measured by the Mexican SLEDAI test. Scores on this
test improved substantially for all patients during treatment.
All patients also decreased their dose of steroids during
treatment due to improvement in symptoms [45]. However,
the lack of a control group, as well as the limited number of
patients requires that these results be interpreted cautiously.

IL-10 remains an important and somewhat contradictory
cytokine. While IL-10 blockade is being considered as a lupus
therapeutic, at the same time recombinant IL-10 to increase
IL-10 levels is also being studied. Well-designed experiments
are necessary to uncover the potential of IL-10 modulation

and conditions wherein it would be useful as a treatment for
lupus.

2.4. Interleukin 1

The main role of IL-1 is to promote inflammation [46]. There
are 11 members of the IL-1 family, which includes both
cytokines and inhibitors. Cytokines in this family that are
targets for inhibition in lupus include IL-1α, IL-1β, and IL-18
[46]. IL-1β and IL-1α bind the same receptor. However, IL-1
β is normally secreted, while IL-1α is predominantly
cell-bound. IL-1 exerts its effects on inflammation by several
mechanisms. It is a costimulator for T-cells [47], and acts to
enhance the generation of Th17 cells [48]. IL-1 also acts to
enhance migration of inflammatory cells and to stimulate
production of other proinflammatory molecules, such as
prostaglandin E2 [47]. IL-1 receptor antagonist (IL-1RA) is a
naturally occurring protein that antagonistically competes
with both IL-1α and IL-1β, thus blocking their function. The
ratio between IL-1 and IL-1RA is important in balancing the
level of inflammation and immune activation.

IL-1 has been associated with lupus through correlation
between IL-1 and IL-1RA levels and lupus activity, as well as
IL-1 genetic polymorphisms. IL-1 concentration is higher in
lupus patients than controls, and higher in lupus nephritis
than lupus without nephritis [49]. Levels of IL-1RA were
found to correlate with flare and kidney involvement in
lupus patients [50,51]. There are specific polymorphisms in
the IL-1 gene cluster that are associated with risk for lupus
[52,53]. Additionally, mice with IL-1β knocked out are
resistant to the development of lupus induced by injection
of anti-DNA antibodies, though mice lacking IL-1α did not
receive this protection [54].

Figure 1 Processes and pathways in lupus targeted by cytokine inhibition. Multiple signaling and cellular pathways (gray boxes)
contribute to the pathogenesis of lupus. Cytokine inhibition suppresses or otherwise affects many of these processes. Cytokines are each
represented by a symbol which is present in the corresponding pathway. Drugs targeted to each cytokine are shown; although some drugs
target the cytokine, others target a receptor. Several pathways which are affected by the cytokines, but less important to lupus are
omitted. TNF: tumor necrosis factor, mAb: monoclonal antibody, IL: interleukin, RA: receptor antagonist, BP: binding protein.
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IL-1 is integral in the pathophysiology of multiple inflam-
matory diseases, including rheumatoid arthritis, gout,
periodontal disease, and osteoarthritis [55]. A recombinant
IL-1RA, Anakinra, is approved for treatment of rheumatoid
arthritis, and has also undergone clinical trials for several of
these other inflammatory diseases [46]. Other IL-1 blocking
agents include a monoclonal antibody, Canakinumab, and a
fusion protein, Rilonacept, consisting of the extracellular
domains of the IL-1 receptor fused to an antibody Fc region
[46].

A study with three lupus patients who were treated with
Anakinra showed transient effectiveness on muscle pain
and/or polyarthritis in two of the patients, while there was
no effect reported in the third patient. The only side effect
was a slight drop in C3 and C4 levels [56]. In another safety
study involving 4 lupus patients, Anakinra showed some
positive effect on treating lupus [57]. The numbers and
study design of both of these reports do not permit strong
conclusions to be drawn as to the efficacy of inhibiting IL-1 in
lupus.

3. Potential future cytokine targets

IL-17, IL-23, IL-15 and IL-18 are potential targets for
anti-cytokine therapies for SLE. Some have already shown
promising results in clinical trials for rheumatoid arthritis,
psoriasis, and other diseases. These interleukins are involved
in important signaling pathways such as B cell activation,
inflammation, apoptosis and the T cell response.

3.1. Interleukin 17A

The cytokine IL-17A is overexpressed in lupus [58]. IL-17A
exerts a multitude of effects, including inducing IL-6
production, cell recruitment to inflamed locations, and
differentiation of inflammatory cells and B cells [59]
(Reviewed in [60,61]). One of the most important effects
of IL-17A in terms of lupus is inhibiting the differentiation of
regulatory T cells. [62]. IL-17A is primarily produced by Th17
cells and CD4-, CD8-double negative T cells. These cells
differentiate in the presence of TGF-β and IL-6. In the
absence of IL-6, the naïve T cells tend to instead differen-
tiate into regulatory T cells, which suppress autoimmune
responses [63]. IL-23, produced by antigen presenting cells,
is necessary for the growth and maintenance of IL-17
producing cells [64].

IL-17A is an important contributor to lupus. Lupus
patients have increased numbers of IL-17-producing cells
[65], as well as IL-17A concentrations, which correlate with
disease activity [66]. Multiple mouse models of lupus show
high IL-17A concentrations [67]. The MRL-Fas(lpr) lupus
mouse model shows high levels of IL-17A, as well as
increasing levels of the IL-17A and IL-23 receptors as the
disease progresses [68].

Because of the complicated layers of cytokines responsi-
ble for driving IL-17A production and the maturation and
maintenance of IL-17-producing cells, there are multiple
potential therapeutic targets that would inhibit IL-17A
production. Some of these strategies include directly
inhibiting IL-17A, inhibiting IL-23, inhibiting IL-6, and

blocking JAK/STAT signaling, which is necessary for IL-17A
production [60].

An IL-17A inhibitory monoclonal antibody, Ixekizumab,
has undergone clinical trials for psoriasis and rheumatoid
arthritis. The safety profile appeared good, with no severe
adverse effects during a phase II trial for psoriasis or a phase
I trial for rheumatoid arthritis [69,70]. Secukinimab, another
anti-IL-17A monoclonal antibody, has been tested for safety
and efficacy in several autoimmune diseases. One study,
examining Crohn's disease, found that the treatment group
in this study had significantly more infections, especially
fungal infections, than the control group [71]. Other studies
examining the use of Secukinimab in psoriasis and other
inflammatory diseases have had good safety profiles [72,73].
An additional antibody, Brodalumab, targets the IL-17
receptor, rather than the cytokine itself, and has also had
good response and safety results in studies of psoriasis [74].

3.2. Interleukin 23

Inhibiting IL-23 would likely have many of the same effects as
inhibiting IL-17A, since IL-23 is necessary for the expansion
and maintenance of IL-17-producing cells. IL-23 receptor-
deficient mice are resistant to lupus, with fewer IL-17
producing cells, autoantibodies, and symptoms [75]. There is
currently an anti-IL-23/IL-12 antibody, Ustekinumab, in use
for treating psoriasis and Crohn's disease that does not respond
to Infliximab [76]. No trials have been performed using
Ustekinumab for treatment of lupus, although there are case
reports of Ustekinumab being used for psoriasis also being
beneficial for cutaneous lupus [77,78].

3.3. Interleukin 15

IL-15 is a pleiotropic cytokine that is produced by multiple
cells and has different effects depending on the target cell.
It is important for the activation and survival of natural killer
cells and CD8+ memory T cells [79]. Phagocytic, antigen-
presenting, and proinflammatory activities of macrophages
and dendritic cells are activated by IL-15 [80]. Importantly
for the development of autoimmune disease, IL-15 enhances
the activation and maintenance of IL-17-producing T cells,
which have been discussed above [81].

IL-15 has an interesting signaling mechanism, in that it is
capable of being recycled by cells with the IL-15Rα chain and
presented to neighboring cells. In this way, IL-15 functions
primarily in membrane-bound form through cell-cell contact
[80,82].

IL-15 has been associated with lupus through both patient
and animal studies. Lupus patients have high serum concen-
trations of IL-15 compared to controls [83–86], although this
finding is not universal [87]. Lymphocytes from lupus patients
do not respond as strongly to IL-15 as do controls [83].
The membrane-associated form of IL-15 was observed
to be overexpressed in the male BXSB mouse model of lupus
[84].

Collagen-induced arthritis can be ameliorated or pre-
vented when IL-15 signaling is inhibited through the use of
an IL-15-Fc fusion protein (CRB-15) that targets IL-15
receptor-expressing cells in mice [88]. Blockade with a
different IL-15-Fc fusion protein (hIL-15Rα-Fc) decreased
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the T-cell stimulatory and anti-apoptotic abilities of BXSB
mouse macrophages in vitro [84]. Administration of the IL-15
blockade to affected mice reduced proteinuria and autoan-
tibody titers in these mice [84].

IL-15 signaling has been inhibited in a clinical trial of
rheumatoid arthritis using a recombinant IL-15 receptor-Fc
fusion protein (HuMax-IL15/AMG 714) [89]. The trial was a
phase I/II double-blind, placebo controlled dose-escalation
study involving thirty patients. The drug was well-tolerated,
with no treatment-related adverse effects. There is cur-
rently a clinical trial ongoing for this drug in treating
psoriasis.

3.4. Interleukin 18

IL-18 is a proinflammatory cytokine that is primarily produced
from antigen presenting cells such as macrophages and
dendritic cells. IL-18 is also known as IFN-γ-inducing factor
(IGIF) because it is involved in Th1 lymphocyte proliferation
and promotes IFN-γ production. IFN-γ skews the Th response
towards a Th1 pattern, and promotes inflammation in lupus
[90,91].

IL-18 is likely to be involved in several autoimmune
disorders, including lupus. In lupus patients the level of IL-18
is elevated, especially in patients with lupus nephritis
[91,92]. The inflammasome, which processes IL-1 and IL-18
to their active form, is also found at higher levels in lupus
patients [93]. Mice that overexpress IL-18 develop lupus-like
disease [94].

There are several potential strategies for inhibiting IL-18.
Since IL-18 is a member of the IL-1 superfamily and it requires
the intracellular cysteine protease caspase-1 for biological
activity, inhibiting caspase-1 is one strategy to reduce IL-18
levels [95]. This method has been demonstrated to be
effective in mice [95]. IL-18 can also be inhibited using
neutralizing antibodies, which has also proven effective in
mice [96]. An additional molecule shown to effectively inhibit
IL-18 is IL-18 binding protein (IL-18BP), a natural inhibitor of
IL-18. Along with the increased level of IL-18, IL-18BP is found
at high levels in lupus nephritis with glomerular involvement.
[49,97–100]. Although both IL-18 and IL-18BP are elevated in
lupus, the balance favors IL-18, contributing to disease.
Infusion of IL-18BP can greatly reduce INF-γ production,
inhibiting the early Th1 response. This is effective in vitro and
in mice [101–103].

In IL-18 deficient mice, NK cell activity and Th1 response was
impaired [104]. Inhibition by anti-IL-18 antibodies induced a
marked reduction in INF-γ and TNF-α and prevented experi-
mental autoimmune encephlomyelitis [96]. Overexpression or
introduction of IL-18BP ameliorates collagen-induced arthritis
in murine models, as does neutralization with monoclonal
antibodies [105,106].

Recombinant IL-18BP has been tested for safety and
pharmacodynamics in rheumatoid arthritis and psoriasis in
four studies [107], with good safety results. Safety studies
are currently underway for an IL-18 neutralizing antibody
(GSK1070806) in obese individuals. Targeting IL-18 is a
promising therapy for reducing IFN-γ production and
controlling the Th1 response, which is particularly impor-
tant in the more severe forms of lupus, especially lupus
nephritis.

4. Conclusions

With the advent of humanized monoclonal anti-cytokine
antibodies, a new era of specific cytokine inhibition has
emerged. These antibodies allow targeting of major patho-
genic mechanisms in lupus, while generally sparing the
immune system as a whole. The approval of Benlysta as a
specific anti-lupus therapeutic has opened the doors for a
new attack on multiple lupus pathogenic mechanisms. Given
the complexity of lupus, it is likely that a multi-pronged
approach, possibly with combinations of multiple cytokine
inhibitors tailored to patients, will be necessary for these
strategies to approach their promise in effectively treating
lupus. Cytokine inhibition targets and mechanism will almost
certainly be further refined in the future to allow not only
for the wholesale inhibition of certain cytokines, but for the
modulation and control of cytokine levels.

The use of cytokine inhibitors in lupus patients, while
beneficial to the patients, also provides a window to further
understand what goes wrong in lupus, what continues to
cause damage, and which systems are dysregulated during
the disease. This increased understanding will hopefully
serve as a positive information feedback loop, allowing even
better and more refined treatments for this difficult disease.
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1. Introduction
Systemic lupus erythematosus (SLE) is generally diagnosed long after the disease begins. 
This means that the cause of the disease is hard to find, buried in the past.  In the search for 
the elusive causal agents for SLE, one candidate is the immune signaling molecule, 
interferon (IFN). Interferon is a secreted signaling protein, or cytokine, which is expressed at 
higher levels in SLE patients and has been associated with incidence and severity of the 
disease. 
A combination of environmental triggers and genetic susceptibility combine to initiate SLE. 
Although there are many etiological components, they usually converge on a heightened 
state of activation for the immune system, with resultant increases in interferon production 
and interferon signaling.  That is to say that interferon could be thought of as either a 
causative agent, a result of the disease, or both. 
This chapter will discuss the basics of interferon function and how de-regulation of 
apoptosis can lead to interferon production due to immune complexes.  We will then 
discuss how the functioning of the immune system changes in someone with SLE, the genes 
which are associated with risk for SLE, and clinical manifestations of interferon in SLE.   

2. How interferon works in the context of SLE
Interferon is a signaling protein which is secreted to activate neighboring cells in response to 
viruses or other infections.  It is a cytokine, or immune signaling molecule which allows 
communication between cells.  When a cell is infected with a virus, interferon is produced 
and secreted as a warning to other cells to prepare for an infection.  Interferons alpha (IFNα) 
and beta (IFNβ) are the type I interferons, and interferon gamma (IFNγ) is the type II 
interferon.  Most of the cells in the human body have receptors for type I IFN, whereas 
certain immune cells express the receptor for type II IFN (Su, et al., 2004).  The proteins are 
made by many different cells, but generally speaking, IFNα is of leukocyte origin, IFNβ is of 
fibroblast origin, and IFNγ is made by lymphocytes (Lucero, et al., 1982).  Other less studied 
interferons also exist, and interferons are conserved among many species.  This chapter will 
talk mostly about type I interferons, which are IFNα and IFNβ.   
The main purpose of interferon is to shut down a cell before a virus can take it over, 
although it has many other jobs (Niewold, et al., 2010).  Interferon signaling leads to 
increased apoptosis, which is a normal response to control viral spread or to decrease the 
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size of a tumor (Takaoka, et al., 2003).  If one cell can undergo apoptosis before a virus can 
replicate and infect other cells, the infection is halted (Luker, et al., 2005). 

Fig. 1. Interferon protein structures.  Interferons alpha and beta, the type I interferons, have 
a common structure composed mainly of five alpha helices (shown are IFNα2a and IFNβ1 
based on PDB files 1itf and 1au1, respectively).  Although the monomers of each are very 
similar in structure, the functional form of both is a dimer, and the two dimerize differently, 
IFNα2a along homologous surfaces and IFNβ1 on opposing sides of the protein (Karpusas, 
et al., 1997).  IFNγ is show in its dimerized form, with the two colors representing two 
intertwined monomers (based on PDB file 1hig).  Not shown to scale; figures drawn with 
Jmol (Jmol, 2011). 

Interferon can be produced in response to infection, other cytokines, mitogens and several 
signaling pathways.  Once produced it is secreted where it can be recognized by other cells, 
which is called paracrine signaling, or by the cell which produced it, called autocrine 
signaling.  One type of cell, the plasmacytoid dendritic cell (pDC) is a natural IFN producer, 
and is able to make very large amounts of IFNα (Ronnblom & Alm, 2001). 
When interferon ligates an interferon receptor, signaling pathways are activated.  Interferon 
causes an increase in the expression of both major histocompatibility complexes (MHCI and 
MHCII) for presentation of viral peptides to T cells, which can then lead to activation of 
other cells in order to kill infected cells, and remove them (Fruh & Yang, 1999).  Interferon 
also increases intracellular levels of protein kinase R (PKR) which recognizes viral nucleic 
acids and activates RNase L to degrade viral RNAs.  PKR also slows protein synthesis by 
inactivating translational initiation factors, so that viral proteins synthesis is slowed (Pindel 
& Sadler, 2011).  p53 is also activated, which is pro-apoptotic (Takaoka, 2003).  Interferons 
activate immune cells, especially natural killer cells and macrophages (Murray, 1988).  This 
activation cascade is normally “turned off” after an infection is cleared to prevent damage to 
uninfected cells.  However this activation state is not reduced to the normal levels in 
individuals with SLE, where a higher level of interferon is present (T. Kim, et al., 1987; 
Ytterberg & Schnitzer, 1982).  This higher amount of interferon is also measurable by an 
increase in the expression of interferon-stimulated genes seen in lupus patients, called the 
interferon response signature (Baechler, et al., 2003; Bennett, et al., 2003; Feng, et al., 2006). 
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This means that IFN is turned on and that it is actively affecting how other cells are 
functioning. 

Fig. 2. Cell to cell IFN signaling and its effects.  One cell produces interferon and either 
another cell (paracrine signaling) or the same cell (autocrine signaling) receives the signal.  
↑: an increase, ↓: a decrease, MHC: major histocompatibility complex, PKR: protein kinase R, 
NK: natural killer cell, MΦ: macrophage 

As a general feature of autoimmune diseases such as SLE, the immune system is in 
an “always on” state, which can lead to a breach in the body’s natural tolerance to self. 
Once this self tolerance is lost, autoimmune disease can result.  In addressing why the 
immune system generates an attack against one’s own body, the over activation of the 
immune system, including the overproduction of interferon in SLE patients is a part of this 
picture. 

3. Interferon leads to apoptosis, and the SLE-apoptosis connection
One effect of interferon production is the release of autoantigens due to increased cell death. 
This release is normally controlled by a process called efferocytosis, or apoptotic cell 
removal, where cell debris are processed by immune cells or neighboring cells which 
remove them by phagocytosis.  Defects in apoptotic pathways have been noted 
in individuals with SLE (Gaipl, et al., 2006).  Examples of why this occurs have been studied.  
For example, in SLE patients there is an overexpression of both soluble and membrane-
bound Fas.  Fas is a receptor which when ligated signals to a cell to undergo apoptosis. 
The levels of Fas also correlate with the amount of apoptotic lymphocytes and disease 
activity of SLE (Li, et al., 2009; Sahebari, et al., 2010).  Mouse models of lupus commonly 
have genetic variations in apoptotic pathways such the Fas/Fas L pathway and interferon 
pathways. 
Mouse as well as human SLE patients make antibodies to self antigens.  This is likely 
because of over-exposure of potential autoantigens to the immune system.  This could be 
due to an increased amount of apoptosis, or a decrease in the rate of clearance of apoptotic 
debris. Apoptosis, which can be induced by interferon, is also part of the natural cycle of 
cellular growth and death.  Cells undergoing apoptosis are recognized as dead by other 
cells, so that they are cleared (Munoz, et al., 2010). 
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Fig. 3. Production of interferon can begin with defects in apoptosis.  This can be due to 
either an increase in apoptosis or a decrease in clearance of apoptotic debris.  If contents are 
released, they can form immune complexes with autoantibodies.  These immune complexes 
can cause cells to produce interferon.  Manipulating this pathway is also a common 
characteristic of mouse models of lupus. 

3.1 Mouse models allow the study of IFN and apoptosis pathways 
Mouse models have been very useful in understanding the etiology and pathogenesis of 
lupus.  Two approaches to experimental mice have been used to generate information about 
the role of interferon in lupus.  In the first approach, interferon-related genes are knocked 
out and the resulting effects on lupus are studied.  For the second, established lupus mouse 
models are studied on a molecular level for differences in interferon pathways or interferon-
related effects. These two approaches often overlap, as in cases where interferon-related 
genes are knocked out in lupus-prone mice.  Several established lupus mouse models 
include the MRL/lpr mice, NZW/NZB, and others.  These are mice that spontaneously 
develop lupus, and several of them have been investigated to understand the role of 
interferon in their pathogenesis.  Although a complete description of the mouse models for 
lupus is beyond the scope of this or any one publication, a few illustrative examples 
represent the power of these model systems. 
One mouse model that is especially relevant for the study of interferon in lupus is the 
BXSB/MpJ (BXSB) or Yaa mouse.  These mice spontaneously develop lupus-like disease in a 
sex-linked fashion because of a duplication of the Toll-like receptor 7 (TLR7) gene on the 
Y chromosome (Izui, et al., 1994).  TLR7 is responsible for inducing interferon in response to 
viral infection or autoantibody production. 
Another interesting mouse for the study of interferon is the NZB/NZW mouse.  These mice 
spontaneously develop a lupus-like autoimmune disease.  They have been used to 
investigate the role of several interferon-related molecules and cells.  For example, treating 
these mice with interferon accelerates disease in a T-cell like manner (Z. Liu, et al., 2010; 
Mathian, et al., 2005), while knocking out or inhibiting interferon-related genes slows or 
eliminates the development of lupus-like symptoms  (Jorgensen, et al., 2007; Sharma, et al., 
2005).  These mice have been used to clarify the interactions between sex hormones and 
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interferon in lupus etiology (Bynote, et al., 2008; Panchanathan, et al., 2009; Panchanathan, et 
al., 2010), and they serve as an excellent all-around model for spontaneous development of 
lupus. 
The role of several interferon-related molecules has been examined using a combination of 
mouse models.  As an example, consider the gene interferon regulatory factor five (IRF5). 
This gene is an interferon-regulating gene which will be described in section 5.2 below.  It 
was discovered that knockout of IRF5 prevents or inhibits the development of lupus in 
MRL/lpr mice, Fcγ-/- Yaa mice, and pristine-injected mice (Richez, et al., 2010; Savitsky, et 
al., 2010; Tada, et al., 2011). 
Mouse models for lupus represent a powerful and flexible mechanism for investigating the 
role of multiple aspects of lupus.  However, it must be remembered that the mutations or 
disease manifestations in these mice are not necessarily related to those seen in human 
lupus, and therefore the results observed must be interpreted with caution. 

4.. A ycle of autoantibody production
When it comes to SLE we may think of interferon production as a cycle, which begins when 
an environmental trigger, such as a viral infection, UV light damage or medical treatment 
activates the immune system to produce interferon. 
Normally B cells which produce antibodies to self-antigens undergo negative selection, 
where they receive signals to die off or become inactivated if they make antibody against a 
self-antigen.  This self-tolerance is breached in SLE (Cancro, et al., 2009), and the self-
antigens released from damaged or apoptotic cells during or after initial triggering events 
become the targets of autoantibodies.  When autoantibodies are produced, they are made by 
B cells as well as plasma cells, which are a mature differentiated form of B cells. 

Fig. 4. The altered immune response in SLE generates a cycle.  In blue is a cycle which exists 
in SLE, amplifying the amount of IFN present.  This cycle needs a trigger, but once it begins, 
it can leave the immune system in an “always on” state. 
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Autoantibodies lead to the production of interferon by forming immune complexes which 
are immunostimulatory (Ronnblom, et al., 2011).  Immune complexes are composed of 
aggregates of antibody and antigen molecules which are processed by the body.  These 
immune complexes are a main source of SLE pathology, as they obstruct small passages in 
areas of the body such as the kidneys and joints (Crispin, et al., 2010). 
Immune complexes may include the common SLE autoantigens such as RNA-containing 
protein complexes like Sm, RNPs, Ro, and La.  Having a combination of both nucleic acids 
and protein complexed with antibody means many pathways can be turned on.  For 
example, antibody can stimulate an immune cell through an Fc receptor, nucleic acids can 
stimulate cells through Toll-like receptors (TLRs), and proteins can be recognized by other 
antibodies. 
Immune cells are activated by immune complexes and the cycle continues.  Interferon 
production is instigated by immune cells which recognize part of the complex, be it the 
antibody, the antigen, or other associated molecules. 

5.. SLE genetic risk scr ns identify genes in interferon signaling pathways
We have looked at the disease state of SLE, and how the immune system functions 
improperly to instigate disease.  Things begin when an environmental trigger works on the 
genetic background of varying degrees of susceptibility.  Genetic susceptibility is thought to 
account for at least 20% of the risk for SLE (Deapen, et al., 1992).  To find the actual genes 
involved, studies are performed to determine the linkage or association of a variation in the 
genome to a particular disease. 
One important method is called a genome wide association study (GWAS).  These GWA 
studies genotype thousands of individuals, grouped into SLE patients and non-patients 
comparing them at thousands of single nucleotide polymorphisms (SNPs).  These studies 
reveal the genomic regions which contain disease-associated genes, because the variations 
are more common in people with the disease.  Individual genes or gene pathways are 
pinpointed, and can ultimately lead to treatment strategies.  Many genes have been 
identified that contain SNPs which confer risk to SLE. 
These studies are especially useful for diseases with unknown or complex genetic 
components.  The genome is examined for sets of single nucleotide polymorphisms (SNPs). 
When sets of SNPs are usually inherited together in a group it is called a haplotype.  When a 
haplotype is more common in the disease group than in the unaffected group, it can be 
assumed that it is associated with the disease.  Although specific genes are sometimes found 
which may predict a disease, it is more likely that the information will reveal molecular 
pathways associated with the disease.  Association of genes or pathways to diseases such as 
heart disease, asthma, diabetes and others have been found using this method (Stranger, et 
al., 2011).  The amount of effect is measured as an odds ratio (OR), which is a measure of the 
strength of association of the disease with a haplotype.  A median OR value is around 1.3, 
with some genes having much higher association ORs.  For example, one of the lupus-
associated haplotypes TREX1, has a published OR of 25 (Lee-Kirsch, et al., 2007).  In such 
cases, the genetic risk is almost certainly associated with the disease. 
An important caveat to these tests is that they answer the question, “What?” but not the 
question, “How?”  That is, they identify genetic loci which confer risk to SLE, but then 
further studies are needed to show what functional changes affect people with a risk 
haplotype.  For most of the genes, we do not know what functional role they play.  However 
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it is promising to note that the genes are within certain pathways, some of which are already 
associated with lupus. 

Fig. 5. Genome wide association studies (GWAS).  Genome-wide association studies aim to 
discover the genetic risk component of a disease by finding differences in a group with the 
disease compared to a group of unaffected control individuals. 

Several review articles have reviewed the findings of many lupus GWAS with varying 
degrees of certainty (R.R. Graham, et al., 2009; I.T.W. Harley, et al., 2009; Moser, et al., 2009; 
Rhodes & Vyse, 2008; Sebastiani & Galeazzi, 2009).  In some cases the indicated 
susceptibility genes are common in many ethnicities and populations, while others are 
specific to certain groups. The statistical significance of many of these genes is well 
established, while others are novel and need to be replicated by other groups.  An important 
finding is that most of the genes that have been identified in GWA studies can be grouped 
into several functional pathways.  We will focus on the genes in the IFN pathway and the 
pathways involving clearing of apoptotic cells and immune complexes.   

5.1 Interferon production pathways 
Intracellular signaling pathways which control interferon production include the production 
of type I interferons by interferon regulatory factors (IRFs), and the production of type II 
interferon by STAT4.  IRFs are activated by TLRs, which are extracellular or endosomal 
pattern recognition molecules. TLRs 7, 8, and 9 recognize nucleic acids and are endosomal. 
Maintaining these TLRs in the endosome instead of the cell surface is an important barrier to 
too frequent TLR activation.  Once the nucleic acids are brought into the cells through 
endocytosis, the TLRs become activated to turn on IRFs.  TLR 8 and TLR 9 have both been 
identified as lupus risk genes (Armstrong, et al., 2009; Xu, et al., 2009). 
TLRs begin a signaling cascade through a MyD88 signaling complex.  MyD88 activates 
another confirmed locus of SLE risk, the gene which encodes IL1 receptor-associated kinase 1 
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(IRAK1).  In Sle1 and Sle3 mouse models of lupus, IRAK deficiency eliminated most lupus 
symptoms (Jacob, et al., 2009), which highlights the importance of IRAK1.  Since this gene is on 
the X chromosome, it could help explain why lupus is more common among women.  The 
MyD88 complex can be affected by osteopontin (OPN). It regulates IFNα production in 
plasmacytoid dendritic cells, which are the body’s main IFNα producer cell (Cao & Liu, 2006). 
The lupus-risk variant of OPN was tied to high IFNα levels in certain lupus patients (Kariuki, 
et al., 2009b). 
Two interacting proteins involved in inflammation, TNFα-induced protein 3 (TNFAIP3) and 
TNFAIP3-interacting protein 1 (TNIP1), are also lupus risk loci (Gateva, et al., 2009; Musone, 
et al., 2008). TNFAIP3 encodes the protein A20, which abrogates NF B after an 
inflammatory response, and lupus-risk variants of this gene are associated with blood and 
kidney manifestations (Bates, et al., 2009). TNIP1 interacts with TNFAIP3 as well as affecting 
several other signal transduction pathways. 
Interferon regulatory factors are activated next, downstream of TLRs; they are transcription 
factors which travel to the nucleus to bind DNA to initiate transcription.  IRF5 binds to a 
sequence-specific region of DNA to induce IFN production.  It has been confirmed as a risk 
factor for SLE in among several ethnicities (Kawasaki, et al., 2008; Kelly, et al., 2008; Lee & 
Song, 2009; Reddy, et al., 2007; Shimane, et al., 2009).  There are three main genetic variants 
within IRF5, one copy number variant with either two or four copies of a 30-bp sequence, 
and two SNPs (R.R. Graham, et al., 2007b).  The rs2004640 SNP changes the first exon, 
although this exon does not encode protein.  The other SNP, rs10954213, creates an early 
polyadenylation sequence, which yields shorter more stable mRNA (D.S.C. Graham, et al., 
2007a).  Work has shown that these variants increase the amount of IFN in the presence of 
SLE autoantibodies (Niewold, et al., 2008; Salloum, et al., 2009). 

Fig. 6. Interferon production pathways are affected by lupus-risk genes.  The * represents 
genes which have been identified as having risk for lupus.  The endosomal TLRs (7, 8, and 9) 
can bind to autoantigenic nucleic acids and signal through a MyD88 complex which can be 
affected by association with osteopontin (OPN).  If it is not blocked by TNFAIP3, this 
activates an IRAK signaling complex to phosphorylate the IRF5 and IRF7 transcription 
factors to produce type I IFN.  IL-12 or IL-23 signal through Tyk2/Jak2 to activate the 
STAT4 transcription factor to produce type II IFN, commonly in T helper cells (Watford, et 
al., 2004). 
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IRF7 is associated with SLE risk by its proximity to SNPs in the IRF7/KIAA1542 locus (J.B. 
Harley, et al., 2008; Suarez-Gestal, et al., 2009).  IRF7 SNPs have been shown to lead to 
increased IFNα levels and alter of which autoantibodies are made (Salloum, et al., 2009). 
Signal transducer and activator of transcription 4 (STAT4) is also associated with risk for 
SLE.  It is a transcription factor which activates genes in proliferation, differentiation and 
apoptosis pathways.  Two STAT4 SNPs have been examined, rs7574865 increases sensitivity 
to IFNα (Kariuki, et al., 2009a), and rs3821236 causes STAT4 to be transcribed at higher 
levels and is additive with IRF5 risk loci so that when both are present, the risk to SLE is 
multiplied (Abelson, et al., 2009; Sigurdsson, et al., 2008). 

5.2 Genes associated with apoptosis and immune complexes 
Another set of risk genes can be placed into a functional group of apoptosis-associated 
genes.  As we read earlier in the chapter, defects in apoptosis can lead to the presence of 
potential autoantigens.  For example, a cell undergoes apoptosis and instead of being 
cleared by other cells, its contents are released.  The cellular contents can contain things like 
nucleic acids, RNA binding proteins, and others which are common lupus autoantigens.  If 
antibodies bind to these antigens, a complex of multiple antibodies and multiple antigens 
can aggregate.  The resultant immune complexes can be broken down through reactions 
with complement components, which are commonly found at low levels in SLE patients 
(C.C. Liu & Ahearn, 2009).  If they are not broken down, they reach areas such as the 
kidneys or joints, which can be damaged by these immune complexes.  This is how organ 
damage usually occurs in lupus patients. 

Fig. 7. Genes associated with risk for lupus in the apoptosis pathway.  The * represents 
genes which have been identified as having risk for lupus.  TNFα, CASP10 and IRF5 are 
pro-apoptotic whereas OPN and p21 are anti-apoptotic.  These genes all have a role in how 
much apoptosis is occurring.  Once apoptosis has transpired, the cell must be cleared.  Parts 
of apoptotic cells or immune complexes can be recognized by other cells to facilitate their 
removal.  This is aided by recognition molecules such as the complement components 
shown here. 

The problem of creating autoantibodies could stem from too much apoptosis or too little 
clearance of apoptotic debris.  Genes identified in GWA studies that could alter the amount 
of apoptosis include TNFα, caspase 10, IRF5, osteopontin and p21. 
TNFα was identified as a risk factor for lupus in certain ethnicities (Jimenez-Morales, et 
al., 2009; Lin, et al., 2009).  TNFα is a cytokine which is produced and secreted to signal to 
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other cells and is found at high levels in the serum of lupus patients (Davas, et al., 1999; 
Emilie, et al., 1996; Sabry, et al., 2006).  Part of its function is to induce apoptosis—when a 
cell binds TNFα, it activates the caspase cascade.  Caspases are proteases which are 
activated under certain conditions and are a hallmark  of  apoptosis.   They  cleave  other  
caspases as well, and the combined proteolytic activity of several different activated 
caspases breaks down cellular components as the cell prepares to die.  Caspase 10 is part 
of this cascade and is another lupus susceptibility gene (Armstrong, et al., 2009).  Caspase 
8, is activated by TNF signaling, and cleaves caspase 10, which then cleaves caspases 3 
and 7.  IRF5, as well as being a transcription factor which helps produce IFN, is also a 
tumor suppressor gene which is commonly inactivated in cancers.  This is because of 
IRF5’s pro-apoptotic function. 
Osteopontin (OPN) and p21  are also lupus risk genes, both anti-apoptotic.  OPN promotes 
proliferation, as well as prevention of death under apoptotic stimuli (Standal, et al., 2004).  A 
mimic of p21 was used in the treatment of murine lupus in the NZB/NZW mouse, and it 
was found to dramatically reduce the disease (Goulvestre, et al., 2005). 
So, there are genes which dysregulate the amount of apoptosis, and they are associated with 
risk for lupus. But this is only  half of the picture; the other part is the clearance of apoptotic 
cells or immune complexes.  Several SLE susceptibility genes in this pathway have been 
identified as well.  Active SLE can be assessed when low levels of complement proteins are 
found in circulation.  Complement can function against microbes during an infection, but 
can also help to degrade immune complexes. Once attached, they can help cells recognize 
and degrade them. Other proteins function to bind apoptotic cells or immune complexes to 
facilitate their uptake by other cells. 
Integrin αM (ITGAM) has been convincingly associated to SLE (Nath, et al., 2008).  Risk 
variants of ITGAM have been associated with certain clinical manifestations of lupus (Kim-
Howard, et al., 2010).  It is a cell receptor which binds to OPN or to complement C3b.  C3b 
binds to apoptotic cells or immune complexes. 
SLE association with complement components C1q, C2, C4a and C4b have large OR 
values, meaning that the risk haplotypes of these genes are causing a large effect. When 
C1q is expressed at low levels it can lead to lupus, and it was shown to increase the amount 
the of IFN produced due to immune complexes (Lood, et al., 2009). Complement 
components function by binding immune complexes by the Fc region of antibody or by 
binding to other parts of apoptotic cells, which can opsonize them for easier uptake by 
other cells.  Cells can then remove the immune complex or apoptotic debris by 
endocytosis.  Receptors for the Fc region of antibody have also been implicated in SLE risk 
(Lee-Kirsch, et al., 2007).  These receptors can bind to antibody within an immune 
complex. 
Other proteins such as milk fat globule EGF factor 8 (MFG-E8) and C-reactive 
protein (CRP) can bind to apoptotic cells by recognizing phospholipids on their 
membranes.  MFG-E8 binds to phosphatidylserine, an “eat me” signal which is expressed 
on apoptotic cells.  The MFG-E8 knockout mouse gets SLE because of failure to remove 
apoptotic cells (Yamaguchi, et al., 2010).  CRP binds to phosphocholine, which is present 
on dying or damaged cells.  Both MFG-E8 and CRP are lupus risk genes (Batuca & 
Alves, 2009; Hu, et al., 2009; H.A. Kim, et al., 2009).  Low mannose-binding lectin (MBL) 
levels can lead to higher levels of apoptosis is this lupus-risk associated gene (Pradhan, 
et al., 2010). 
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The number of genes associated with risk for SLE will likely increase, though we have an 
interesting pool of genes already that point to certain pathways associated with the disease. 
The interferon and apoptosis pathways are certainly important in SLE etiopathogenesis. 

6. Clinical component of interferon and SLE
Many researchers have sought to determine if higher levels of IFN, which is common in 
lupus patients, is a cause of lupus or an effect of lupus.  An interesting occurrence can 
happen when someone undergoes treatment with IFNα.  The presence of increased levels of 
IFN leads to lupus or a lupus-like syndrome (Gota & Calabrese, 2003; Ioannou & Isenberg, 
2000; Niewold & Swedler, 2005).  Because the lupus symptoms usually disappear after IFN 
treatment ends, this connection suggests that IFN may be more of a cause than an effect.  In 
a small number of cases, some patients also develop SLE as a result of these IFN treatments. 
Furthermore, within a family, the levels of interferon among all members correlate, 
suggesting that this is a heritable trait (Niewold, et al., 2007).  That is, even the siblings of a 
lupus patient with high IFN levels are more likely to have higher IFN levels.  This also 
supports a causal role for IFN. 
Clinically, disease activity can be measured and correlated to other observations to 
determine the cause of the different levels of activity.  One item linked to SLE activity is 
interferon, where higher levels of IFN in the serum correlated with more severe disease in 
most cases (Bauer, et al., 2009; Dall'Era, et al., 2005; Feng, et al., 2006; Landolt-Marticorena, et 
al., 2009; Petri, et al., 2009; Zhuang, et al., 2005). 
Common autoantibodies also correlate with IFN levels.  A very strong correlation is 
consistently observed between IFNα levels and the presence of antibodies to common SLE 
autoantigens like Ro, La, Sm, RNP, and dsDNA (Kirou, et al., 2005). 
Another set of findings has to do with properties of main producer of IFNα, the 
plasmacytoid dendritic cells (pDCs).  High numbers of IFN-producing pDCs have been 
observed in lupus skin lesions (Blomberg, et al., 2001; Farkas, et al., 2001).  Since the cells are 
present at the scene of the crime, the increased interferon could have to do with the 
pathology in these cases. 
At the time of writing, two clinical drug trials for SLE are being conducted, Sifalimumab is 
in Phase II, and Rontalizumab is in Phase I.  Both are antibodies, designed to block 
interferon alpha signaling by binding it to prevent its recognition by neighboring cells 
(Clinical Trials, 2011).  If these drugs are found to be effective, it will show that IFN plays a 
critical role in the pathogenesis of lupus.  In addition, the United States Food and Drug 
Administration recently approved an antibody to B lymphocyte stimulator (BLyS) to treat 
SLE called Belimumab (Sanz, et al., 2011).  This should help control the selective apoptosis 
and autoantibody production to some degree.  

7. Conclusions
Several themes have been examined in this chapter.  Specifically that the production of 
interferon is tied to lupus and that apoptosis, clearance of apoptotic cells, and the 
formation of immune complexes are events that can augment the production of interferon.  
Exciting findings about the actual genetic causes of SLE are being examined which will 
lead to better treatments for this complex disease.  Although most of the data discussed in 
this chapter are inferential, there is a large body of evidence in support of the hypothesis 
that increased interferon signaling promotes an autoimmune state in those genetically 
prone to SLE. 
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Both genetic and environmental interactions affect systemic lupus erythematosus (SLE) development and pathogenesis. One
known genetic factor associated with lupus is a haplotype of the interferon regulatory factor 5 (IRF5) gene. Analysis of global
gene expression microarray data using gene set enrichment analysis identified multiple interferon- and inflammation-related gene
sets significantly overrepresented in cells with the risk haplotype. Pathway analysis using expressed genes from the significant gene
sets impacted by the IRF5 risk haplotype confirmed significant correlation with the interferon pathway, Toll-like receptor pathway,
and the B-cell receptor pathway. SLE patients with the IRF5 risk haplotype have a heightened interferon signature, even in an
unstimulated state (P = 0.011), while patients with the IRF5 protective haplotype have a B cell interferon signature similar to that
of controls. These results identify multiple genes in functionally significant pathways which are affected by IRF5 genotype. They
also establish the IRF5 risk haplotype as a key determinant of not only the interferon response, but also other B-cell pathways
involved in SLE.

1. Introduction

Systemic lupus erythematosus is a complex disease with
multifactorial etiology and pathogenesis. Studies in identical
twins indicate that concordance for lupus is approximately
40%, indicating a strong but not exclusive genetic compo-
nent [1, 2]. Recent genetic analyses have identified more than
thirty candidate genes that are associated with lupus risk [3–
18]. IRF5 was found to be associated with lupus by multiple
independent groups in a variety of populations [10, 13–15,
19, 20]. IRF5 risk haplotypes may function at the crossroads
of environmental risk, such as virus infection, and cellular
immune responses. At least three polymorphisms of IRF5

have been identified that contribute independently to the risk
for lupus, which together constitute the lupus risk haplotype
[10, 21]. Although the majority of the polymorphisms that
have been associated with lupus are in nontranslated regions,
they may affect several facets of IRF5 activity, including
splicing, RNA stability, transcription factor binding, and
apoptosis [9, 10, 15, 21, 22].

IRF5 is important in the production of and response
to interferon alpha (IFNα), which is heightened in lupus.
IFNα is produced by dendritic cells, macrophages, B cells,
and other cell types, primarily in response to virus infection
[23, 24]. Dendritic cells have been shown to produce IFNα
in response to incubation with immune complex-containing



135 

sera from SLE patients [25], especially patients that have the
risk haplotype for IRF5 [19]. Additionally, serum interferon
levels, as well as the interferon response signature, are
increased in patients with the risk haplotype [19, 26]. IRF5
is an especially interesting candidate for a genetic risk factor
in lupus because it acts in pathways that control many of
the cellular and immune responses to environmental factors,
such as infection, which may contribute to lupus.

One putative environmental agent that is strongly associ-
ated with risk for lupus is Epstein-Barr virus (EBV) infection.
Lupus has been associated with prior EBV infection in
both pediatric and adult populations [27–33]. EBV expresses
antigens that are immunologically cross-reactive with sig-
nificant lupus autoantigens such as Sm and nRNP [34–
39]. However, since over 95% of adults are infected with
EBV, determining why EBV could contribute to lupus in
certain individuals but not others has proven challenging.
The identification of IRF5 and other genetic risk factors
for lupus open the possibility that the lupus-associated
genetic polymorphisms in one or more of these genes works
in concert with environmental factors culminating in the
increased observed risk for developing lupus. Previous work
has shown that pediatric lupus patients have broadened,
more cross-reactive humoral immune responses to EBV than
controls [40]. EBV is also not as well controlled in lupus
patients as it is in controls, with increased viral load and
altered T-cell responses [41, 42]. Differences in viral infection
or the response to viral infection conferred by genetic factors
such as IRF5 polymorphisms may in part explain these
observations.

Since B cells are the primary host cell for EBV infection,
we used B cells and EBV interactions as a model to study the
impact of IRF5 genotype on downstream B-cell responses.
For this study, we examined differences in B-cell gene
expression between naı̈ve B cells from individuals with the
IRF5 risk haplotype and those with the protective or neutral
haplotypes at both basal levels and after exposure to EBV.
Naı̈ve B cells were chosen because they are the cell type
in which EBV establishes latent infection [43]. We found
multiple networks of genes that were enriched for differential
expression, as well as individual gene expression differences.
Most importantly, we identified different expression patterns
of interferon response genes in lupus patients based on the
IRF5 risk haplotype. Understanding these differences will aid
in determining mechanisms through which the genetic risk
conferred by the IRF5 risk haplotype is manifested.

2. Materials and Methods

2.1. Study Participants. Genotypes were previously collected
on samples obtained from the Oklahoma Rheumatic Disease
Resource Cores Center (ORDRCC) at the Oklahoma Medical
Research Foundation. Previously enrolled subjects were
contacted for study participation based upon their IRF5
risk and protective haplotypes using genotypes at single
nucleotide polymorphisms rs2004640 and rs10954213. Five
IRF5 high-risk (3 controls, 2 patients) and five IRF5 nonrisk
(2 controls, 3 patients) sex- and race- matched individuals

were recruited. The study was approved by the institutional
review board at OMRF and OUHSC, and informed consent
was obtained from all subjects in the study.

2.2. B-Cell Stimulation. Peripheral blood mononuclear cells
were separated by density gradient centrifugation from the
peripheral blood of volunteers. Naı̈ve B cells were isolated
using the MACS Naı̈ve B Cell Isolation Kit II (Miltenyi Biotec
Inc). Untouched naı̈ve B cells were incubated at a 1 : 1 (v/v)
ratio with either virus-free media or infectious EBV for 16
hours. Virus preparations were in the form of B95-8 cell
culture supernatant. The same preparation of supernatant
was used for all assays.

2.3. Gene Expression Profiling. Total cellular mRNA was puri-
fied from lysates of infected and mock-infected cells using
the Ambion RNaqueous-Micro Kit (Applied Biosystems,
Austin, TX, USA) according to the manufacturer’s protocol
and quantified using a NanoDrop spectrophotometer (Nan-
oDrop Technologies, Inc.). cRNA amplification and labeling
with biotin were performed using the Illumina TotalPrep
RNA amplification kit protocol (Ambion, Austin, TX, USA)
on an aliquot of 200 ng of total RNA. Whole genome expres-
sion analysis was performed using the Illumina HumanRef-8
v.3 gene expression chip (24,526 transcripts) following the
Illumina Whole-Genome Expression Protocol.

2.4. Statistical and Pathway Analysis. The microarray data
were analyzed using gene set enrichment analysis, and
pathway analysis to investigate changes in gene networks.
These analyses were followed by comparison of individual
gene expression differences inside these networks. Raw
expression data was first normalized using the MDAT tool-
box [44]. Gene Set Enrichment Analysis software (Molecular
Signatures Database) was used to determine whether an a
priori functionally defined set of genes showed statistically
significant, concordant differences between two phenotypes
(IRF5 risk and nonrisk haplotypes) [45, 46]. Significant gene
sets were identified by an enrichment score, which reflects
the degree to which a gene set is overrepresented at the top
or bottom of a ranked list of genes, and a false discovery
rate (FDR) of <25%. We focused our subsequent pathway
analysis on the subset of enriched genes (n = 368) from the
statistically significant gene sets.

Pathway analyses were generated through the use
of Ingenuity Pathways Analysis (Ingenuity Systems,
http://www.ingenuity.com/). A data set containing gene
identifiers and corresponding expression values was
uploaded into in the application. Each gene identifier was
mapped to its corresponding gene object in the Ingenuity
Pathways Knowledge Base. The expression values entered
were the normalized log (intensity) values of IRF5 nonrisk
and risk haplotype individuals, respectively.

Canonical pathways analysis identified the pathways
from the Ingenuity Pathways Analysis library of canonical
pathways that were most significant to the data set. The
significance of the association between the data set and
the canonical pathway was measured in two ways: (1) a
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ratio of the number of genes from the data set that map
to the pathway divided by the total number of genes that
map to the canonical pathway; (2) Fisher’s exact test was
used to calculate a P value determining the probability
that the association between the genes in the dataset and
the canonical pathway is explained by chance alone. All
associations are supported by at least one reference from the
literature, from a textbook, or from canonical information
stored in the Ingenuity Pathways Knowledge Base. Human
and mouse orthologs of a gene are stored as separate
objects in the Ingenuity Pathways Knowledge Base, but are
represented as a single node in the network. Heat maps
were created with previously mentioned expression values in
Spotfire software.

3. Results

3.1. Enrichment of Lupus-Related Gene Sets by IRF5 Risk Hap-
lotype. Using existing genotyping data for single-nucleotide
polymorphism rs2004640 (T: risk, G: protective) and
rs10954213 (A: risk, G: protective) [10, 11, 20, 21, 47] the
frequency of the risk, protective, and neutral IRF5 haplotypes
were examined in 1,390 SLE patients and 2,039 controls
enrolled in a large cohort of European American female (EA)
SLE patients from the Lupus Family Registry and Repository
(LFRR: http://lupus.omrf.org/). A significant enrichment
for the risk and risk-neutral haplotypes was found in
lupus patients (P < 0.0001), as expected (Table 1). Using
these results, five individuals with the risk or risk-neutral
haplotypes and five with the protective or protective-neutral
haplotypes were recruited from the local SLE collections
through the ORDRCC for further study. These included
two SLE patients and three controls in the risk groups, and
three SLE patients and two controls with protective and
protective-neutral haplotypes. The risk group was enriched
for controls so that the effects of the IRF5 haplotypes could
be better studied in the absence of potential confounding
genetic influences or factors related to lupus.

In all, 368 genes were found to be significantly (P <
0.05) differentially expressed between the risk and the
nonrisk individuals. Gene set enrichment analysis was used
to look for gene pathways overrepresented when comparing
expression data from the risk haplotype and the protective
haplotype phenotypic groups in the case or control groups
separately. This analysis examines 6,769 a priori defined
functional gene sets [46, 48]. In the unaffected controls
with the risk haplotype, nine gene sets were enriched
with a false discovery rate (FDR) <25% (Table 2), and
19 were enriched with a nominal P value <0.01, but an
FDR >25% (Supplemental Table 2 which available online at
doi:10.1155/2011/594056). In the lupus patients with the risk
haplotype five gene sets were enriched with an FDR <25%.
However, four of these were different versions of interferon-
alpha gene sets. The fifth was the lupus-related interferon
response signature (Table 2). Seven gene sets were enriched
with a nominal P value <0.01 but a FDR >25% in the SLE
risk haplotype cells, including the Toll-like receptor (TLR)
gene set (Supplemental Table 1).

Fewer gene sets were as highly enriched in the protective
haplotype cells. No gene sets were significantly enriched at
an FDR level <25% in either the unaffected controls or the
lupus patients with the protective haplotype. However, 39
gene sets were enriched at P < 0.01 in the SLE patients with
the protective haplotype, and 35 gene sets were enriched at
P < 0.01 level in the controls with the protective haplotype
(Supplemental Tables 3 and 4).

3.2. Identification of Lupus-Related Pathways Differentially
Affected by IRF5 Haplotype. Genes from the enriched gene
sets described above which also demonstrated differences
in expression in the previous analysis were included in a
global pathway analysis using the Ingenuity Pathway Analysis
system. This analysis uses the curated Ingenuity Knowledge
Base to associate sets of genes and expression data with
established gene pathways. Fisher’s exact test was used to
quantify the degree of association with these pathways.
When the cells with the risk haplotype (both stimulated
and unstimulated) were compared to those with the non-
risk haplotypes, three canonical pathways were found with
statistically significant (P < 0.01) association: the interferon
(Figure 1), Toll-like receptor (Figure 2), and B-cell receptor
(Figure 3) pathways. Interestingly, all three of these pathways
have significant implications for lupus. These three canonical
pathways and relative changes in expression following EBV
exposure are represented in Figures 1–3 and Table 3.

3.3. Identification of Individual Genes Differentially Expressed
by IRF5 Haplotype. Several genes in the interferon pathway
exhibited differential expression between either the risk and
protective haplotypes or the EBV exposed and unexposed
conditions. Genes with differential expression were selected
based on inclusion in a significantly associated pathway, aver-
age expression values of at least thirty for one condition, and
differential expression of at least 1.5-fold. Differential expres-
sion comparisons were done both with the unstimulated
and the EBV-infected states (Table 3). Several genes were
differentially expressed in the interferon pathway, including
interferon-induced transmembrane protein 1 (IFITIM1),
signal transducer and activator of transcription 1 (STAT1),
IFNα receptor 2 (IFNAR2), 2′–5′-oligoadenylate synthetase
1 (OAS1), and MX1. The expression patterns of these genes
varied based on IRF5 haplotype and EBV infection status
(Figure 1).

IFITM1 was more strongly expressed in the risk cells
than in the nonrisk in the unstimulated condition (2.1-
fold difference). When the cells were exposed to EBV, this
difference disappeared, a result of a greater increase in
expression (4.8-fold) in the nonrisk cells than the risk (2.8-
fold). STAT1 was slightly underexpressed in the risk cells
than in the nonrisk prior to EBV exposure (1.3-fold), but
after EBV exposure it was more highly expressed in the risk
cells (1.3-fold). IFNAR2 acted in the opposite manner; its
expression was higher in the risk cells in the unstimulated
condition (1.7-fold), but higher in the nonrisk cells after EBV
infection (1.3-fold). IFNAR2 is an interferon receptor that
contributes directly to the response to interferon, making this
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Table 1: Frequency of IRF5 haplotypes in lupus patients and healthy controls. Haplotype frequencies observed in controls and systemic
lupus erythematosus (SLE) patient cohort at single-nucleotide polymorphisms rs2004640 (T : risk, G: protective) and rs10954213 (A: risk,
G: protective).

Haplotype Allele 1 Allele 2
Frequency
(patients)
n = 1390

Frequency
(controls)
n = 2039

SLE risk

1 TA TA 0.2576 0.1947

2 TA TG 0.4460 <0.0001

3 GA GG 0.2108 0.2737

4 GG TG 0.0165 0.1810

Risk/risk

Risk/neutral

Protective/protective

Protective/neutral

Table 2: Effect of the IRF5 risk haplotype on the expression of gene sets. Gene set enrichment analysis showed gene sets enriched in the
risk haplotypes of either SLE-unaffected controls or SLE patients without EBV infection. Genes shown have a false discovery rate (FDR) of
<25%.

Gene set name
Affected pathways or cellular
conditions

No. of
genes

Normalized
enrichment

score
P value

FDR
q-value

Unaffected controls

IL-6 exposure 37 −2.026 0.0018 0.038

23 −1.751 0.0112 0.212

62 −1.782 <0.0001 0.224

41 −1.752 0.004 0.225

21 −1.757 0.0038 0.229

CROONQUIST IL6 STROMA UP

PASSERINI INFLAMMATION

PASSERINI PROLIFERATION

ADIP DIFF CLUSTER2

CROONQUIST RAS STROMA DN

UVB NHEK3 C6

Inflammation

Proliferation

Differentiation

Ras activation

UV light exposure 27 −1.763 0.0039 0.234

121 −1.724 0.0348 0.239

59 −1.769 <0.0001 0.241

HOHENKIRK MONOCYTE DEND DN Dendritic cell maturation

LEE DENA UP Murine liver cancer

ZUCCHI EPITHELIAL DN Breast cancer metastasis 44 −1.785 0.0117 0.245

SLE patients

IFNα 29 −1.968 0.0038 0.042

IFNα 18 −1.878 0.0096 0.063

IFNα 49 −1.897 0.0059 0.07

IFNα 27 −1.847 0.0099 0.075

IFNALPHA HCC UP

IFNALPHA NL HCC UP

RADAEVA IFNA UP

IFNALPHA NL UP

BENNETT SLE UP SLE 28 −1.785 0.0082 0.138

gene very interesting in the context of interferon regulation
and responsiveness. OAS1 was overexpressed in the risk cells
compared to the nonrisk cells in both the unstimulated and
EBV-exposed conditions (1.5-fold and 2.2-fold, resp.), as was
MX1 (1.6- and 1.8-fold).

The TLR pathway also contained several genes that
were differentially expressed between the risk and protec-
tive haplotype-containing cells (Figure 2). Fos and myeloid
differentiation primary response gene 88 (MyD88) are both
under expressed in the unstimulated risk cells compared to
the nonrisk (2.2- and 1.8-fold, resp.). Both of these genes
switch from being downregulated in the risk cells before
EBV exposure to upregulated in the risk cells after EBV
exposure (1.3- and 1.2-fold, resp.). Another very interesting
gene that was differentially expressed in the TLR pathway is
tumor necrosis factor α-induced protein 3 (TNFAIP3). It is
under expressed by 1.3-fold in the risk cells in the resting
condition. After EBV exposure, expression is even more
unbalanced, with 1.9-fold under expression in the risk cells.

Genes of interest that are overexpressed in the risk cells in
the TLR pathway without EBV exposure include CD14 (3.2-
fold), lymphocyte antigen 96 (LY96, or MD-2) (2.3-fold),
and TLR1 (1.7-fold).

The B-cell receptor (BCR) pathway exhibited differences
in gene expression due to the IRF5 risk haplotype (Figure 3).

CD79A and CD79B, which together form part of the
BCR, were both downregulated 2.2-fold in the uninfected
risk cells, but this difference disappeared after EBV infection.
Ras-related C3 botulinum toxin substrate 1 (RAC1), a gene
involved in lymphocyte differentiation and survival [49], was
overexpressed in risk cells under all conditions (1.5-fold in
mock infected cells, 1.7-fold in EBV infected cells). Expres-
sion of the signaling protein AKT1 and the transcription
factor NFκB2 were downregulated in EBV infected cells with
the IRF5 risk haplotype (1.9- and 3.4-fold, resp.). In three
other genes, phosphatidylinositol 3 kinase catalytic subunit α
(PIK3CA), nuclear factor of activated T cells 5 (NFAT5), and
glycogen synthase kinase 3β (GSK3B), the risk haplotype had
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Figure 1: Association of the canonical interferon pathway with the IRF5 haplotype. Naı̈ve B cells were either exposed to EBV for 16 hours or
left unstimulated. Whole-genome expression levels were compared between cells with the risk and protective haplotypes using the Illumina
platform. Significant association of the data set with the canonical IFN pathway was discovered using Ingenuity Pathway Analysis (P <
0.01). Interactions between genes in the interferon pathway based on Ingenuity Pathway Analysis are shown for both the unstimulated (a)
and the EBV-infected conditions (b). Blue gene symbols represent genes with relatively lower expression in the cells with the risk haplotype,
while genes with red shading are upregulated in the risk cells. IFIT3: IFN-induced protein with tetratricopeptide repeats 3, SOCS: suppressor
of cytokine signaling.

a 1.5- to 1.8-fold increase in expression. However, when EBV
was present, the risk haplotype showed a decrease of 1.6- to
1.9-fold of the same genes.

3.4. The Interferon Response Signature in Patients Depends
on Haplotype. Lupus patients have a heightened interferon
response signature in the peripheral blood [50–52]. This
signature is heritable and is associated with the IRF5 risk
haplotype [19, 26]. When we examined genes included in
the interferon response signature, we found an interesting
association with the IRF5 risk haplotype. Cells from the
SLE patients with the risk haplotype had an interferon
response signature under all conditions, whether exposed to
EBV or not. However, the cells from SLE patients with the
protective haplotype did not exhibit an interferon signature
without EBV infection. The difference in expression of
the interferon response genes between the unstimulated
patient risk and the unstimulated patient protective cells
was statistically significant (P = 0.011) (Figure 4). The risk
haplotype cells derived from control individuals did not have
heightened baseline expression of interferon response genes.
After exposure to EBV, these cells developed an interferon
response signature that was similar to that seen in the
baseline and EBV-infected risk-haplotype lupus patients.

Interestingly, the patients with the protective haplotype did
not develop a strong interferon response signature even
after exposure to EBV, indicating that the IRF5 protective
haplotype is dampening the response to interferon compared
to the risk haplotype (Figure 4).

4. Discussion

The IRF5 gene has been associated with risk for lupus. These
findings demonstrate that the lupus-associated polymor-
phisms in the IRF5 gene have wide-reaching effects on B-cell
responses to infection. The gene sets that were enriched in
the risk haplotypes included interferon-related sets, which is
encouraging considering that the genotype being examined
is IRF5. Multiple gene sets that are related to lupus were
enriched in the cells with the risk haplotypes, including
IFNα sets, interleukin- (IL-) 6, inflammation, proliferation,
and monocyte and dendritic cell genes, in addition to the
SLE-related interferon gene set. The finding that these gene
sets are the most strongly enriched in the risk haplotype
indicates that the IRF5 risk haplotype has a strong influence
on interferon signaling and inflammation, processes that are
at the core of SLE. The finding that the most enriched gene
sets were associated with interferon and lupus also indicates
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Table 3: Genes exhibiting differential expression between risk and nonrisk cells in the canonical pathways identified through ingenuity
pathway analysis. Fold up/down column is positive in the case that the gene expression is higher in the risk haplotype cells, and negative
in the case that gene expression is higher in the nonrisk cells. PIK3CA: phosphoinositide-3-kinase, catalytic, alpha; RAC1: Ras-related C3
botulinum toxin substrate 1. ∗The IFNB1 gene is found in both the interferon and Toll-like receptor pathways.

Gene
pathway Gene

symbol

EBV live virus infected 16 hours

Avg.
nonrisk

Mock infected 16 hours

Avg. risk Ratio
Fold

up/down
Avg.

nonrisk
Avg. risk Ratio

Fold
up/down

Interferon

IFNB1∗ 104.95 3.89 0.04 −26.99 5.39 9.15 1.70 1.70

STAT1 71.08 52.84 0.74 −1.35 184.29 244.12 1.32 1.32

OAS1 56.04 84.55 1.51 1.51 49.87 107.78 2.16 2.16

MX1 3179.14 5161.02 1.62 1.62 3409.35 6199.20 1.82 1.82

IFNAR2 959.14 1637.11 1.71 1.71 1437.47 1094.97 0.76 −1.31

IFITM1 439.88 944.41 2.15 2.15 2128.61 2602.68 1.22 1.22

Toll-like
receptor

IFNB1∗ 104.95 3.89 0.04 −26.99 5.39 9.15 1.70 1.70

FOS 116.48 53.84 0.46 −2.16 90.05 120.60 1.34 1.34

MYD88 281.53 152.57 0.54 −1.85 181.06 226.62 1.25 1.25

TNFAIP3 439.96 321.29 0.73 −1.37 728.35 377.23 0.52 −1.93

TLR1 26.50 46.76 1.76 1.76 67.59 116.37 1.72 1.72

LY96
(MD-2)

560.79 1274.32 2.27 2.27 1128.47 1208.54 1.07 1.07

CD14 401.17 1272.53 3.17 3.17 139.53 450.09 3.23 3.23

B-Cell
receptor

CD79B 2222.90 991.48 0.45 −2.24 797.14 827.44 1.04 1.04

CD79A 41.32 19.08 0.46 −2.17 6526.62 5973.72 0.92 −1.09

RAC1 1407.29 930.84 0.66 −1.51 4.36 2.64 0.61 −1.65

MAPK9 105.87 71.02 0.67 −1.49 62.50 80.35 1.29 1.29

AKT1 512.79 353.65 0.69 −1.45 13.02 6.74 0.52 −1.93

NFKB2 6.44 4.85 0.75 −1.33 495.75 147.18 0.30 −3.37

PIK3CA 25.86 40.05 1.55 1.55 79.96 49.71 0.62 −1.61

NFAT5 123.74 222.63 1.80 1.80 5.14 2.70 0.52 −1.91

GSK3B 68.58 123.65 1.80 1.80 177.23 91.07 0.51 −1.95

that these results are unlikely to be false positives obtained
by chance, since the variable being studied is an interferon-
affecting gene.

The gene set enrichment analysis techniques that were
used are valuable because they identify not only individual
genes, but also how strongly pathways that include those
genes and the interactions between them are affected by the
experimental conditions. This allows a much broader look
into gene networks than looking only at individual genes.
These studies point to the IRF5 risk haplotype having a
wide influence on interferon and inflammation. The results
identify targets for future investigation into the function of
the IRF5 polymorphisms as well as other genetic influences
on lupus.

As was the case with the gene set enrichment analysis,
the identification of the interferon and Toll-like receptor
pathways through Illumina pathway analysis suggests that
the results are robust, as these are pathways that would be
expected to be modulated by the underlying IRF5 haplotype
of the donor. Interferon alpha is an extremely important
cytokine in lupus [53]. These studies suggest that the
interferon alpha pathway is strongly affected by genetic

variation in the IRF5 gene, and show multiple genes that
could potentially be targets for understanding interferon in
lupus or potential therapeutic targets. Toll-like receptors are
involved in response to infection through the recognition of
pathogen-associated molecular patterns. Additionally, Toll-
like receptors are important in the pathogenesis of lupus.
They are capable of recognizing endogenous nucleic acids
in the context of immune complexes found in lupus patient
sera, thereby stimulating dendritic cell maturation and
interferon alpha production [25, 54–60], a process which
also involves IRF5 itself [25]. IRF5 is a very interesting tran-
scriptional regulator in that it acts as both an activator when
homodimerized and blocks activation when heterodimerized
with IRF7 [61, 62]. This mechanism of action may help
to explain how some of these pathways can exhibit relative
upregulation or downregulation depending on the other
conditions in the cell.

One of the more unexpected findings of this study
was the modulation of the B-cell receptor pathway by the
IRF5 haplotype. The B-cell receptor is important in the
recognition of antigen and the survival, maturation, and
proliferation of B cells. B cells produce the autoantibodies
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Figure 2: Association of the canonical Toll-like receptor pathway with IRF5 haplotype. Differential regulation of the TLR pathway was
seen using Ingenuity analysis (P < 0.01). Unstimulated conditions are shown on the left, and EBV-exposed conditions on the right.
Genes with altered expression based on haplotype are shown as either red or blue. IKB: inhibitor of NFκB, IKK: IKB kinase, JNK: c-Jun
N-terminal kinase, LBP: lipopolysaccharide-binding protein, MKK: mitogen activated protein kinase kinase, NIK: NFκB inducing kinase,
PPARα: peroxisome proliferator-activated receptor α, TAB1: transforming growth factor β-activated kinase 1, TIRAP: Toll/IL-1 receptor
domain containing adaptor protein, and TRAF6: tumor necrosis factor receptor-associated factor 6.

involved in lupus, as well as being important for antigen
processing and presentation and T-cell activation. Differ-
ences in the activation threshold or other effects that may
be seen with altered B-cell receptor gene expression may be
very important to breaking self-tolerance or other aspects
of B cell biology involved in SLE. Of particular interest in
this respect is the recent finding that IRF5 controls antibody
class switching to IgG2A, allowing lupus-like autoimmunity
in mice [63]. The B-cell receptor and Toll-like receptor
pathways are involved in antibody class switching, and the
genes that were modulated by IRF5 variation in this study
could represent mechanisms through which the IRF5 risk
haplotype may contribute to class switching or other similar
variations in humans.

The interferon response signature has been identified as
a common feature in lupus. These studies examined how
polymorphisms in the IRF5 gene affected the interferon

response signature in both patients and controls. Interest-
ingly, SLE patients with the risk haplotype demonstrated
an interferon signature in both the infected and uninfected
cells, while a strong interferon response was not found in the
patients without the risk haplotype even when stimulated by
EBV exposure. The controls with the risk haplotype lacked
the interferon response signature in the basal state, but
developed it after exposure to EBV, as would be expected.
These findings suggest that the IRF5 risk haplotype is integral
for the interferon response signature in both patients and
controls. They also indicate that other factors contribute to
a basal interferon response in lupus patients, since the IRF5
risk haplotype was not sufficient for the response signature
to be present in the unstimulated control cells, as it was in
the patients with the risk haplotype.

Cells were infected with EBV for two reasons. The first
was to identify differences in gene expression patterns when



141 

BCR

CD79A

IP3

CD79B

SYK

PKC

RAC1 DAG

GRB2

BLNK

CD22CD19

CD81

SHIP

SHP1

CD21

VAV

MALT1

IKK

MEKKs

CD45

CaM

GSK3

CN

LYN

Ig

PI3K

Transcription factors

Altered gene expression

Cytoplasm

Nucleus

NFAT5

 NFATs

p55

+

AKT1 AKT3

1 2 3 4

NIK

SOS

ERK

RAC2

MKK3 MKK6 MKK4/7

p52

p38

p38 p65JNK1 JNK2

RAS

Ca2+

p110α p85α

p110β
p110δ
p110γ

p85β

FcγRII

PLCγ2

IKBβ

NFκB

Fold change Color Fold change Color

<−2

−1.5 to −2

>−1.5

−1.25 to 1.25
<1.5

1.5 to 2

>2

(a)

SHP1

Transcription factors

Altered gene expression

p55

p38

p38

BCR

IP3

SYK

PKC

RAC1 DAG

GRB2

BLNK

CD22CD19

CD81

SHIP

CD21

VAV

MALT1

IKK

MEKKs

CD45

CaM

GSK3

CN

LYN

Ig

PI3K

Cytoplasm

Nucleus

NFAT5

 NFATs

+

AKT1 AKT3

1 2 3 4

NIK

SOS

ERK

RAS

RAC2

MKK3 MKK6 MKK4/7

p52 p65JNK1 JNK2

CD79A

CD79B

Ca2+

Epstein-
Barr
virus

PLCγ2

p110α p85α

p110β
p110δ
p110γ

p85β

FcγRII

NFκB

Fold change Color Fold change Color

<−2

−1.5 to −2

>−1.5

−1.25 to 1.25
<1.5

1.5 to 2

>2

IKBβ

(b)

Figure 3: Association of the canonical B-cell receptor pathway with IRF5 haplotype. BCR pathway genes demonstrate a significant
enrichment of changes in expression levels based on IRF5 haplytype, as determined by Ingenuity analysis (P < 0.01). The unstimulated
condition is shown on the left, and the EBV-exposed condition is shown on the right. Genes with altered expression based on haplotype are
shown as either blue or red. BLNK: B cell linker, CAM: Calmodulin, CN: Calcineurin, ERK: extracellular signal-regulated kinase, FCGR2B:
fragment crystallizable γ receptor 2B, INPP5D: inositol polyphosphate-5-phosphatase D (SHIP), MALT1: mucosa associated lymphoid tissue
lymphoma translocation gene 1, and PKC: protein kinase C.

cells were stimulated with a biologically relevant trigger for
interferon production. The second reason was to identify
areas that may start to explain the differences in EBV infec-
tion and response in lupus. Gene expression was examined
for genes in the three pathways found to be significant
by ingenuity analysis. In several cases, (IFITM1, IFNAR2,
LY96, PIK3CA, NFAT5, and GSK3B) the baseline level of
gene expression was higher in the risk cells, but after EBV
infection, the gene expression was comparatively increased in
the protective cells. In other genes, including CD79A, CD79B,
STAT1, MyD88, and Fos, expression was lower in the risk cells
but the difference diminished or reversed after EBV infection.
Expression of one gene, TNFAIP3, was lower in the risk than
in the protective haplotype subject unstimulated cells and
was comparatively diminished further after EBV infection.
These differences suggest several areas of investigation to

understand differences in B cell biology in lupus and show
that the IRF5 haplotype affects multiple genes related to EBV
infection and response.

Although a detailed analysis of each gene involved in
these pathways is beyond the scope of this paper, the genes
with expression differences between the risk and protective
haplotypes are suggestive in several instances. One of the
genes identified with promise to affect lupus is TNFAIP3.
This gene is a transcription factor that is produced in
response to inflammation. It has been shown to be critical
to limiting inflammation by terminating NFκB responses
[64].Variants have recently been associated with risk for
lupus and other autoimmune and inflammatory diseases
[65–71], and it is often suppressed in tumors, especially
lymphomas [66, 72, 73]. Other promising genes identified
by these experiments include STAT4, IFITM1, and IFNAR2,
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Figure 4: Dependence of the interferon response signature on IRF5 haplotype in SLE patients. Interferon signature genes identified
in gene set enrichment analysis were compared between patients and controls, and between lupus patients with the IRF5 risk and
nonrisk haplotypes. Each column represents expression of genes of interest in individual subjects. (a) Interferon signature genes of
3 IRF5 nonrisk and 2 IRF5 risk SLE patients. Gene expression comparisons are between IRF5 risk and nonrisk SLE patients, either
nonstimulated or EBV infected. (b) Gene set enrichment of 3 control IRF5 risk haplotype individuals and 3 SLE patient IRF5 risk
haplotype individuals. Gene expression comparisons between IRF5 risk patients and controls from nonstimulated and EBV-infected B cells.
ADAR: adenosine deaminase, BAK: Bcl2-antagonist/killer, BTG: B cell translocation gene, C1S: complement component 1S, CASP: caspase,
CEBPD: CCAAT/enhancer-binding protein δ, eIF2B: eukaryotic translation initiation factor 2B, FOSL: Fos-related antigen, HADHB:
hydroxyacyl-Coenzyme A dehydrogenase/3-ketoacyl-Coenzyme A thiolase/enoyl-Coenzyme A hydratase β subunit, HLA: human leukocyte
antigen, PHLDA: pleckstrin homology-like domain family A, PMAIP1: phorbol-12-myristate-13-acetate-induced protein 1 (Noxa), PRAME:
melanoma antigen preferentially expressed in tumors, RBBP: retinoblastoma binding protein, SF3A: splicing factor 3A, TRIM: tripartite
motif, VAT: vesicle amine transport, and XRCC: X-ray repair cross-complementing (Ku70).

which are all involved in the response to interferon, and
several B cell signaling genes, including NFAT5, GSK3B, and
NFκB2.

Although EBV was used in part to simulate an infected
state in B cells, EBV itself could be involved in the etiology
of lupus by affecting several pathways. The three pathways
identified here are all involved in EBV infection. EBV
may stimulate these pathways through several mechanisms,
including both infection and binding of virions to the
receptors involved in these pathways. Although the effect of
EBV infection on differential gene expression was somewhat
variable, for many of the genes examined in this study there
was overexpression in the risk cells, which subsequently
diminished after EBV infection. This pattern, as well as that
seen with the interferon response signature, suggests that the
IRF5 risk haplotype makes these cells appear more activated
in the resting state. Because of this heightened activation
state, there is less difference in the response to EBV infection
in the risk cells, with the nonrisk cells often catching up

to or passing the risk cells in expression of several genes
following viral infection. An activated basal state would
be likely to promote inappropriate cellular responses and
possibly heightened sensitivity to self-antigens, including
those recognized by TLRs.

These findings identify several key pathways that are
affected by the IRF5 risk haplotype and are involved in the
B cell response to antigen stimulation and viral infection.
Many of the genes involved in these pathways have definite
potential to alter the response to EBV infection and affect
the development of lupus. These merit further investigation.
Since all of these pathways are likely to be involved in the
development of lupus, further comparison of these pathways
in other cell types such as plasmacytoid dendritic cells will
be beneficial to understanding the origins and pathogenesis
of lupus. It will also be beneficial to examine more closely the
role of EBV in regulating expression of these genes, through
the use of EBV mutants, and to dissect the role of IRF5 in
each pathway and gene set identified.
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