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ABSTRACT 

Hospital and Meat Associated Staphylococcus aureus 
and Their Biofilm Characteristics 

 
Trevor Michael Wienclaw 

Department of Microbiology and Molecular Biology, BYU 
Master of Science 

 
 Biofilm phenotypes were studied in 32 Staphylococcus aureus strains isolated from store-
bought meats and 22 from diseased patients in hospitals. Of the meat-associated strains, 21 were 
methicillin-resistant Staphylococcus aureus (MRSA) and 11 were methicillin-susceptible 
Staphylococcus aureus (MSSA). The hospital-associated strains included 15 MRSAs and 7 
MSSAs. We studied the robustness and composition of the biofilms produced by these strains. 
We found that on average hospital-associated strains form more robust biofilms than meat 
associated strains. The model often used to describe S. aureus biofilm composition includes two 
biofilm types defined by the presence or absence of polysaccharide intercellular adhesin (PIA), 
PIA-dependent and PIA-independent respectively. In this model, PIA-independent biofilms are 
structurally reliant on proteins and extracellular DNA (eDNA) and PIA-dependent are 
structurally reliant on polysaccharides. Enzymatic degradation of the extracellular matrix can 
reveal which compounds are essential for the structural integrity of the biofilm, and by this 
model PIA-independent biofilms should be susceptible to both DNase and proteinase K. We 
found that hospital-associated strains are, on average, more susceptible to degradation by 
proteinase K. Interestingly, hospital-associated strains are less susceptible to degradation by 
DNase than meat-associated strains. Finding that proteinase K and DNase susceptibility for these 
strains are not linked gives evidence to support the idea that S. aureus biofilm composition can 
vary greatly from strain to strain and that the PIA-dependent and PIA-independent dichotomy of 
the standard model may be insufficient to describe the variety of S. aureus biofilm composition 
and may only apply to the extremes of the spectrum. Additionally, we saw no relationship 
between MRSA or MSSA strains and biofilm robustness, proteinase K degradation, or DNase 
degradation. Differences in biofilm characteristics between hospital-associated and meat-
associated strains reinforce previous findings that these populations are genetically distinct. 
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Introduction 

 

Staphylococcus aureus is a common commensal bacterium and opportunistic pathogen. It 

establishes long-term colonization in 20-30% of the human population, and transient 

colonization in 60% [1-3]. Though carriage is usually asymptomatic, infection can cause a wide 

range of diseases including skin and soft tissue infection, bacteremia, pneumonia, and 

endocarditis [2, 4-6]. S. aureus is possibly the most common cause of food poisoning and the 

leading cause of death of any infectious agent in the United States and is a leading cause of 

hospital-associated infection throughout the developed world, being second only to Clostridium 

difficile in the United States [7-9]. Additionally, S. aureus infection rates have increased in 

recent decades, including both hospital and community acquired infections [10]. For soft-tissue 

infections alone there were an estimated 48.1 cases per 1,000 population in 2005 [10]. Infections 

associated with S. aureus can have mortality rates as high as 25% [11].  

S. aureus can carry a variety of virulence factors including leukocidins, hemolysins, 

enterotoxins, the super antigen TSST-1, protein A, and biofilm genes [6, 12-15]. Antibiotic 

resistant strains of S. aureus have been known since shortly after the introduction of penicillin 

[2]. These first resistant strains produced a penicillinase and were still susceptible to the second-

generation penicillins, such as methicillin, that were introduced in the early 1960s. However, 

resistance to these new drugs was reported within one year [2, 8]. These strains of methicillin-

resistant Staphylococcus aureus, or MRSA, had acquired the gene mecA, an antibiotic-resistant 

transpeptidase which allows cell wall synthesis to carry on in the presence of beta-lactam 

antibiotics [8, 16, 17]. Though methicillin is no longer used clinically the term MRSA is still 

used to describe any S. aureus strain which carries mecA. MRSA, while originally only found in 
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hospitals, was found to be common in the community outside of hospitals in the 1980s, leading 

to the terms hospital acquired MRSA (HA-MRSA) and community acquired MRSA (CA-

MRSA) to differentiate these genetically distinct families of MRSA [4, 7]. The antibiotic 

vancomycin is used to treat MRSA infections as a last resort, though vancomycin-resistant SA 

(VRSA) strains have been reported in recent years [18, 19]. Most clinical S. aureus infections are 

transmitted from person-to-person contact, in both hospital-acquired and community-acquired 

transmissions [4, 20, 21]. However, S. aureus can also be transmitted to humans from direct 

contact with living livestock or through exposure to contaminated meats [22-25]. In the United 

States, SA can be isolated from retail meat products at rates between 20% and 50% depending on 

the study location, and type of meat tested [26, 27].  

 

Genetics of S. aureus antibiotic resistance 

The antibiotic resistance gene of MRSA, mecA, was acquired as part of a mobile genetic 

element called the staphylococcal cassette chromosome mec (SCCmec). SCCmec is thought to 

have originated from a non-staphylococcal source, and twelve SCCmec variations have been 

described [28-30]. In addition to mecA the SCCmec contains a number of genes of unknown 

function and what is known as the ccr gene complex, ccrAB and/or ccrC, all of which have roles 

in promoting site-specific recombination [28]. The gene mecA encodes the membrane-bound 

transpeptidase penicillin-binding protein 2A (PBP2a) which catalyzes peptidoglycan crosslinking 

during cell-wall synthesis [16]. This class of enzymes, which were named for their affinity for 

penicillin, are inhibited when bound by beta-lactams. PBP2a, however, has a uniquely lower 

affinity for beta-lactams, allowing PBP2a to carry on cell wall synthesis when the activity of the 

four native SA penicillin-binding proteins is blocked [29, 31].  
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Some SCCmec types have a regulatory system in place consisting of a transcriptional 

repressor, a sensor-inducer, and an anti-repressor to control the expression of mecA, though most 

clinical MRSA strains appear to have a non-functional regulatory system [32]. High constitutive 

expression appears to be necessary to give the beta-lactam resistant phenotype associated with 

MRSA. Because of the slow response time of a functional regulatory system, strains without 

constitutive expression often appear susceptible to oxacillin in testing, even though they have a 

functional mecA gene [32, 33]. The varied levels of beta-lactam resistance among MRSA strains 

is due to varied levels of mecA expression [5]. MRSAs can be classified into two categories 

based on resistance levels – heterogeneously resistant (HeR) and homogeneously resistant 

(HoR). HeR strains are those able to grow in oxacillin concentrations between 2 and 100 μg/ml 

while HoR strains can grow in oxacillin concentrations in excess of 100 μg/ml [5].  

 

Biofilm formation 

One of the key virulence factors of S. aureus is its ability to form biofilms. S. aureus 

biofilms are sticky conglomerations of cells surrounded by an extracellular matrix which provide 

protection from mechanical removal of cells, host immune responses (both innate and adaptive), 

and antibiotics, giving as much as a 6-log increase in cell viability over planktonic cells 

following antibiotic challenge [34-36]. Additionally, S. aureus biofilm formation greatly 

increases the occurrence of horizontal gene transfer, contributing to the spread of antibiotic 

resistance [37]. S. aureus biofilms are a major concern in hospitals, not just for the danger of 

infection of damaged host tissue, but also because of the ability of S. aureus to form biofilms on 

implanted medical devices such as catheters, pacemakers, artificial heart valves, intravascular 
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lines, and joint replacements [38]. Colonization of such devices can lead serious, chronic 

infections that are difficult to treat [11, 34].  

S. aureus biofilm formation is a highly organized process allowing for the formation of 

complex three-dimensional structures with channels that allow for the flow of nutrients to cells 

located deeper within the matrix [34, 39]. The biofilms have tightly regulated growth patterns 

that regulate attachment to a surface, the growth and expansion of the biofilm, and detachment 

and spread [34, 36]. These processes are regulated through quorum sensing, allowing the optimal 

cell density to be maintained by regulating the dispersal of cells for spread to new areas. During 

the growth phase some cells will even undergo an apparently altruistic autolysis to provide 

neighboring cells with the materials necessary to construct the extracellular matrix (such as 

DNA, for example) [39, 40]. 

Though there are some general characteristics that connect most S. aureus biofilms, the 

composition of the extracellular matrix from strain to strain can be drastically different [38, 41, 

42]. In general, these varied extracellular matrix compositions are categorized into two classes 

based upon the presence of polysaccharide intercellular adhesin (PIA), PIA-dependent and PIA-

independent [5, 38]. The biofilm class of any particular strain can be determined by a simple test. 

Biofilms are grown in 96 well plates and then treated with proteinase K which degrades proteins 

or sodium meta-periodate which oxidizes polysaccharide linkages. PIA-dependent biofilms are 

unaffected by proteinase K treatment and dispersed by sodium meta-periodate treatment, while 

PIA-independent biofilms are dispersed by proteinase K treatment and unaffected by sodium 

meta-periodate [41, 42]. While there have been thorough studies of the composition and genes 

associated with each class of biofilm [43-45] only an overview of the major components will be 

given here.  
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PIA-dependent 

PIA-dependent biofilms are the “classic” biofilm type, they were the first studied and are 

what are usually described when talking about the average S. aureus strain [11, 44, 46]. Their 

extracellular matrix consists primarily of PIA, built from the polysaccharide poly-β(1-6)-N-

acetylglucosamine (PNAG), but also contains a variety of proteins, extracellular DNA (Edna), 

and amyloid fibrils (see fig 1) [44]. Many cytoplasmic proteins and genomic DNA become 

associated with the extracellular matrix as cells undergo autolysis. This altruistic act of some 

cells, which is triggered through quorum sensing, provides the raw materials necessary to form 

the biofilm [34, 39, 40]. The eDNA, while not necessary for the structural integrity of PIA-

dependent biofilms, is important for the formation of amyloid fibrils from phenol-soluble 

modulins, which contribute to biofilm stability [42, 47]. The primary component of PIA-

dependent biofilms is, of course, PIA. This polysaccharide is produced and assembled into the 

extracellular matrix by the products of the icaADBC operon (see figure 3 B). icaA is an N-

acetylglucosaminyltransferase that synthesizes PIA; icaD produces a product that, while not fully 

understood, is known to increases the efficiency of icaA; icaB produces an N-deacetylase which 

partially deacetylates PIA; and icaC is involved in the exportation of PIA to the cell surface [44, 

48]. While several genes are known to influence the production of PIA the best characterized is 

icaR, a divergently transcribed repressor of the ica operon located just upstream of the icaA gene 

[48-50].  

PIA-independent 

PIA-independent biofilms are most notably characterized by the lack of PIA, instead, 

these biofilms rely solely on extracellular proteins and eDNA for their structural integrity, a 

difference which can even be seen by electron microscopy (see Fig. 1) [38, 41]. The reliance of 
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eDNA in PIA-independent biofilms makes the agr quorum-sensing system, which triggers 

autolysis, vital in biofilm formation [40, 51]. Once DNA is released it is thought to interact with 

cell surface proteins to bind cells one to another [38]. The primary proteins involved in the PIA-

independent biofilm type are the membrane-bound fibronectin-binding proteins FnBPA and 

FnBPB [40]. The function of these proteins in biofilm formation appears to be redundant as 

either may be knocked out and biofilms will continue to form normally [52]. Other membrane-

bound proteins, such as protein A and SasG have been shown to be involved in PIA-independent 

biofilm formation, though their specific functions and possible interactions with eDNA have yet 

to be studied [38, 43]. Extracellular proteases are of crucial importance for PIA-independent 

biofilms. Protease production is limited during biofilm maturation and increased, allowing for 

degradation of the extracellular matrix, for biofilm dispersal [35, 51, 53] 
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Figure 1 – S. aureus biofilm phenotypes 

A: A simplified representation of PIA-dependent and PIA-independent biofilm structures are shown. The 
primary structural element of PIA-dependent biofilms is PIA whereas PIA-independent biofilms are 

structurally dependent upon the interaction of surface proteins and extracellular DNA (eDNA). B: Shown 
are scanning electron micrographs of PIA-dependent (strain SH1000) and PIA-independent biofilms 

(strain BH1CC). The obvious difference is the presence of PIA which largely obscures the cells of the 
PIA-dependent strain. Electron micrographs by McCarthy et al. [38]. 
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The link between antibiotic-resistance and biofilm type 

It has been observed that MRSA strains tend to produce a PIA-independent biofilm type 

while methicillin-susceptible SA (MSSA) tend to produce PIA-dependent biofilms [5, 38, 41, 43, 

54]. This trend is typically described in the context of HoR MRSA strains [5, 38]. In one study 

by Pozzi et al, MSSA cells producing a PIA-dependent biofilm were transformed with a plasmid 

containing mecA. These cells were then put through a selection to isolate a HoR strain. A 

complete shift in biofilm type from PIA-dependent to PIA-independent was observed and icaA 

expression was drastically reduced. The plasmid was then cured (turning the strain back into 

MSSA) and the strain returned to a PIA-dependent biofilm type and icaA expression returned to 

normal. How this shift in biofilm type is accomplished is unknown. PBP2a is membrane-bound 

and is not known to have any direct effect on transcription, yet mutation of its active site 

abolishes the effects on ica transcription. Furthermore, the repression of the ica operon was 

found to be icaR independent (see figure 2). It has been suggested that a change in cell wall 

architecture through the action of PBP2a may be responsible for this drastic shift in biofilm 

composition, yet this is still uncertain and more research into these mechanisms has yet to be 

done [5, 38].  

 

Project 1 – Mutagenesis to find genetic influencers of ica expression in response to PBP2a 

production 

 

Description 

This first project was aimed at better understanding the relationship between mecA and 

ica operon expression. Due to technical difficulties in cloning a reporter plasmid, this project was  
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Figure 2 – Expression of biofilm genes  

Figures and data by Pozzi et al. demonstrating the relationships between the expression of mecA, icaA, 
and icaR [4] A: Western blot analysis of PBP2a levels, the product of mecA. 8325-4 is a MSSA strain 
with no copy of mecA. When it is added by the plasmid pmecA it becomes an HeR MRSA. When selected 
for a highly resistant HoR mutant, mecA expression dramatically increased. B: Analysis of icaA 
expression by qPCR demonstrating the effect of increased mecA expression on icaA expression. 8325-4 
(MSSA), 8325-4 pmecA HeR (HeR MRSA), 8325-4 pmecA HoR (HoR MRSA), and the HoR variant 
cured of the plasmid. From this we can see that icaA expression drops in response to increased mecA 
expression and returns to normal when mecA expression is abolished by curing the plasmid. C: 
Measurement of icaR expression of the same strains, leading us to believe that ica operon modulation in 
response to mecA is icaR independent. 

  

A 

B 
C 
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put on hold while we investigated the observations described in project 2. Though it is yet to be 

completed, the experimental design along with all of this projects findings are described here. 

 As can be seen in Figure 2, high mecA expression, associated with homogeneously 

resistant MRSA strains, is accompanied by a drop in ica operon expression. This relationship 

appears to be due to some unknown repressor, as the normal repressor for this system, icaR, had 

no significant change in expression in response to mecA expression [5]. Furthermore, the activity 

of PBP2a was found to be necessary to cause a change in ica expression and a shift in biofilm 

type. Mutation of the PBP2a active site abolished any effect on biofilm phenotype or gene 

expression [5]. 

The goal of this project was to find any other genes besides mecA that were responsible 

for the observed drop in ica expression. These genes might include a repressor directly 

responsible for the repression of the polysaccharide producing ica genes and any genes involved 

in signal transduction. The hypothesis of this project was that an unknown repressor, or repressor 

not known to act upon the ica operon, was responsible for repressing ica expression in response 

to mecA expression and causing the PIA-independent biofilm phenotype. Alternatively, the same 

phenotype could be caused by the repression of an activator of the ica operon. The relationship 

between these genes could be indirect. Changes in cell wall structure resulting from differences 

in the enzymatic action of PBP2a from the four penicillin-binding proteins native to S. aureus 

might be the root cause of the observed phenotype. Alterations in cell wall structure could cause 

changes in cellular processes and alter gene expression.  
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Experimental approach 

With nothing known about our target, and so many possibilities as to its function and 

identity, we elected to employ a forward genetic screen. We would use a chemical mutagen to 

disrupt genes at random and screen for mutants with altered ica expression. To be able to easily 

observe changes in ica expression we would create a reporter plasmid with gfp under control of 

the ica promoter. MRSA mutants with restored ica expression would appear green. These would 

be collected after observing colonies on plates, or possibly by FACS, and sequenced. Point 

mutations would be plotted to find mutation “hot spots” with higher mutation rates than average, 

indicating genes which, when mutated, lead to an increase in ica expression. Each of these genes 

would be investigated as possibly playing a role in the mecA-dependent repression of the ica 

operon.  

 

Strains 

The wild type strain used in this study is JE2. JE2 is a MRSA strain derived from the 

commonly used, highly-characterized USA300 LAC. JE2 has been cured of two plasmids found 

in USA300 LAC, one encoding macrolide resistance and a second cryptic plasmid. JE2 carries 

the mecA gene for beta-lactam resistance, is ica positive, and produces a PIA-independent 

biofilm type [55]. We would also be using the strain JE2 mecA::mar which is a transposon 

mutant of JE2 with a single insertion in the mecA gene [56]. We confirmed experimentally that 

this transposon insertion abolishes beta-lactam resistance and results in the reversion to the PIA-

dependent biofilm type. These strains were chosen because they are genetically identical except 

for the transposon insertion. 
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We created JE2 HoR, a highly-resistant variant of JE2 created through selection on agar 

with high concentrations of oxacillin. In HoR strains, spontaneous mutations lead to increased 

mecA expression and higher resistance [5, 57, 58]. JE2 HoR can grow at concentrations of 100 

μg/ml oxacillin, is slower growing than JE2, and exhibits a PIA-independent biofilm phenotype. 

 

Assessment of biofilm phenotype 

 Biofilm phenotype was assessed by staining biofilms grown in 96-well plates. Biofilms 

were grown in the wells for 24 hours with no shaking, washed, and treated with proteinase K, 

Dnase, or sodium meta-periodate and stained with crystal violet. The crystal violet was then 

eluted and the absorbance at 595 nm was taken as a quantitative measure of the biofilm mass 

accumulated within the well. Crystal violet, which is positively charged, will stain negatively 

charged molecules within the cells and extracellular matrix such as proteins and DNA. Biofilm 

dispersal by treatment with proteinase K or Dnase indicates a PIA-independent phenotype and 

dispersal by sodium meta-periodate indicates a PIA-dependent phenotype.  

The theory behind this assay is that without PIA production the biofilm is structurally 

dependent on extracellular DNA and proteins for its structural integrity and is able to be 

dispersed by proteinase K or Dnase treatment. If PIA is produced, proteinase K and Dnase will 

not be able to disperse the biofilm, but it will instead be susceptible to sodium meta-periodate 

treatment which oxidizes polysaccharides. 
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Creation of ica reporter plasmid 

At this point in the project we encountered difficulties which led to this project being put 

on hold in favor of pursuing other, more fruitful experiments. What follows is the planned 

approach for the rest of this project. An ica reporter plasmid is to be used to easily assess ica 

expression levels. Determination of biofilm type by the plate based method is long and labor-

intensive. A reporter plasmid allows visual assessment ica expression levels, and thereby biofilm 

phenotype, of a large number of mutant cells. This reporter is to be composed of a fusion of the 

ica promoter region and gfp created by overlap-extension PCR. This included 884 bp upstream 

of the icaA start codon, a region containing the entire ica promoter region as well as the entire 

icaR gene. We want to be sure and include any elements that may have an effect on ica 

transcription. The first 5 codons of icaA will be included, but will be truncated by an in-frame 

stop codon. A Shine-Dalgarno sequence and spacer sequence taken from the EF-TU gene of S. 

aureus, selected for its high expression, was used to ensure efficient translation. The ATG start 

codon of EF-TU is the precise location where we would fuse gfp to the ica promotor region (see 

figure 3 C). This fusion was designed with EcoRI and KpnI restriction sites on the ends for the 

insertion into the MCS of the plasmid pJB38 (see figure 3 A and C). This plasmid confers 

ampicillin resistance in E. coli, chloramphenicol resistance in S. aureus, and is temperature 

sensitive in S. aureus (requiring any S. aureus strains carrying the plasmid to be grown at 30°C) 

[59].  

This plasmid is to be assembled in vitro from purified plasmid and the overlap-extension PCR 

product and transformed into E. coli for replication. Because DNA from E. coli will be restricted 

when introduced into S. aureus the plasmid would need to be passed through the intermediate 

strain, RN4220, a restriction-negative S. aureus to acquire proper DNA methylation before 
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transformation into the final recipient by electroporation [60]. All three of our experimental 

strains (JE2, JE2 mecA::mar, and JE2 HoR) will be transformed to serve as baselines of ica 

expression. JE2 mecA::mar would indicate normal ica expression, and JE2 and JE2 HoR would 

indicate reduced ica expression. This would also aid us in deciding whether JE2 or JE2 HoR 

should be used for the mutagenesis part of this study. If ica expression in JE2 is drastically 

different from JE2 mecA::mar we would use JE2, if not, we would use JE2 HoR. These baseline 

levels of fluorescence would be measured and established by flow cytometry. 
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Figure 3 – Genetic maps of the cloning portion of project 1  

A: Map and details of the plasmid pJB38, the backbone for ica reporter constructs. B: Map of the ica 
operon in its native state including the repressor of this system, icaR, as well as the genes responsible for 
PIA production, icaA, icaD, icaB, and icaC. C: Map of the insert created by overlap extension PCR for 
the ica-gfp construct. D: Map of the two inserts (shown together at the SmaI restriction site) for the ica-
lacZ construct. 
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Chemical Mutagenesis 

For mutagenesis we will use the mutagen ethyl methanesulfonate (EMS). EMS is a 

mutagenic compound which introduces random mutations through guanine alkylation, forming 

O-6 ethylguanine. During DNA replication, the damage becomes a permanent mutation when 

thymine is inserted across from the O-6 ethylguanine instead of cytosine [61].  EMS was chosen 

because it causes only random point mutations and it has low toxicity and high mutation rates 

can be achieved with minimal cell death. 

To perform the mutagenesis experiment, JE2 or JE2 HoR cells containing the indicator 

plasmid will be grown from a freezer stock. The purity of these cells will be ensured by streaking 

cells to single colonies on LB agar with chloramphenicol and grown at 30°C. An isolated colony 

would then be picked and grown in LB until mid-log phase (approximately 1x108 CFUs ml-1). 

These cells will then be grown in media containing EMS for 1 hour at 30°C. Cells will then be 

pelleted and washed in a solution containing sodium thiosulphate to inactivate the EMS. A grow-

out step will then be performed to allow the DNA damage to become mutation, cells will be 

grown in fresh LB for 3 to 3.5 hours at 30° C. Mutagenesis will be performed on 4 separate 25 

ml cultures in parallel. The mutation of billions of cells in each culture, plus separate parallel 

cultures ensures independence of mutants recovered during the screen. Aliquots of these cultures 

would then be frozen in 10% glycerol at -80° C for use in the screen. 

Prior to performing the mutagenesis some initial testing was needed to determine 

mutation rate and toxicity. A concentration resulting in approximately 90% lethality would be 

ideal for the high mutation rate in the surviving cells. Mutation rates as high as 5x10-2 per gene 

have been reported.  
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Screening of mutants 

Mutants will be screened by fluorescence-activated cell sorting (FACS). Because the 

mutagenized cells would express PIA-independent biofilms, we will be screening for cells with 

increased ica expression, indicated by increased gfp expression. The threshold for sorting will be 

determined by comparison of JE2/JE2 HoR and JE2 mecA::mar gfp expression. The pooled 

mutant cells, both gfp+ and gfp-, will be conserved and their genomic DNA will be extracted by 

a phenol:chloroform extraction method or a bacterial DNA extraction kit. We plan to collect 

approximately 400 mutants. 

 

Analysis of data 

The pooled DNA of the collected mutants will be sequenced by next-gen Illumina 

sequencing. We will want at least 10X coverage of each mutant (both the gfp+ and much smaller 

gfp- pools). The gfp+ pool would have mutations in genes involved in ica repression, sequencing 

of the gfp- mutants would control for ancestral mutations and mutation hot spots. The raw data 

output from the Illumina sequencing is FASTQ format. This format gives the data for each read, 

including the sequence and a rating of confidence in each base. First, the reads will be mapped to 

a reference sequence. This reference sequence would be the sequence of JE2 in FASTA format. 

The program would perform an alignment and map each read to a specific location of the 

genome. Next, because we are only interested in mutations that occurred within an open reading 

frame a GTF file will be used to filter out all other mutations. 

These data will then be tabulated for ease of analysis. The table is planned to contain 4 

columns – gene number, number of mutations in gfp+, number of mutations in gfp-, and gene 

size in bp. There would be a total of 2604 rows – one for each gene. Synonymous mutations, 



18 
 

those which do not affect the protein product, would be removed from the mutation count. Next, 

the computer will analyze the number of mutations in each gene for the gfp+ and gfp- groups. 

Any gene with a statistically significant difference will be tagged for additional analysis. For 

closer analysis of each of these genes a separate file would be prepared for each. These files will 

give more details on the types of mutations that occurred. This file will also be in the form of a 

table and will list each mutation, its counts (number of reads) in each pool, nucleotide position, 

and amino acid change.  We will then consult published literature for what is known about these 

genes and see if any known function gives insight into how they might function in the regulatory 

mechanisms of S. aureus biofilm production. If no known function has been assigned to these 

genes we would then search the sequence in BLAST to look for similar genes in other organisms 

that would give us insights into its functions. We would expect to see many mutations within the 

mecA gene. This will serve as a positive control for the experiment. 

 

Site-specific knockouts of genes of interest 

To confirm the role of any gene of interest found in the analysis of the mutant pool site 

specific mutagenesis will be done to knock out the gene. There are two strategies we could 

employ to do this, the choice of which would depend on whether we wanted to create the 

knockout in JE2 or JE2 HoR. For creation of knockouts in JE2 the process is likely already 

complete. The Nebraska transposon mutant library, available through BEI, contains transposon 

insertions in nearly all non-essential genes in JE2. We would simply need to order the mutant we 

want and assess its biofilm type.  

If the gene of interest were unavailable in the transposon mutant library, or if we would 

like to create a knockout in JE2 HoR, we would need to cause a knockout through homologous 
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recombination. For this task we would be able to use the same plasmid, pJB38, that we used for 

the reporter plasmid. Instead of inserting the ica/gfp fusion we would instead clone a segment of 

the gene of interest. This region of homology will occasionally cause spontaneous 

recombination. These cells would be isolated by growing the transformed cells at 37°C. At this 

temperature the plasmid will be unable to replicate unless it has been integrated, through 

recombination, into the genome. The biofilm type would then be determined to assess the gene’s 

impact on biofilm regulation. 

 

Project 1 Results 

Characterization of Strains 

The wild-type strain used in this study was JE2, the plasmid-free variant of USA 300 

LAC. The MRSA characteristics of this strain were verified through PCR amplification of the 

mecA gene and growth on LB agar containing 4 μg/ml oxacillin [62]. This strain was the wild-

type HeR strain used in this study. A JE2 mutant with a transposon insertion in the mecA gene 

was used in this study as the representative MSSA strain. It was obtained from the Nebraska 

Transposon Mutant Library (NTML) [59]. This strain, JE2 mecA::mar, was verified to have a 

disruption in the mecA gene by its inability to grow on LB agar containing 4 μg/ml oxacillin 

[62]. For the purposes of this study a HoR strain was also needed. We created the strain JE2 HoR 

through spontaneous mutation by selecting for mutants able to grow on LB agar containing 100 

µg/ml oxacillin as described by Pozzi et al. (see Figure 4 A) [5]. JE2 HoR was slower growing 

than JE2, even when both were grown on LB agar without antibiotic. JE2 HoR required two days 

of growth for colonies to be similar in size to JE2 colonies after a single day. 
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Also used extensively in this study were two strains important in the transformation 

process. Escherichia coli DH5α and S. aureus RN4220. The uses of these strains will be 

described in the section on cloning. 

 

Assessment of the biofilm phenotypes of test strains 

It was necessary to verify that the test strains used in this study exhibited the typical 

biofilm characteristics which had been observed by other researchers. That is, a PIA-dependent 

phenotype in the MSSA strain (JE2 mecA::mar), a PIA-dependent to intermediate phenotype in 

the heterogeneously resistant strain (JE2 HeR), and a PIA-independent phenotype in the 

homogenously resistant strain (JE2 HoR) [5, 38, 41, 43, 52, 54]. This was done through a biofilm 

staining assay in which biofilms were grown in 96-well plates, treated with a substance that 

would preferentially disrupt one biofilm type over another, and then stained do determine the 

degree to which biofilms were affected by the treatments (see figure 8) [5, 38, 47, 63, 64]. In this 

study, both proteinase K and DNase were used to indicate a PIA-independent biofilm through the 

disruption of extracellular DNA or proteins. Sodium meta-periodate, which disrupts 

polysaccharides through oxidation, is used for the identification of a PIA-dependent biofilm.  

JE2, JE2 HoR, and JE2 mecA::mar were all tested for biofilm composition. Once stained 

the biofilms in the wells were inspected visually, and by optical density using a plate reader, for 

significant reduction in biofilm mass. JE2 saw moderate reduction in biofilm mass after 

treatment by both proteinase K and DNase, though the reduction by proteinase K was greater, 

consistent with the intermediate biofilm phenotype that it might be expected to express. JE2 HoR 

was highly affected by both proteinase K and DNase, demonstrating the expected PIA-
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independent phenotype. JE2 mecA::mar was affected little by both proteinase K and DNase, 

consistent with the expected PIA-dependent phenotype.  

We had planned to use the sodium meta-periodate assay as well as the enzymatic tests to 

determine the biofilm phenotypes of the test strains, but we were never able to fully develop this 

assay before this project was put on hold. We were never able to successfully break down PIA-

dependent biofilms with sodium meta-periodate treatment. What we often saw, instead, was an 

increase in staining by crystal violet over the control. We suspect that there may be a chemical 

enhancement of the binding of crystal violet to the biofilm caused by the sodium meta-periodate. 

Due to the labor-intensive nature of the 96-well plate method for biofilm analysis we 

wanted to develop a faster and easier assay to determine biofilm phenotype. We used Congo red 

agar, which has been shown to stain the amyloid fibrils of the extracellular matrix [65, 66]. After 

various modifications of the media formulation we were able to see slight differences in color 

between biofilm phenotypes (see Figure 4B). Due to the subtlety of this difference we weren’t 

able to use this assay to reliably determine the phenotype. 
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Figure 4 – Results from project 1  

A: No growth of JE2 (left) vs normal growth of JE2 HoR (right) on LB agar with 100 μg/ml of oxacillin. 
B: Biofilm phenotype demonstrated on Congo red agar. Left is JE2 mecA::mar displaying slightly lighter 
colored colonies compared to JE2 HoR on the right. Difference was too subtle to use this method for a 
screen. C: An agarose gel showing the various products produced by overlap extension PCR. The boxed 
band is the desired 1866 bp product. 

  

A B 
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Mutagen titration 

 The mutagen ethyl methanesulfonate (EMS) was titrated to determine appropriate 

concentrations for the mutagenesis experiments. We expected a concentration of EMS with a 

lethality of approximately 90% would be appropriate for our mutagenesis experiments. We 

estimated the appropriate concentration of EMS to be between 0.25% and 1%. EMS was added 

to log-phase cells at the appropriate concentrations and incubated for 1 hour. Cells were 

centrifuged and the pellet was washed and resuspended. A serial dilution was then performed 

and cells were plated to compare to an un-treated control. 0.5% EMS was found to give 

approximately 90% lethality. 

 

Transformation of S. aureus 

 S. aureus is known for being difficult to transform. Our lab had no experience 

transforming S. aureus, so we needed to develop a reliable transformation protocol. S. aureus 

transformation is a two-step transformation. After a construct is created in E. coli the S. aureus 

strain RN4220 is transformed by electroporation. RN4220 lacks the mechanisms that would 

normally destroy incorrectly methylated DNA (e.g. DNA originating in E. coli). The incoming 

plasmid will receive proper methylation in RN4220 from which it can be transformed into the 

final recipient strain.  

 Our final protocol was developed from a general protocol for S. aureus electroporation 

and modified through trial and error until it gave reliable results. We were able to take plasmids 

from E. coli, through RN4220, and into JE2, the final recipient. These transformants were 

confirmed by antibiotic selection and plasmid extraction.  
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Cloning of the reporter plasmid 

The cloning of a reporter plasmid to indicate the expression of the ica operon began with 

the synthesis of the upstream promoter region of the operon linked with gfp through overlap-

extension PCR. This was a three-step process with the first two steps being the cloning of the 

two genetic elements to be fused with the addition of restriction sites and overlap region and the 

third step being the fusion through overlap extension. The ica promoter region and icaR gene 

was cloned from JE2 genomic DNA with an EcoRI restriction site added at the 5’ end and the 

EF-TU Shine-Dalgarno sequence (which doubled as the overlap between the two PCR products) 

added at the 3’ end. The second product was the gfp gene, cloned from the plasmid pGFP-F 

acquired from the Nebraska Transposon Mutant Library, a superfolder GFP proven to be 

functional in S. aureus [59]. Primers were used to add the EF-TU Shine-Dalgarno sequence to 

the 5’ end of this product and a KpnI restriction site to the 3’ end. Both components were cloned 

without issue, but we encountered difficulty performing the final fusion step. When the PCR 

product was imaged by electrophoresis the correct molecular weight band of the final product 

was visible. Lower and higher molecular weight bands were visible as well (see Figure 4 C). 

After excision and cleanup and restriction digest we attempted to ligate the product into pJB38, 

but this yielded no transformants. We also attempted the process without first excising the band 

of interest to simplify the process, but once again were unable to recover any transformants. 

Due to the lack of progress in this cloning project, we decided to start over with a new 

strategy. We would use lacZ instead of gfp to simplify the screen and we would clone the ica 

promoter region and lacZ separately. These would be ligated into pJB38 individually, removing 

the overlap extension step. The ica promoter region would be cloned to include an EcoRI 

restriction site at the 5’ end and the EF-TU shine-dalgarno sequence and a KpnI restriction site at 
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the 3’ end with a total product size of 1134 bp. This was cloned without issue and successfully 

ligated into pJB38. We designated this new plasmid pICA Next, lacZ was cloned from pUC19 

with an existing SmaI restriction site used at the 5’ end and the addition of a SalI restriction site 

at the 3’ end giving a product of 400 bp. The 3’ restriction site of the ica product and the 5’ 

restriction site of the lacZ product did not match to keep lacZ in frame with the start codon and 

Shine-Dalgarno of EF-TU from the ica product. This product was successfully cloned from 

pUC19, but we were unable to ligate it into pICA. We were never able to recover any 

transformants. Many different methods of preparation, including CIP treatment of the insert, as 

well as various incubation times and temperatures were tried, but we were never able to 

successfully insert lacZ into pICA. During these set-backs we observed other interesting 

characteristics of S. aureus biofilms while testing our collections of hospital-associated and 

meat-associated strains. We decided to put this project on hold while we pursued a second 

project. 

 

Project 1 Discussion 

Though the goals of this project have not yet been met, most of the tools necessary to 

complete this project have been developed and it may yet be completed by future students. This 

project has also provided, for our lab, foundational tools which will likely be used in future S. 

aureus research projects. This includes our familiarization with the genetic tools available for S. 

aureus, the development of a reliable transformation protocol for S. aureus, and refinement of 

biofilm dispersal and staining assays. Additionally, the plasmid pICA may be a powerful tool for 

future biofilm regulation studies. It is perfectly situated for the addition of any number of genes 

for control by the ica operon, reporter or otherwise. 
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The final difficulty that forced us to pause work on this project was the inability to insert 

the lacZ fragment into pICA. We initially suspected that the ligation issues could be due to the 

use of SmaI, which produces blunt ends, causing the insert fragments to fuse together. We added 

an alkaline phosphatase (CIP) treatment to our procedures to prevent insert to insert fusions, but 

there was no change in outcome. Control plasmids that had been digested only did not yield 

transformants, while those that were digested and re-ligated did. One explanation for our 

inability to insert lacZ would be a restriction site disrupting mutation in pICA, pUC19, or the 

cloned lacZ fragment. In future work, the cloning process could be started over to solve a 

mutation issue. Alternatively, the entire cloning process could be redesigned to remove any 

unknown issues in the cloning design. 

 

Project 2 – Staphylococcus aureus isolated from retail meats forms biofilms of composition and 

mass distinct from strains associated with disease in humans 

Background 

Due to difficulties in cloning the reporter plasmid as had originally been planned, a new 

project was begun to analyze some of the biofilm characteristics we had observed during the first 

project. We would use some of the same techniques that we had already been using to analyze 

the biofilm characteristics of our collections of hospital-associated and meat-associated strains 

which we had collected in the course of other related projects.  
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Meat-associated S. aureus collection 

Our collection of meat-associated S. aureus isolates are all environmental isolates 

collected by our lab and include 32 strains, of which 11 are MSSA and 21 are MRSA. They were 

collected from samples of retail meat products purchased from 11 different retailers in the state 

of Utah and includes samples from a variety of meat types including beef, pork, chicken, and 

turkey. The breakdown of these strains, their origins, and resistance-profile is shown in Table 1. 

These isolates were confirmed as S. aureus through rigorous identity testing that included growth 

and fermentation on mannitol salt agar (MSA), gram staining, and catalase and coagulase testing 

[67, 68]. Isolates that had passed these tests were confirmed S. aureus through PCR 

amplification of the S. aureus 16S rRNA and nuncA genes [69]. Additionally, these strains were 

identified as MRSA or MSSA through their ability to grow in media containing 2 µg/ml of 

oxacillin and through PCR amplification of the mecA gene [69].  
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Table 1 – List of S. aureus strains used in project 2 

Meat-associated strains are shown on the left, hospital-associated strains are shown on the right. A total of 
32 meat-associated strains were studied (21 MRSA, 11 MSSA) and a total of 22 hospital-associated 
strains were studied (15 MRSA, 7 MSSA). Strain names: C strains are chicken origin, P are pork, T are 
turkey, and B are beef. 

Strain 
name 

Type Source  
Strain name Type Source 

C1 MRSA Raw chicken  HA 1 MRSA Hospital pathology lab 
C2 MRSA Raw chicken  HA 2 MRSA Hospital pathology lab 
C3 MRSA Raw chicken  HA 3 MRSA Hospital pathology lab 
C7 MRSA Raw chicken  HA 4 MRSA Hospital pathology lab 
C11 MRSA Raw chicken  HA 5 MRSA Hospital pathology lab 
C15 MRSA Raw chicken  FR1913 MRSA Culture collection 
C20 MRSA Raw chicken  USA 300 LAC MRSA Culture collection 
C4 MSSA Raw chicken  HFH 30364 MRSA Culture collection 
C6 MSSA Raw chicken  NY336 MRSA Culture collection 
C9 MSSA Raw chicken  CO34 MRSA Culture collection 
C10 MSSA Raw chicken  GA92 MRSA Culture collection 
P3 MRSA Raw pork  TN112 MRSA Culture collection 
P4 MRSA Raw pork  CA127 MRSA Culture collection 
P5 MRSA Raw pork  USA 400 MRSA Culture collection 
P6 MRSA Raw pork  USA 300-0114 MRSA Culture collection 
P11 MRSA Raw pork  SH 1000 MSSA Culture collection 
P14 MRSA Raw pork  SA 6538 MSSA Culture collection 
P7 MSSA Raw pork  SA 29213 MSSA Culture collection 
P9 MSSA Raw pork  SA 25923 MSSA Culture collection 
P10 MSSA Raw pork  SA 43300 MSSA Culture collection 
P12 MSSA Raw pork  SA 4651 MSSA Culture collection 
P13 MSSA Raw pork  SA 12600 MSSA Culture collection 
T2 MRSA Raw turkey  
T4 MRSA Raw turkey  
T5 MRSA Raw turkey  
T6 MRSA Raw turkey  
T7 MRSA Raw turkey  
T10 MRSA Raw turkey  
T14 MRSA Raw turkey  
T12 MSSA Raw turkey  
T13 MSSA Raw turkey  
B8 MRSA Raw Beef  
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Hospital-associated S. aureus collection 

Our collection of hospital-associated S. aureus consists of 22 strains acquired through 

culture collections and verified MRSA strains acquired through a contact in a hospital pathology 

department. This collection of hospital-associated strains consists of 15 MRSAs and 7 MSSAs; 

see Table 1. 

 

Hypothesis 

We hypothesized that the biofilm characteristics of these two S. aureus populations 

would be different, that is, that we would see distinct trends in overall biofilm mass and 

composition for both hospital-associated and meat-associated strains. While the origin of the 

strains that contaminate retail meat-products is not well understood, there is some evidence to 

suggest that they are of livestock origin [70-73]. Livestock-associated strains are, in general, 

genetically distinct from their human-derived counterparts, though there is occasional 

transmission from one population to the other [74-76]. Demonstrating general phenotypic 

differences between the biofilms formed by meat-associated strains and hospital associated 

strains would provide additional evidence that meat-associated strains do not generally originate 

from a human source. These findings would also have implications for our understanding of the 

virulence potential of these strains.  

 We also hypothesized that we would see differences in the biofilm characteristics of 

MRSA strains and MSSA. Research has shown a correlation between oxacillin susceptibility and 

biofilm composition. Highly-resistant MRSA strains tend to have proteinaceous biofilms while 

less-resistant MRSAs and MSSAs tend to have polysaccharide-based biofilms [5, 38, 40]. We 
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expected to see these differences in our collection of MRSA strains and MSSA strains from 

hospital and meat sources. 

 

Experimental design 

Evaluation of biofilm characteristics was performed in a 96-well plate based assay 

wherein biofilms were allowed to grow and adhere to the bottom of each well. Biofilms were 

then stained by filling each well with 0.1% crystal violet, washing, and then eluting stain from 

the biofilm as a measure of total organic mass accumulated over the growth period. This was 

performed in quadruplicate for each strain. Composition was measured through treatment with 

biofilm-disrupting substances before staining. Dispersal by proteinase K was used to indicate a 

reliance on extracellular proteins for biofilm structural integrity; DNase demonstrated eDNA as 

an essential structural component; and sodium meta-periodate, which degrades polysaccharides 

demonstrated structural dependence on PIA. Together, degradation by proteinase K and DNase 

indicate a PIA-independent (protein) biofilm type, whereas degradation by sodium meta-

periodate would indicate a PIA-dependent (polysaccharide) biofilm type. Because SA biofilms 

exist in a spectrum of compositions and PIA-dependent and PIA-independent are only general 

categories, quantitative measurements of enzymatic or chemical impact on biofilm mass was 

taken by measuring the absorbance of eluted crystal violet at 595 nm. This information was used 

to show general trends for each SA category as well as show quantitative data for each individual 

strain. 

 

 



31 
 

Project 2 Results 

 The first characteristic that we analyzed was over-all biofilm mass formed by hospital-

associated and meat-associated strains. Biofilm mass, as measured by crystal violet staining of 

biofilms formed over 24 hours of growth, includes both the cells of the biofilm as well as the 

extracellular matrix. The positively charged crystal violet binds to the negative charges of DNA 

and proteins. After cells had been grown without shaking for 24 hours in the wells of 96-well 

plates, the biofilms were fixed, stained, and the stain was eluted using organic solvents. The 

absorbance was measured at 595 nm to give a quantitative measure of biofilm mass.  

 Biofilm mass was found to vary considerably from strain to strain. Some strains, such as 

P13 or C15 (see Figure 5A) had very little biofilm formation, while others like HA1 or SH 1000, 

for example, had considerable biofilm accumulation (see Figure 5B). Both categories, meat-

associated strains and hospital-associated strains, had strong biofilm formers and weak biofilm 

formers. The averages between these categories, however, were different. The average OD 595 

reading for meat strains was found to be 0.887 while the average for hospital strains was 1.286 

with a p value for these averages of 7.09x10-3 (two-sample T-test assuming equal variances) (see 

figure 5C).  

 Next, we examined the susceptibility of the biofilms formed by each strain to degradation 

by proteinase K. A biofilm broken down by proteinase K depends on proteins, either attached to 

the cell surface or in the extracellular matrix, for structural integrity of the biofilm. After 

biofilms had been grown for 24 hours in a 96-well plate, planktonic cells were gently washed 

from the wells and a solution containing proteinase K, or a mock treatment, was added to each 

well. The mock treatment consisted of the appropriate buffer without the enzyme. After 

incubation at 37° C for two hours the wells were gently washed and the biofilms were fixed and  
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Figure 5 – Biofilm mass measured by OD  

Shown is the OD 595 of crystal violet eluted from biofilms formed within the wells of a 96 well plate. 
Darker colored bars represent MRSA strains, light colored bars represent MSSA strains. Error bars show 
the standard error of the 4 replicates for each strain. A: Biofilm mass of meat-associated strains. B: 
Biofilm mass of hospital associated strains. C: Average biofilm mass of each category, error bars show 
standard error, p = 7.0x10-3. 
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stained. The stain was then eluted and OD was measured at 595 nm. To make valid comparisons 

between strains with high biofilm-mass and those with lower biofilm-mass the effect of the 

enzyme was measured as a percent reduction of biofilm mass calculated as the percent difference 

between mock treated and treated. 

 Both hospital-associated and meat-associated strains had some strains which were highly-

affected by proteinase K (such as P5 or HA2) and some strains which were unaffected (such as 

C5 or SA 25923) (see figure 6 A and B). We did not observe a correlation between biofilm mass 

and proteinase K susceptibility. We did, however, observe a significant difference in proteinase 

K susceptibility between hospital-associated and meat-associated strains. The average reduction 

of meat strains was 33.24% while the average reduction in hospital strains was 52.01% with a p 

value for these averages of 8.09x10-4 (two-sample T-test assuming equal variances)(see figure 6 

C). 

 Next, we measured biofilm susceptibility to degradation by DNase. As before, each strain 

was grown in the wells of a 96-well plate and a biofilm was allowed to form for 24 hours. 

Planktonic cells were gently washed away and the biofilm was treated with a solution containing 

DNase (or a mock treatment) for 2 hours before a final wash, fixing of the biofilm, and staining. 

Degradation by DNase shows reliance on extracellular DNA for the structural integrity of the 

biofilm. Biofilm stain was eluted and OD 595 measured. The OD reading of the treated biofilm 

was subtracted from that of the mock treated and the difference was given as a percentage to 

normalize the data so as to compare robust biofilm forming strains with weak biofilm forming 

strains. 
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Figure 6 – Percent biofilm reduction by proteinase K  

Percent reduction measured by percent change in OD 595 from mock treatment. Error bars show standard 
error for difference. A: Percent reduction by proteinase K for meat-associated strains. Dark bars are 
MRSA strains, lighter bars are MSSA strains. B: Percent reduction by proteinase K for hospital-
associated strains. Dark bars are MRSA strains, lighter bars are MSSA strains. C: Average percent 
reduction for each category, p = 8.1x10-4 
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 We observed that, like proteinase K susceptibility, meat-associated and hospital-

associated strains had a mix of highly-affected strains (C20 and SA 43300) and unaffected 

strains (P10 and HA1) (see figure 7 A and B). We observed no correlation between biofilm mass 

and DNase susceptibility. However, there was a significant difference between the DNase 

susceptibility of hospital-associated and meat-associated strains. The average percent reduction 

in biofilm mass DNase for meat-associated strains was 47.90% and the average for hospital-

associated strains was 35.93% with a p value of 3.38x10-3 (two-sample T-test assuming equal 

variances) (see figure 7 C). 

 We also compared each of these characteristics among MRSA strains and MSSA strains 

for each category (biofilm mass, proteinase K susceptibility, and DNase susceptibility) and found 

no significant differences. Differences were only observed when comparing strains from 

different sources. These characteristics had no observable relation to oxacillin resistance. 
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Figure 7 – Percent biofilm reduction by DNase  

Percent reduction measured by percent change in OD 595 from mock treatment. Error bars show standard 
error for difference. A: Percent reduction by DNase for meat-associated strains. Dark bars are MRSA 
strains, lighter bars are MSSA strains. B: Percent reduction by DNase for hospital-associated strains. Dark 
bars are MRSA strains, lighter bars are MSSA strains. C: Average percent reduction for each category, p 
= 3.4x10-3 
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Project 2 Discussion 

 As we had hypothesized, we saw many differences between hospital-associated and 

meat-associated strains. This reinforces previous research showing that meat-associated S. 

aureus typically originates from an animal source since animal strains and human strains are 

genetically distinct populations. Hospital strains, on average, formed more robust biofilms with 

an average OD reading of 1.286 while meat strains had an average OD reading of 0.887 

(p=7.09x10-3). These differences are likely the result of selective pressures found in the 

environments to which they have adapted. Since all our hospital strains were isolated from active 

infections, this relationship may be influenced by the fact that biofilms are such an important 

virulence factor and any strain able to invade a host and establish an infection is more likely to 

have a strong biofilm-forming capacity. There may be other selective pressures in the hospital 

environment that cause hospital-associated strains to have more robust biofilms such as adaption 

to hard plastic surfaces, a defense against cleaning agents, or to provide some resistance to 

antibiotics as has been shown in prior research [34]. On the other hand, if meat-associated strains 

come from an animal source as research has suggested, they will be adapted to an entirely 

different environment [70-73]. We can assume that this environment would be much dirtier, that 

these strains will be subjected to different drug-challenges, and that they may be commensal. 

 The differences in biofilm composition between hospital-associated and meat-associated 

were the most surprising results. While we had expected to see compositional differences 

between the two strain categories, we hadn’t expected proteinase K susceptibility and DNase 

susceptibility to be independent of one another. The average reduction of meat strain biofilms by 

proteinase K was 33.24% while that of hospital strains was 52.01% (p=8.09x10-4) and the 
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average reduction of meat-associated strain biofilms by DNase was 47.9% while that of hospital 

strains was 35.93% (p=3.38x10-3).  

 Because proteinase K affected hospital strains greater than meat strains and DNase 

affected meat strains greater than hospital strains we can see that these characteristics are not 

necessarily connected, as we had hypothesized. While the protein and polysaccharide biofilm 

dichotomy may be a useful model when considering the extremes of S. aureus biofilms, it 

appears that there is a spectrum of S. aureus biofilm characteristics in between with a mixture of 

dependence on protein, eDNA, and polysaccharides for structural integrity of the biofilm. When 

PIA-independent (protein) biofilms are described they are typically HoR MRSA strains [5, 38, 

41, 43]. If we assembled a collection of HoR strains the relationship between high mecA 

expression and decreased ica expression would likely hold true and we would see high 

susceptibility to both proteinase K and DNase. When separated into MSSA and MRSA 

categories we didn’t see any significant differences in the biofilm mass or composition of our 

strains.  

 Some of the interesting strains that illustrate these findings are highlighted in figures 6 

and 7. For example P14 is unaffected by proteinase K, but highly affected by DNase. P10 is the 

opposite, it is affected by proteinase K, but DNase has no affect. Other strains, such as SA4651 

were reduced by both enzymatic treatments. Interestingly, we didn’t have any strains that were 

unaffected by both treatments. This could imply that strains may depend on proteins or eDNA, or 

both for structural integrity, but we have not characterized any strains that depend on neither for 

biofilm integrity. 

 In summation, we have found that on average S. aureus hospital-associated strains form 

more-robust biofilms than meat-associated strains, hospital-associated strains were more 
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susceptible to proteinase K degradation than meat-associated strains, and meat-associated strains 

were more susceptible to DNase degradation than hospital-associated strains. This implies the 

effect of environmental selective pressures on biofilm formation and composition.  

 Due to the dangerous nature of S. aureus as a pathogen, continued study of its biofilms is 

needed to improve patient outlook and public health. Biofilm mass and composition surely have 

great implications for virulence and may help us to understand the danger of common exposure 

sources such as raw meats. 

 

Methods 

Isolation and identification of S. aureus/MRSA from meat samples 

Strains isolated from retail meats were identified as S. aureus through a variety of tests. 

First, meat samples were swabbed with sterile swabs or pipetting 10 μl of meat juices and 

streaked directly onto Mannitol Salt Agar (MSA) plates (Thermo Scientific, Waltham, MA) and 

grown overnight at 37° C. Isolates were assessed for their ability to grow on this media as well as 

for their ability to ferment mannitol (indicated by the yellowing of the media around colonies). 

Possible MRSA strains were identified by their ability to grow on MSA plates containing 2 

μg/ml oxacillin, the standard substitute for methicillin which is no longer used clinically. Gram 

stains were performed to confirm that these isolates were gram positive cocci, followed by 

catalase and coagulase tests, for which all of our SA/MRSA strains were positive. As a final 

confirmation of the identities of these environmental isolates, genotypes were assessed by a 

triplex PCR assay to detect Staphylococcus-specific 16S rDNA sequences, the nucA gene which 

is specific to S. aureus, and the mecA gene which is specific to MRSA as described by Maes et 

al. [69]. See primers in table 2. 
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Selection of homogeneously-resistant (HoR) strain 

A homogeneously-resistant (HoR) mutant of JE2 was selected through random mutation 

selected for on media with high oxacillin concentration. JE2 was grown in LB broth (10 g/l 

tryptone, 5 g/l yeast extract, 5 g/l NaCl) containing 2 μg/ml oxacillin overnight. 1 ml of liquid 

culture was pelleted and resuspended in 100 μl of LB broth and spread on LB agar (10 g/l 

tryptone, 5 g/l yeast extract, 5 g/l NaCl, 12 g/l agar) containing 100 μg/ml oxacillin and 

incubated overnight at 37° C. JE2 HoR was selected from these colonies and was streaked for 

purity before archiving at -80° C in 20% glycerol and used in future experiments. 

 

Mutagen titration 

The mutagen ethyl methanesulfonate (EMS) was titrated to determine appropriate 

concentrations for SA mutagenesis experiments. We expected a concentration of EMS with a 

lethality of approximately 90% would be appropriate for our mutagenesis experiments. We 

estimated the appropriate concentration of EMS to be between 0.25% and 1%. Cells were grown 

to mid-log phase in LB broth (10 g/l tryptone, 5 g/l yeast extract, 5 g/l NaCl) at 37° C and 200 

rpm shaking, approximately 5 hours and aliquoted into 2.5 ml volumes. EMS was added at 

concentrations of 0.25%, 0.5%, 0.75% and 1% and the cells were incubated 1 hour at 30° C and 

200 rpm shaking. A lower temperature of 30° C was used to mirror the lower temperature 

required when using a temperature-sensitive plasmid in later experiments. Cells were then 

pelleted, washed, diluted in increments of factors of 10, and plated. The number of resulting 

colonies was counted and compared to an untreated control to determine EMS lethality. 
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Biofilm assay 

Biofilm mass was measured through an assay in which biofilms were grown and stained 

in 96-well plates (see figure 8). Strains to be tested were grown overnight at 37° C in tryptic soy 

broth (TSB) (Sigma-Aldrich, St. Louis, MO). Cultures were then diluted 1:200 in 66% TSB with 

0.5% glucose added. 200 μl of culture dilution were added to the wells of a 96-well, flat-

bottomed, tissue-culture plate (Corning Incorporated, Corning, NY) in quadruplicate, covered, 

and incubated for 24 hours at 37° C. The liquid and non-adhered cells were then removed from 

the wells by gently overturning the plate onto paper towels. Each well was then gently washed 

with phosphate-buffered saline (PBS) and allowed to dry. Once dry, 205 μl of 100% ethanol was 

added to each well to fix the biofilms, incubated for 15 minutes at room temperature, and then 

emptied onto a paper towel. Once the ethanol had dried 205 μl of 0.1% crystal violet dye was 

added to each well and incubated for 15 minutes at room temperature. The dye was then emptied 

as before, by overturning the plate onto paper towels, and three washes with 210 μl of ddH2O 

were performed, dumping the water between each wash. Once dry, stain was eluted from the 

biofilms with 205 μl of a mixture of 1/3 volume of EtOH with 40 mM HCl and 2/3 volume of 

acetone added to each well. The wells were sealed and incubated with this solution for 15 

minutes at 37° C with 100 rpm shaking. 80 μl of eluted stain was removed from each well and 

transferred to a new plate for reading and the absorbance at 595 nm was measured for each well. 
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Figure 8 – 96-well plate biofilm assay  

Shown is an example of a biofilm reduction assay as would be performed with proteinase K or DNase. 
Strains being tested are organized in columns with four treated wells and four mock treated wells. Various 
biofilm characteristics can be observed in this picture. Column 5, for example forms very robust biofilms 
that are affected very little by enzyme treatment. Column 4 forms moderately robust biofilms but are 
heavily affected by the enzyme treatment. Column 6 forms weak biofilms, but is less affected by the 
enzyme treatment. 
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Biofilm dispersal assay 

Biofilm dispersal assays were performed using a similar method to that described for the 

general biofilm assay with an added enzymatic treatment step after the biofilms are first drained 

and washed with PBS. 8 wells of each strain are grown, 4 control wells and 4 test wells (see 

figure 8). A solution containing the desired enzyme, DNase or proteinase K, is added to each 

well and incubated for 2 hours at 37° C. The wells are then drained, washed with PBS, and 

allowed to dry before the assay proceeds with ethanol fixation as described for the general 

biofilm assay. The DNase solution consists of 140 U/ml DNase in TSB. The proteinase K 

solution consists of 100 μg/ml proteinase K in 10 mM Tris-HCl, pH 7.5. The controls for each 

treatment were mock treated with the respective solution without the enzyme. Percent difference 

in absorbance at 595 nm was used as a measurement of biofilm dispersal by these enzymes. 

 

Cloning of lacZ and the ica promoter region 

Both lacZ and the ica promoter region were cloned by PCR using primers to add 

restriction sites and the EF-TU Shine-Dalgarno sequence. For lacZ, pUC19 plasmid DNA was 

used as the source of the gene. A PCR program of 94° C for 5 minutes, 40 cycles of 94° C for 30 

seconds, 59° C for one minute, and 72° C for one minute, followed by a final extension of 72° C 

for 10 minutes was used with the primers for lacZ (see table 2), yielding a product of 400 bp. 

The ica promoter region was amplified from JE2 genomic DNA using a PCR program consisting 

of 94° C for 7 minutes with 40 cycles of 94° C for 30 seconds, 55° C for 30 seconds, and 72° C 

for one minute, followed by a final extension at 72° C for 10 minutes with the primers for ica-

lacZ ica (see table 2), yielding a product of 1134 bp. 
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Table 2 – Primers used in project 1 and project 2 

lacZ for ica-lacZ 

Forward 5’-GCGGTCGACGACGGTGAAAACCTCTGACACA-3’ 

Reverse 5’-TGTGTGGAATTGTGAGCGGAT-3’ 

ica for ica-lacZ 

Forward 5’-CGCGAATTCCAGGGGAACATTACACTTTTATAA-3’ 

Reverse 5’-GCGGGTACCCATTATAAAATCTCTCCTACAGGCTTCTTGTTCAATGAA-3’ 

ica for ica-gfp (overlap extension) 

Forward 
(out) 

5’-CGCGAATTCCAGGGGAACATTACACTTTTATAA-3’ 

Reverse 
(in) 

5’-CATTATAAAATCTCTCCTACAGGCTTCTTGTTCAATGAA-3’ 

gfp for ica-gfp (overlap extension) 

Forward 
(in) 

5’-AACTAGGAGAGATTTTATAATGCCCGGGAGCAAAGG-3’ 

Reverse 
(out) 

5’-GCGGGTACCTTATTTGTAGAGCTCATCCATG-3’ 

mecA 

Forward 5’-AAAATCGATGGTAAAGGTTGGC-3’ 

Reverse 5’-AGTTCTGCAGTACCGGATTTGC-3’ 

16S rDNA 

Forward 5’-GCGGATCCTGACTGCAGTGCCAGCAGCCGCGGTAA-3’ 

Reverse 5’-GCGGATCCGCGGCCGCGGACTACCAGGGTATCTAAT-3’ 

nucA 

Forward 5’-GCGATTGATGGTGATACGGTT-3’ 

Reverse 5’-AGCCAAGCCTTGACGAACTAAAGC-3’ 
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Overlap extension PCR 

An overlap-extension PCR technique was used to first amplify and then splice the ica 

promoter region and gfp. The ica promoter region was amplified from JE2 genomic DNA with 

the primers for ica (forward out and reverse in) (see table 2) and a program consisting of 94° C 

for 5 minutes followed by 20 cycles of 94° C for 30 seconds, 38.9° C for 30 seconds, and 72° C 

for one minute, followed by a final extension of 72° C for 10 minutes. gfp was amplified from 

the plasmid pGFP-F with the primers for gfp (forward in and reverse out) (see table 2) and a 

program consisting of 94° C for 5 minutes followed by 20 cycles of 94° C for 30 seconds, 46.9° 

C for 30 seconds, and 72° C for one minute, followed by a final extension of 72 ° C for 10 

minutes. 5 μl of each of these reactions was added to a new PCR reaction tube and run at 94° C 

for 5 minutes followed by 15 cycles of 94° C for 30 seconds, 38.9° C for 30 seconds, and 72° C 

for one minute and once finished 2 μl of both the primers For_out and Rev_out were added to the 

reaction which was then run 30 cycles consisting of 94° C for 5 minutes followed by 30 cycles of 

94° C for 30 seconds, 46.9° C for 30 seconds, and 72° C for one minute, followed by a final 

extension at 72° C for 10 minutes. The product of 1137 bp was visualized on and excised from a 

1% agarose gel and cleaned up using the Zymoclean™  Gel DNA Recovery Kit by Zymo 

Research. 

 

Recovery of DNA from agarose gels 

 We used the Zymoclean™ Gel DNA Recovery Kit from Zymo Research for purification 

of DNA from agarose gels and followed the protocols provided by the manufacturer. 
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Plasmid Mini-prep 

 Plasmid mini-preps were performed using the E.Z.N.A® Plasmid DNA Mini Kit I from 

Omega Bio-Tek. The protocols provided for this kit by the manufacturer were followed. 

 

Genomic DNA extraction 

 Genomic DNA extraction was performed using the E.Z.N.A.® Bacterial DNA Kit from 

Omega Bio-Tek. We followed the protocols provided by the manufacturer for this kit. 

 

Restriction digest and CIP treatment 

 The restriction enzymes used were purchased from New England Biolabs. The restriction 

enzymes EcoRI-HF, KpnI-HF, SmaI, and SalI-HF were used. We followed the manufacturer’s 

instructions and used the provided buffer for digestion. All digestions were performed at 37° C 

with the exception of SmaI which is active at 25° C.  

 We acquired our Calf Intestinal alkaline phosphatase (CIP) from New England Biolabs. 

When CIP treatment was included, the manufacturer’s instructions were followed. The 

phosphatase was added directly to the digestion reaction and incubated for 30 minutes at 37° C, 

the DNA was then purified by spin column prior to ligation. 

 

DNA cleanup and purification 

 Prior to ligation, DNA was purified using the E.Z.N.A Cycle Pure Kit by Omega Bio-

Tek. The protocols provided by the manufacturer for this kit were followed. 
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Ligation  

 T4 DNA ligase from Thermo scientific was used for ligations. 20 μl reactions were 

performed which included 2 µl of 10X DNA ligase buffer, 1 µl of DNA ligase, and the 

remaining volume consisting of ddH2O, vector DNA, and insert DNA. Several different 

concentrations of vector DNA and insert DNA were used in the troubleshooting of this step. The 

reaction mixture was incubated for 2 hrs at room temperature or overnight at 16° C. 

 

Preparation of chemically competent E. coli cells 

 An overnight culture of E. coli DH5α is used to inoculate a flask with 50 ml of LB broth 

and grown to logarithmic phase. The culture is pelleted at 8000 rpm for 5 min and resuspended 

in ice-cold 30 mM CaCl2. Cells are distributed by 0.5 ml into microcentrifuge tubes (all kept on 

ice) and pelleted at 30 seconds at 10,000 g. Each pellet is resuspended in 0.5 ml ice-cold CaCl2 

and flicked to mix. 50 µl volumes were then distributed into pre-chilled microcentrifuge tubes 

and immediately frozen at -80° C. 

 

Transformation of E. coli  

 E. coli DH5α was used as the recipient cells for our transformations of E. coli. Cells are 

thawed on ice for 20 minutes, 1-5 µl of DNA is then added to the bottom of a 15 ml conical 

centrifuge tube and the thawed E. coli cells are added to the tube and incubated on ice for 20 

minutes. Tubes are then transferred directly from the ice to a water bath at 42° C and incubated 

for 90 seconds and then placed back on ice for two minutes. 250 µl of LB broth is then added to 
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the tube and incubated at 37° C in the shaking incubator for 45 minutes. Cells were then plated 

on selective media and allowed to grow overnight at 37° C. 

 

Preparation of electrocompetent S. aureus cells 

 10 ml of overnight culture is added to 90 ml of LB media and grown to OD578 = 0.6. 

Two 50 ml centrifuge tubes are filled with bacterial culture and placed on ice for 15 minutes. 

They are then centrifuged at 4000 rpm for 7 minutes at 4° C. Each is then washed with 50 ml ice-

cold sterile water and again centrifuged as before and washed one more time with 50 ml of ice-

cold sterile water and centrifuged as before. The cells are then washed with 16 ml of ice-cold 

sterile water and pelleted at 4000 rpm for 5 minutes at 4° C. Cells are then washed with 2 ml ice-

cold sterile 10 % glycerol and centrifuged at 4000 rpm for 3 minutes at 4° C. Cells are then 

washed with 1 ml of ice-cold 10% glycerol and pelleted at 4000 rpm for 3 minutes at 4° C. The 

cells are then resuspended in 700 µl of ice-cold 10% glycerol and immediately frozen in 70µl 

aliquots at -80° C. 

 

S. aureus transformation by electroporation 

 Electrocompetent S. aureus cells are thawed on ice for approximately 5 minutes and then 

incubated at room temperature for 10 minutes. Cells are pelleted at 10,000 rpm for 5 minutes and 

resuspended in 500 µl of EC buffer (0.5 M sucrose and 10% glycerol). Cells are pelleted at 

10,000 rpm for 5 minutes and resuspended in 85 µl of EC buffer. 5-15 µl of DNA is then added 

and gently mixed. Mixture is transferred to a 1 mm gap electroporation cuvette and pulsed twice 

manually, with approximately 1 second between pulses, at 2.4 kv using a Bio-Rad MicroPulser 
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electroporator. Immediately add 900 µl of LB media and transfer to a culture tube. Incubate at 

30° C (for temperature sensitive plasmid) for 2 hours and then spread on selective media and 

grow overnight at 30° C. 
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