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ABSTRACT 

 
The pmrHFIJKLM Operon in Yersinia pseudotuberculosis Enhances  

Resistance to CCL28 and Promotes Phagocytic  
Engulfment by Neutrophils 

 
Lauren Elizabeth Johnson 

Department of Microbiology and Molecular Biology, BYU 
Master Science 

 
 

Yersinia pseudotuberculosis is a foodborne pathogen that is the ancestral strain to 
Yersinia pestis, the causative agent of Plague. Y. pseudotuberculosis invades a host through the 
intestinal epithelium. The bacteria resist mucosal innate immune defenses including 
antimicrobial chemokines and phagocytic cells, and replicate in local lymph nodes. They cause 
Tuberculosis-like symptoms, including necrosis of local tissue and granuloma formation. Like all 
bacteria, Y. pseudotuberculosis has a net negative charge, which contributes to its susceptibility 
to some cationic antimicrobial peptides. Y. pseudotuberculosis is able to reduce this negative 
charge by adding 4-amino-4-deoxy-L-arabinose (L-Ara4N) to the lipid A portion of 
lipopolysaccharide. The production and addition of the L-Ara4N is coded for by the 
pmrHFIJKLM (pmrF) operon. A previous study has shown that the Y. pseudotuberculosis pmrF 
operon is important for resistance against polymyxin, but is not important for virulence in mice. 
Several previous reports have shown a strong influence of growth temperature on resistance to 
antimicrobial peptides and pmrF expression in pathogenic Yersinia species, but these studies also 
suggest significant variability between species, and even between strains of individual species. In 
particular, the regulation of the Y. pseudotuberculosis pmrF operon and its effect on bacterial 
interactions with mucosa-associated antimicrobial chemokines and neutrophils is not understood. 
In these studies, we investigated the environmental influences on pmrF expression in Y. 
pseudotuberculosis. We found that the promoter activity of the pmrHFIJKLM operon is 
increased at lower temperatures (21ºC) and in the presence of human serum. A ΔpmrI mutant 
strain of Y. pseudotuberculosis defective for addition of L-Ara4N was found to be more 
susceptible to killing by the antimicrobial chemokine CCL28 compared to wild-type. This 
suggests that this gene is important in the bacterial defense against antimicrobial chemokines. 
However, when the ΔpmrI mutant strain was exposed to human neutrophils, there was a decrease 
in phagocytosis as compared to wild-type bacteria. Our results suggest that the regulation of L-
Ara4N modifications in Yersinia is more complex than previously appreciated and varies 
between species. Addition of L-Ara4N to Y. pseudotuberculosis appears to enhance resistance to 
some antimicrobial peptides like CCL28 and promote greater phagocytic engulfment by 
neutrophils. These opposing effects may partly explain why there is no net apparent survival 
defect in mutants lacking the pmrF operon during infection. 

  
 
Keywords: Yersinia pseudotuberculosis, antimicrobial chemokine, phagocytosis, neutrophil, 
pathogenesis, immunology 
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INTRODUCTION 

The immune system 

 The human immune system consists of an innate and an adaptive immune response to 

protect our bodies against foreign invaders. The adaptive immune system is specifically tailored 

to adapt to individual pathogens and prevent future infections from the same specific organism. 

Conversely, the innate immune system is fast acting and often responds to general groups of 

pathogenic organisms. The innate immune system does not “learn” or improve over time. There 

are two types of response for the immune system; humoral and cellular. Humoral immunity 

includes the complement system, naturally occurring antibodies, and other soluble antimicrobial 

proteins [1]. These humoral immunity soluble proteins may be constantly circulating in the blood 

or are produced by cells in response to invading microorganisms. The cellular response of the 

innate immune system includes activation of phagocytic white blood cells. These include 

macrophages, granulocytes, and dendritic cells. The granulocytes are a subset of white blood 

cells that have multi-lobed nuclei and contain granules. Neutrophils, basophils, eosinophils, and 

mast cells make up this group. Basophils, eosinophils, and mast cells can initiate inflammatory 

pathways that result in allergies and asthma [2], however eosinophils are important for protection 

against parasitic infections [3, 4]. Neutrophils are the most abundant white blood cell and one of 

the initial responders during inflammation [5].  

Neutrophils 

 Neutrophils remain inactive in the blood until external stimuli activate them to begin 

clearing an infection. When activated, neutrophils can aid in clearing an infection through 

phagocytosis, degranulation, and expelling Neutrophil Extracellular Traps (NETs). Phagocytosis 
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is the most common activity of neutrophils, and results in a target bacterium being engulfed it 

into a phagosome. Once the bacterium is in the neutrophil, granules bind to the phagosome and 

release large amounts of antimicrobial peptides and producing free radicals, resulting in death of 

the bacteria [5, 6]. Degranulation can also result in extracellular release of granules, which can 

cause tissue damage, but also results in death of extracellular invaders [6]. The last mechanism is 

the release of NETs. Neutrophils can release a network of granule proteins and chromatin that 

form a fibrous matrix that can trap and kill bacteria [7]. This can be activated in the presence of 

lipopolysaccharide or other soluble factors, such as interleukin-8 (IL-8) [7].  

 While neutrophils can be activated by cytokines produced by other immune cells, the 

most potent way to activate neutrophils is by direct contact with a pathogen. Neutrophils are able 

to detect bacteria and other microorganisms by the use of toll-like receptors (TLRs). TLRs are 

pattern recognition receptors, and can detect microbial associated molecular patterns (MAMPs). 

Neutrophils express all but one of the ten TLRs, majority of which are found on the cell surface 

[8, 9]. They can be used to detect gram-positive and gram-negative bacteria, viruses, and fungi. 

Several of the TLRs are used to detect bacteria specifically. TLR2 can act together with TLR1 or 

TLR6 to detect di-acylated or tri-acylated peptides on gram-positive bacteria. TLR4 is able to 

detect the lipid A of LPS on gram-negative bacteria [10]. Neutrophils can also detect bacteria via 

TLR5 which can detect bacterial flagellin [11]. Upon TLR activation, a neutrophil can then 

produce pro-inflammatory cytokines, increase free-radicals, and initiate phagocytosis [9]. 

 Another way that neutrophils can detect infection is through complement receptors on the 

cell surface. Complement proteins are soluble in the blood and work as a signaling cascade to 

initiate inflammation, opsonization, and pore formation in a cell surface. When the complement 

cascade is active, complement proteins C3a, C4a, and C5a participate in inflammation, C5b can 
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form a membrane attack complex leading to pore formation and cell death, while C3b 

participates in opsonization. Opsonization occurs when complement proteins coat a cell surface, 

marking it for phagocytosis [12]. Neutrophils have complement receptors C1qR, CR1, CR3, 

CR4, and C5aR on their surface. When the CR1 receptor binds to C3b, the neutrophils can more 

easily phagocytize the cell that the complement is bound to [13, 14].  

Chemokines 

Innate immune cells, including neutrophils, need chemokines to migrate to the location 

they are needed. Chemokines are low molecular weight signaling proteins used in chemotaxis. 

There are four subfamilies of chemokines, CXC, CC, CX3C and XC, organized by the spacing 

of their first cysteine residues [15]. Chemokines can be present to direct regular cell movement, 

and can recruit immune cells to a sight of infection [15]. Homeostatically expressed chemokines 

are produced by the thymus and lymphoid tissue for regular cell migration, however a wide 

range of cells produce specific chemokines after infection occurs [16].  

Immune cells need chemokine receptors to be able to recognize and interact with a 

chemokine. Chemokine receptors are commonly found on hematopoietic cells, and offer 

redundancy where multiple chemokines may bind to one receptor, and one chemokine may bind 

to multiple receptors. Chemokine receptors are G protein-coupled receptors that have seven 

trans-membrane domains [17, 18]. Hematopoietic cells have several different responses to 

binding to a chemokine, which can include chemotaxis, cytotoxic response, or others [15-18]. 

Immune cells follow a chemokine gradient and go the direction of higher concentration, 

migrating to the location of chemokine origination and infection.  
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Antimicrobial peptides 

Cationic antimicrobial peptides (AMPs) are an important part of the innate immune 

system due to their ability to directly kill pathogens. These short proteins have been shown to use 

electrostatic interactions to bind to negatively charged phosphate groups on bacterial surfaces. 

Once bound, the peptide can then form pores in the bacterial cell, resulting in ion channels and 

cell death [19]. AMPs can be used as broad-spectrum antimicrobials and have shown to be 

effective against bacteria, enveloped viruses, and fungi. 

There are two major categories of cationic AMPs; cathelicidins and defensins. The 

cathelicidins are named for their conserved cathelin regions. Only one cathelicidin, LL-37, is 

found in humans and is produced in epithelial cells and leukocytes [19-22]. Cathelicidins contain 

α-helical structures, while the defensins are made up of anti-parallel β-sheets. The defensins are 

sub-categorized into two groups; the α-defensins and β-defensins. The α-defensins are typically 

found in neutrophils and NK cells. The β-defensins are more wide-spread and can be found in a 

wide variety of leukocytes and epithelial cells [23]. Defensins have a positively charged domain 

as well as a hydrophobic domain that allow them to penetrate the negatively charged bacterial 

membrane and cause pores, leading to death [21, 24]. The hydrophobic domain can be important 

for stabilizing the peptide on the target cell [23, 24]. The ability of defensins to form pores in a 

cell surface has been shown by visualizing with electron microscopy electron-dense deposits on 

the cell surface where pores have formed [25]. 

Killing mechanism 

  There have been three proposed methods for AMP pore formation; barrel-stave, carpet, 

and toroidal-pore. The barrel-stave method requires multiple peptides to penetrate the cell 
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surface, with the hydrophobic region facing out. When multiple peptides have formed a ring in 

the membrane, the pore is formed resulting in cell death [26]. The carpet method proposes that 

the AMPs align parallel to the membrane, creating a “carpet” covering the cell with the 

hydrophobic regions contacting the lipid bilayer. As the coating is made, sections of the peptide 

coated membrane become separated and a pore is formed [26]. The toroidal-pore method acts 

similarly to the barrel-stave method due to multiple peptides forming a ring in the cell 

membrane. However, in the toroidal-pore method, the AMPs are causing the lipid monolayers to 

bend continuously through the membrane until bound with the opposite lipid monolayer, forming 

a pore of AMPs and hydrophilic lipid heads [26]. It has also been proposed that AMPs could 

affect bacteria through inhibiting enzymatic activity or synthesis of key cellular elements such as 

the cell wall, nucleic acid, proteins, or the cytoplasmic membrane [27].   

Antimicrobial chemokines 

Several chemokines have been found to have a novel function as an antimicrobial 

peptide. The antimicrobial chemokines are cationic and similar in structure to defensins [28]. 

However, not all cationic chemokines have antimicrobial properties [28]. Different chemokines 

appear to require different regions of their structure to act as an antimicrobial, which may mean 

that different antimicrobial chemokines have different killing methods. It has been found in 

CXCL6 that the N-terminal domain has more antimicrobial properties than the C-terminal 

domain [29]. Conversely, in CCL28 and CXCL9 it has been seen that the C-terminal domain is 

necessary for antimicrobial properties, and the N-terminal domain does not have any 

antimicrobial activity on its own [30, 31]. Multiple studies have shown membrane disruption as a 

killing mechanism of antimicrobial chemokines through electron microscopy [29], as well as 

flow cytometric assays with propidium iodide entrance into the cell [32]. These antimicrobial 
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chemokines have shown to be effective against gram-positive and gram-negative bacteria, fungi, 

and parasites [16, 30, 32]. 

CCL28 

The chemokine CCL28, previously referred to as mucosae-associated epithelial 

chemokine (MEC), is found in mucosal tissues, including lungs, intestines, mammary glands, 

and nasal passages [33]. The chemokine binds to chemokine receptors CCR3 and CCR10. While 

most chemokines have 4 cysteine residues, CCL28 has 6. It is responsible for recruiting IgA-

producing plasma cells, eosinophils, and activated T lymphocytes to these mucosal tissues [16, 

34]  

CCL28 has recently been shown to have direct antimicrobial activity [34]. It has been 

shown that there is a positively charged C-terminus that is required for CCL28 mediated 

bacterial killing [30]. The structure of this chemokine is highly similar to the structure of β-

defensins and so it is believed that they have a similar killing mechanism [21]. The positively 

charged C-terminus alone is not sufficient to cause cell death, however it is unknown what else is 

required [30]. While CCL28 can kill bacteria in low-osmolarity conditions in vitro, in higher 

osmolarity solutions the peptide can bind to the surface of bacteria without causing death. The 

impact of such binding on bacterial interaction with host tissues or immune cells is unknown but 

deserves further investigation. 

Lipopolysaccharide 

 Gram-negative bacteria have an inner membrane, with a thin peptidoglycan cell wall, and 

an outer membrane [35]. The outer leaflet of the outer membrane contains lipopolysaccharide 

(LPS). LPS consists of three sections; the lipid A, the core oligosaccharide, and the O-antigen. 
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Even though LPS is highly conserved, there is variability between the exact structure of the LPS 

between different bacterial strains [36]. Lipid A consists of an acylated glucosamine disaccharide 

with flanking phosphate groups and fatty acid chains that anchor the LPS to the bacterial 

membrane. The negatively charged phosphate groups can aid in dipole interactions with other 

LPS molecules. LPS is beneficial to bacteria by adding to physical rigidity, as well as decreasing 

permeability to prevent entrance of antimicrobial compounds [37]. LPS is highly 

immunostimulatory, immune cells can produce very potent pro-inflammatory cytokines such as 

TNF-α and IL-1β when even small amounts of lipid A are detected [38-40]. 

Yersinia pseudotuberculosis 

Yersinia pseudotuberculosis is a gram-negative pathogenic bacterium that is ancestral to 

Yersinia pestis, the causative agent of bubonic and pneumonic plague [41, 42]. Y. 

pseudotuberculosis is less virulent than Y. pestis and causes Tuberculosis-like symptoms such as 

granuloma formation and local necrosis, as well as gastroenteritis and lymphadenitis with 

possible complications of reactive arthritis and erythema nodosum [41, 43, 44]. Even though Y. 

pseudotuberculosis and Y. pestis are so closely related, the infection methods between these two 

bacteria are very different. While Y. pestis can infect hosts by fleas and aerosols, infection by Y. 

pseudotuberculosis typically occurs through contaminated food and water. Y. pseudotuberculosis 

invade the intestinal epithelium through M cells into Peyer’s patches or directly through the 

epithelial layer. They can colonize Peyer’s patches within hours of infection or they can be 

engulfed by macrophages, where they can survive intracellularly, and taken to the lymph nodes 

to colonize. Pathogenic Yersinia species have a plasmid (pYV in Y. pseudotuberculosis and 

pCD1 in Y. pestis) that codes for necessary virulence factors, including a type III secretion 

system (TTSS) [44-47]. This TTSS is required for survival and replication in the host’s lymphoid 
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tissue [46]. Through the TTSS Yersinia can secrete virulence factors known as Yersinia outer 

proteins (Yops) into a target host cell. Some Yops have been shown to induce apoptosis in 

phagocytic cells [45, 46]. 

While Yersinia can induce apoptosis in macrophages and dendritic cells, neutrophils are 

resistant to pYV+ Yersinia induced apoptosis [48, 49]. Phagocytosis of the bacteria is increased 

in pYV-deficient Yersinia; however neutrophil cell death occurs in higher levels due to reactive 

oxygen species production by neutrophils in response to phagocytosis of the bacteria [49]. It has 

also been shown that Y. pseudotuberculosis and Y. pestis are resistant to killing by neutrophils 

through use of the Yops [44, 47, 50]. In Y. pestis it has been shown that the PhoP-PhoQ two 

component system is important for neutrophil intracellular survival of the bacteria [48]. 

Although Yersinia devote considerable resources to surviving against neutrophil attack, they are 

critically important in early defenses against Y. pestis lung infections. Y. pestis that produce YopJ 

are able to suppress mouse neutrophil chemotaxis during the first 24 hours after infection. 

However, when neutrophils are induced to migrate to the lung prior to infection the numbers of 

bacteria are significantly decreased and mouse survival is enhanced [51]. However, a separate 

study found that Y. pestis was equally virulent in mice with or without neutrophils [52]. The 

interactions between Yersinia and neutrophils are important to study and understand since 

neutrophils are such a critical part of the innate defense system. 

LPS modifications  

Many pathogenic bacteria have defense mechanisms that can be used to evade a host’s 

immune system during an infection. Since the LPS is so immunostimulatory due to the lipid A, 

many gram-negative bacteria have specific mechanisms to conceal LPS from being detected. For 
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example, Yersinia are able to alter their fatty acid chain composition when grown at various 

temperatures. When grown at 21ºC, Y. pestis, Y. pseudotuberculosis, and Y. enterocolitica all 

produce hexa-acylated fatty acid chains on the lipid A. All three strains convert to a tetra-

acylated lipid A when they are grown at 37ºC (Fig. 1) [53]. Having greater hexa-acylation 

patterns can aid in lower cell permeability and greater protection from antimicrobials that may 

cross the membrane. The bacteria benefit in mammalian infection with a tetra-acylation because 

it is less immunostimulatory. When monocytes are presented with the hexa-acylated lipid A, they 

respond by producing proinflammatory cytokine TNF-α. The same response was not observed 

when the tetra-acylated lipid A was used [53]. In addition to showing how bacteria can make 

physical alterations to be more clandestine, it shows that sometimes bacteria sacrifice some 

aspects of their physical fitness (in this instance, sacrificing membrane defenses) to increase 

probability of survival in a host.  

The innate immune system frequently detects gram-negative bacteria due to the net 

negative-charge caused by the negatively charged phosphate groups on the lipid A structure. This 

negative charge facilitates cell recognition by cationic antimicrobial peptides, ultimately causing 

death to the bacteria by pore formation in the membrane [19]. Many gram-negative bacteria have 

the ability to modify the lipid A structure to conceal the negative charges that are present, 

resulting in decreased detection by cationic AMPs [40]. One mechanism used to accomplish this 

is the addition of phosphoethanolamine [54-56]. This addition causes a slightly less negative 

charge of the outer bacterial membrane by addition of phosphoethanolamine to either the lipid A 

or the core oligosaccharide. It has been shown that this mechanism does happen in Yersinia, and 

can be increased in low temperatures in Y. pestis [57]. Another defense mechanism is the 

addition of a positively charged amino sugar 4-amino-4-deoxy-L-arabinose (L-Ara4N) to the 
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lipid A structure at the negatively charged phosphate groups (Fig.1). This occurs in E. coli, 

Salmonella, Yersinia, and other gram-negative bacteria [56, 58].   This mechanism is carried out 

through the pmrHFIJKLM (pmrF) operon (Fig. 2a), sometimes referred to as the arn operon [59-

61].  

L-Ara4N modification carried out by the pmrHFIJKLM operon  

The process of L-Ara4N production and addition is started when Ugd (encoded by the 

pmrE gene, which is not part of the pmrF operon) converts UDP-glucose to UDP-GlcUA [62]. 

The pmrI gene, sometimes referred to as arnA, is responsible for a large portion of the creation 

and addition of L-Ara4N to the bacterial surface (Fig. 2b). The PmrI protein has two domains 

that are necessary for L-Ara4N addition (Fig. 2b) [63], an N-terminal formyltransferase and a C-

terminal decarboxylase. The C-terminus catalyzes the change of UDP-GlcUA to UDP-Ara4O 

[64]. PmrH then facilitates the change to UDP-L-Ara4N [65]. The N-terminal formyltransferase 

domain of PmrI transfers a formyl group to the UDP-L-Ara4N [64]. PmrF then transfers this 

molecule to the inner membrane by removing UDP and attaching the molecule to undecaprenyl 

phosphate in the inner membrane [65, 66]. PmrJ then removes the formyl group and the 

molecule is transferred to the outer membrane [67]. While it is still unknown exactly which 

proteins are responsible for the transport of the molecule to the outer membrane, it has been 

shown that PmrL and PmrM may play a role in this [68]. However, loss of the pmrL and pmrM 

genes does not prevent L-Ara4N addition, and there is evidence that these genes can be 

supplemented if function is lost [69]. Finally, PmrK transfers L-Ara4N to the lipid A structure in 

a well-characterized reaction [70, 71]. 



11 
 

In Y. pestis it has been shown that in the absence of arnB (pmrH) there is a compensatory 

gene, wecE, which partially makes up for the loss of the gene [72]. L-Ara4N was still added to 

the Lipid A in lower levels even after deletion of the arnB gene. The wecE gene is known for its 

role in biosynthesis of enterobacterial common antigen (ECA). ECA is found on all members of 

the Enterobacteriaceae family of bacteria. ECA is found on the outer leaflet of the outer 

membrane, similar to LPS. ECA is partially composed of an aminosugar heteropolymer [73]. L-

Ara4N is also an aminosugar so it is reasonable that a gene helping the production of ECA could 

also help the production of L-Ara4N. After the loss of wecE and arnB, the L-Ara4N was no 

longer added [72].  This results in maintaining a higher level of resistance to cationic 

antimicrobial peptides even if there are conditions that prevent the original L-Ara4N addition 

mechanism to be functional. Specifically, the wecE gene codes for TDP-4-oxo-6-deoxy-D-

glucose transaminase. There is a gene in Y. pseudotuberculosis, rffA, that is assumed codes for 

the same product, based on 99.73% gene homology [74]. There have been no studies on this 

gene, however if the assumption is correct that this gene is the same as wecE, then the rffA gene 

may be able to aid in the addition of L-Ara4N in Y. pseudotuberculosis as well.  

The impact of L-Ara4N lipid A modification on bacterial fitness in host environments is 

not straightforward. While in S. typhimurium it has been shown that loss of the pmrF operon 

results in decreased virulence of the bacteria during infection [75], in Y. pseudotuberculosis a 

loss in pmrF function does not affect virulence in mice when infected by either intravenous or 

via gastric inoculation [60]. However, L-Ara4N has been implicated in the ability of Y. pestis to 

survive in fleas [71]. Interestingly, recent evidence also suggests that L-Ara4N modification may 

be detrimental to bacteria in some instances. Researchers investigating Burkholderia infection in 

Cystic Fibrosis patients were able to synthesize L-Ara4N modified and unmodified Burkholderia 
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lipid A. Their study showed that when the lipid A was modified with L-Ara4N, HEK cells were 

stimulated to produce NF-κB and macrophages were stimulated to produce IL-8, which would 

result in increased inflammation. Neither of these responses occurred when the lipid A was not 

modified [76]. Others have shown that Burkholderia penta-acylated lipid A is still highly 

immunostimulatory compared to hexa-acylated lipid A due to the L-Ara4N residues on the lipid 

A [77]. It’s possible that the positive charges of the L-Ara4N are responsible for activating parts 

of the TLR4-MD2 complex, resulting in activated immune cells. These studies suggest that L-

Ara4N modified lipid A may be a detriment to bacteria trying to evade detection by the immune 

system. 

Regulation of the pmrF operon 

In Salmonella and Y. pestis, the pmrF operon is regulated by the PmrA-PmrB and the 

PhoP-PhoQ two-component systems [60, 61, 78, 79]. These systems have been best studied in 

Salmonella enterica serovar typhimurium in response to high iron and/or low magnesium levels. 

In this Salmonella strain, PmrB is the sensor kinase that is activated by high Fe3+ levels, which in 

turn activates the regulatory protein PmrA to directly control pmrF expression [60]. It has also 

been shown that PmrA activation occurs in low Mg2+ concentrations when the PhoP-PhoQ 

system is activated. This leads to an increase in production of PmrD, which activates PmrA at a 

post-transcriptional level [60] (Fig. 3A). High levels of Fe3+ also reduce PmrD transcription [80] 

thus reducing the input from the PhoP/Q system. Y. pestis does not have PmrD, but can still use 

both two-component systems to regulate pmrF expression (Fig. 3B) [48]. Y. pseudotuberculosis 

also lacks PmrD, and unlike in Y. pestis, pmrF expression is independent of PmrA-PmrB (Fig. 

3C) despite a conserved PmrA binding site [60, 61]. Polymyxin resistance has been shown to 

increase in Y. pseudotuberculosis in low Fe3+ levels [60], and a second LysR-type regulator for 
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the pmrF operon was identified [69]. This second regulator is not present in Y. pestis and is 

significantly different in Y. enterocolitica.  

These discrepancies among the ways closely related Yersinia regulate the pmrF operon 

are interesting and suggest a need for clarification of the exact factors that control pmrF 

expression and polymyxin resistance. The influence of temperature has been especially difficult 

to establish. For instance, Y. pestis strain KIM resistance to polymyxin was found to be 

unchanged at various temperatures [81], while another group found Y. pestis strain KIM6+ 

resistance to polymyxin is increased at 21ºC compared to 37ºC [53]. Y. enterocolitica is more 

susceptible to polymyxin than either Y. pestis or Y. pseudotuberculosis under every condition 

[53, 81]. However, non-pathogenic Y. enterocolitica strain PR serotype O:1,6 resistance to 

polymyxin is decreased at 37ºC [81] as is L-Ara4N modification in Y. enterocolitica strain 8081 

[79]. Conversely, most previous studies have shown that Y. pseudotuberculosis resistance to 

polymyxin is decreased at temperatures lower than 37ºC (21ºC, 26ºC) [53, 81], even though Y. 

pseudotuberculosis strain WS 66/89 serogroup III exhibited diminished resistance at 37ºC [81]. 

One report suggested that pmrF transcript levels in Y. pseudotuberculosis were nonexistent at 

temperatures below 37ºC [60], however L-Ara4N addition has been measured at higher and 

lower temperatures in both Y. pseudotuberculosis and Y. pestis [53]. The exact mechanisms 

contributing to polymyxin resistance need to be clarified due to such high diversity between 

Yersinia species and strains. Further, the differences that are seen in pmrF expression patterns 

suggest that pmrF regulation is more complex than one would assume. Even significant 

differences are seen between strains of Yersinia that are very closely related. This highlights the 

need for further study of more isolates so that L-Ara4N regulation can be better understood. 
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EXPERIMENTAL APPROACH 

 Due to the dramatic differences in polymyxin resistance between Y. pseudotuberculosis 

and the other Yersinia species, the exact conditions of pmrF regulation need to be studied in 

greater detail. We determined to do this by focusing on three objectives. 

The first objective of this study was to characterize the expression of the pmrF operon in 

Y. pseudotuberculosis IP32953 under various environmental conditions. To do this, we cloned 

the pmrF promoter in front of a promoterless green fluorescent protein (GFP) gene to create a 

reporter plasmid. We then used flow cytometry to measure expression changes in response to 

various external factors. We wanted to test different environmental conditions that the bacteria 

may encounter before and during an infection, so expression was measured in rich and minimal 

media, high (37ºC) and low (21ºC) temperatures, and in the presence of human serum and 

antimicrobial chemokine CCL28. We predicted that expression of the operon would increase at 

37ºC, as well as in the presence of human serum and CCL28 since the bacteria might benefit 

from the added protective measures of L-Ara4N addition under these conditions.  

 The second objective of this study was to measure the effect that the pmrI gene (required 

for L-Ara4N addition) has on bacterial resistance to antimicrobial chemokine CCL28. In order 

for Y. pseudotuberculosis to establish a successful infection, they must cross through the mucosal 

layer of the intestinal epithelium. This means they need to be able to avoid host defense peptides, 

including antimicrobial chemokines, and phagocytic cells. We wanted to see the importance of 

L-ara4N addition in the bacterial resistance of these various conditions. Since the pmrI gene is 

responsible for multiple steps in the production of L-ara4N [63], it seemed a clear target to 

knock-out in an attempt to remove L-ara4N addition to the bacteria. Since CCL28 is produced in 
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mucosal surfaces, it is reasonable to assume that this is one antimicrobial chemokine that Y. 

pseudotuberculosis would encounter during an infection. This first required the creation of a 

ΔpmrI mutant and complemented mutant in the Y. pseudotuberculosis IP32953 background. 

Using the ΔpmrI and wild-type strains of Y. pseudotuberculsosis, we then used flow cytometry to 

detect levels of CCL28 binding to bacteria, as well as bacterial susceptibility to killing by the 

peptide. We hypothesized that the cationic CCL28 would be repelled by the positively charged 

L-Ara4N, resulting in the ΔpmrI mutant showing higher binding and reduced survival compared 

to the wild-type strain.  

 The third objective of these studies was to intended to help us better understand the 

impact that the L-Ara4N addition and CCL28 binding may have on the outcome of interactions 

with human neutrophils. Since neutrophils are the most common white blood cell and are very 

important first responders to bacterial infection, we decided to use them as a model for observing 

the effects of L-Ara4N addition on phagocytosis. In addition, the consequences of CCL28 

binding to the surface of a bacterium have not been studied. Pathogens binding to host proteins 

often result in different consequences. For example, when a bacterium is coated in the 

complement protein they are marked for phagocytosis by immune cells [12, 13]. However, there 

are some pathogens that can coat themselves in human proteins to avoid detection by the 

immune system [82, 83]. We wanted to see if CCL28 binding to the surface of Y. 

pseudotuberculosis would result in either of these effects. We developed a phagocytosis assay in 

which GFP expressing strains of Y. pseudotuberculosis were used to measure the proportion of 

neutrophils that are able to phagocytose bacteria under different conditions. We compared the 

efficiency of the neutrophils to engulf wild-type, ΔpmrI mutant, and ΔpmrI mutant 

complemented strains using flow cytometry. We also measured the effect of CCL28 binding to 



16 
 

the bacterial surface had on neutrophil phagocytosis. We hypothesized that a lack of L-Ara4N on 

the surface of the ΔpmrI mutant, would increase the ability of neutrophils to phagocytose 

bacteria. We also hypothesized that CCL28 bound bacteria would increase phagocytosis, acting 

as an opsonin.   
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MATERIALS AND METHODS 

Bacterial strains and growth conditions 

Yersinia pseudotuberculosis IP32953, a virulent clinical isolate, was used in these studies. The Y. 

pseudotuberculosis hldD::Tn5 mutant was made previously in a non-virulent Y. 

pseudotuberculosis via random transposon mutagenesis and identified as having a truncated LPS 

down to the heptose group in the core region [84, 85]. The hldD::Tn5 mutant contains 

kanamycin resistance.  GFP fluorescent versions of wild-type (wt) Y. pseudotuberculosis, Y. 

pseudotuberculosis ΔpmrI, and Y. pseudotuberculosis ΔpmrI + pACYCpmrI (see below) were 

created by electroporating pAKgfp1 plasmid (Addgene plasmid # 14076) into each strain [86]. 

The MFDpir strain of E. coli has been previously infected with Mu bacteriophage, contains 

genes that allow replication of Mu-dependent suicide plasmids, and requires diaminopimelic acid 

(DAP) addition to media to replicate [87]. Overnight cultures were inoculated in 3mL Terrific 

Broth (TB) (Gentrox, Worcester, MA) shaking at 37°C unless otherwise stated. Antibiotics were 

added when appropriate; chloramphenicol (10μg/mL), ampicillin (100 μg/mL), and kanamycin 

(30μg/mL).  

Electroporation 

Electrocompetent cells were made by growing 5mL of the strain overnight, pelleting the cells 

into 4 microcentrifuge tubes, and washing the cells four times in molecular grade water on ice. 

The electroporation took place in a 1mm cuvette on setting EC1. The transformed cells were 

immediately suspended in 800µL of Recovery Media (Lucigen) and shaken at the appropriate 

temperature for 1-2 hours before plated.  
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Mutant Generation 

The ΔpmrI mutant of Y. pseudotuberculosis was created using a technique previously described 

[88]. Briefly, by amplifying the upstream region and downstream region (with 20bp out of gene 

either side and 40 bp within the gene) of the pmrI gene using primers that would create products 

with areas of homology with each other. The primers used were the pmrI upstream F, pmrI 

upstream R, pmrI downstream F, and pmrI downstream R (Table 1). Once the two pieces were 

amplified, 1μL of each product was combined together with 8μL of taq polymerase and 10μL of 

molecular grade water. To “stitch” the upstream and downstream regions together, a PCR was 

run with the following conditions: 98°C for 1 minute and 30 seconds, then 15 cycles of 98°C for 

15 seconds, 55°C for 20 seconds, and 72°C for 1 minute and 30 seconds. Then 1μL of this new 

product is used as a template for a new PCR reaction using 2 nested primers, one of which is 

upstream of the gene and one downstream, pmrI nested F and pmrI nested R (Table 1). The 

resulting product, as well as suicide plasmid pRE112 (Addgene plasmid # 43828) was digested 

with XbaI and SacI and then ligated together. The pRE112 plasmid contains a SacB gene for 

sucrose sensitivity [89]. This new plasmid was then heat shocked into chemically competent 

MFDpir and the cells were grown on Luria Broth (LB) plates that had be supplemented with 

chloramphenicol and diaminopimelic acid (DAP). MFDpir cells require the addition of DAP to 

grow. Once the MFDpir cells with the plasmid were grown up, they were mated with Y. 

pseudotuberculosis by combining 500µL of each culture and pelleting the cells together, 

resuspending them in 30µL TB and spotting them on a TB + DAP plate for 24 hours. The cells 

were then collected and grown overnight in TB with chloramphenicol. The resulting Y. 

pseudotuberculosis cells contained single crossover event with the plasmid, since the plasmid 

cannot replicate in Y. pseudotuberculosis without crossing over. Cells were then grown in 
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antibiotic free media to allow a double-crossover event to take place. The cells were then plated 

on TB + sucrose plates and a colony PCR was performed to check the length of the pmrI gene, 

using the pmrI upstream F and pmrI downstream R primers, several colonies were positive for 

deleted pmrI gene.  

Chemokine Preparation 

Lyophilized human CCL28 and CCL20 were purchased from PeproTech, Rockyhill, NJ and 

prepared by diluting each vial of 100μg into 2mL of filtered PBS containing 0.1% BSA. The 

mixture was left at room temperature to allow the chemokine to properly dissolve. The 

chemokine was then put into single dose aliquots of 12μL to avoid multiple freeze/ thaw cycles. 

The final concentration of the chemokine preparation was 0.5μg/10μL.  

pmrHFIJKLM Reporter Strain Generation 

The pmrF operon promoter was amplified using the “pmrH pro F” and “pmrH pro R” primers 

(Table 1), resulting in the addition of XbaI and HindIII restriction sites to the 5’ and 3’ end 

respectively. The product was then digested with XbaI and HindIII restriction enzymes. The gfp 

gene was amplified from the pAKgfp plasmid using the gfp F HindIII and gfp R SalI primers 

(Table 1), resulting in the addition of HindIII and SalI restriction sites to the 5’ and 3’ end 

respectively. The gfp gene product was then digested with HindIII and SalI restriction enzymes. 

The digested promoter and gfp products were then ligated together. The pACYC184 plasmid 

(GenBank Accession #: X06403) was digested with XbaI and SalI restriction enzymes. This 

plasmid contains a chloramphenicol resistance gene [90]. The pmrF promoter-gfp construct was 

then ligated into the digested pACYC184. The plasmid was then heat shocked into chemically 

competent E. coli (Lucigen, Middleton, WI). Once the E. coli were grown overnight, the plasmid 
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was isolated using the QIAprep Spin Miniprep Kit (QIAGEN, Valencia, CA). The plasmid was 

then electroporated into electrocompetent wild-type Y. pseudotuberculosis and grown overnight 

in TB media with chloramphenicol. A colony PCR was then performed to confirm plasmid 

presence. 

pmrF Expression Assay 

The pmrF expression reporter strain of Y. pseudotuberculosis was grown overnight at 30ºC in 

M9 and TB media. The bacteria were subcultured by adding 50µL of culture to 1mL of TB or 

M9 with a negative control and the appropriate test condition; either 10% human serum or 0.4nM 

CCL28 or CCL20. After 6 hours of incubation the samples were run on the flow cytometer to 

detect GFP levels. Flow cytometry data was obtained using a BD Accuri C6 Flow Cytometer and 

analyzed using the BD Accuri software. The mean fluorescence was compared between the 

varying conditions to determine gene expression. 

Growth Rate in Polymyxin 

After the wild-type, ΔpmrI, and ΔpmrI complemented strains of Y. pseudotuberculosis were 

grown overnight, each strain was diluted to an OD600 of 1.0 +/- 0.1. The cultures were then 

centrifuged and resuspended in 1mL of PBS. In triplicate, 20µL of bacteria and 10µL of BSA 

were added to individual microcentrifuge tubes and incubated at 37ºC for 30 minutes. A 96 well 

plate was prepared with an LB/ rezasurin/ polymyxin mixture at 0.135mg/mL concentration 

rezasurin. 50µL of this initial mixture was added to columns 1,2, and 4-12 of the 96 well plate. 

Polymyxin was added to the wells in column 3 in LB at a concentration of 100µg/mL and 1:2 

dilutions of polymyxin were created across the plate. The highest level of polymyxin is 

100µg/mL and the dilutions continue until 0.2µg/mL. Column 1 and 2 have 50µL of PBS added. 
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After the 30 minute bacteria incubation is complete, the cells are washed and resuspended in 

2mL of PBS. 50µL of this culture is then added to columns 2-12. The plate is then read on a 

plate reader measuring rezasurin fluorescence to obtain a time 0 reading and then incubated at 

37ºC for the duration of the experiment, with plate readings being taken every 30 minutes. 

Resazurin becomes fluorescent when metabolized by the bacteria, this allows resazurin to be 

used to achieve a very accurate minimum inhibitory concentration.  

Chemokine Binding Assay 

After the wild-type, ΔpmrI, and ΔpmrI complemented strains of Y. pseudotuberculosis were 

grown overnight, each strain was subcultured and grown for approximately 2 hours, until the 

OD600 read 0.6. 1mL of each culture was then centrifuged and resuspended in 100μL 0.01% 

BSA in PBS (PBSA). In triplicate, 5µL of culture was added with 100uL BSA and either 10μL 

0.1% BSA in PBS or 10μL of CCL28 with a final concentration of 0.5μg/15μL. The samples 

were then incubated on ice for 30-60 minutes. The samples were all then centrifuged and washed 

three times with PBSA. Then 10μL of streptavidin-labeled anti-CCL28 antibody (R&D Systems) 

was added to each tube for 30 minutes to allow the antibody to bind. They were then washed in 

PBSA, and 5μL fluorescent APC (which binds to streptavidin) (BD Biosciences) is added to 

1mL PBSA and then 100μL of this was added to each sample. The samples incubated for another 

hour, when they were then washed in PBSA again. The samples were then run on a flow 

cytometer to see how many of the bacterial cells were APC positive, meaning the cells had 

bound CCL28. Flow cytometry data was obtained using a BD Accuri C6 Flow Cytometer and 

analyzed using the BD Accuri software.  
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Chemokine Killing Assay 

After the wild-type, ΔpmrI, ΔpmrI complemented strain, and hldD::Tn5 strains of Y. 

pseudotuberculosis were grown overnight, each strain was subcultured by adding 50μL 

overnight culture to 2mL TB and grown for approximately 2 hours, until the OD600 read 0.6. 

Then 1mL of each culture was centrifuged and resuspended in 1mL of 1mM potassium 

phosphate buffer (PPB) (a low osmolarity buffer). 40μL of each culture was added to 1mL of 

1mM PPB to dilute. From this, in triplicate, 100uL of culture was added individual 

microcentrifuge tubes. Either 10μL of 0.1% BSA or 10μL of CCL28 was added for a final 

concentration of 0.5μg/100uL. The tubes were then vortexed thoroughly and incubated at 37°C 

for 90 minutes. After the incubation, 200μL of dilute 1μm polystyrene beads (1:62500) 

(Polybead ® Polystyrene 1µm Microspheres, Polysciences Inc., Warrington, Pennsylvania) were 

added to each sample, followed by 7μL of propidium iodide (PI) (Invitrogen, Carlsbad, 

California) and vortexed. Flow cytometry was used to count to 30,000 beads and numbers of 

viable cells were compared to bead count. Flow cytometry data was obtained using a BD Accuri 

C6 Flow Cytometer and analyzed using the BD Accuri software. The percent survival is then 

calculated with the following equation (Treated (bacteria total-PI+)) / (Untreated (bacteria total-

PI+)) x100. 

Neutrophil Isolation 

Human neutrophils were isolated from whole human blood using a density gradient according to 

a protocol previously outlined [91]. Briefly, 5mL whole human blood obtained from volunteer 

donors was layered onto 5mL of Lympholyte Poly (Cedarlane Laboratories, Burlington, Ontario) 

and centrifuged at room temperature for 35 minutes. The polymorphonuclear cell layer was 
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removed and treated with red blood cell lysis buffer multiple times until there were no red blood 

cells visible. The cells were then washed in Hanks Balanced Salt Solution and are counted using 

a hemocytometer.  

Phagocytosis Assay 

After the GFP wild-type, GFP ΔpmrI, and GFP ΔpmrI complemented strains of Y. 

pseudotuberculosis were grown overnight with ampicillin, each culture was diluted to an OD600 

of 1+/- 0.1 and then resuspended in Hanks’ Balanced Salt Solution (HBSS)(Gibco by Life 

Technologies). In triplicate, 1,000,000 bacteria from each culture were added to individual 

microcentrifuge tubes containing 90μL HBSS. Each tube either had 10uL of human serum 

(obtained from a volunteer donor), BSA, or CCL28 added. All of the tubes were then vortexed 

and incubated at 37°C for 30 minutes. The bacteria were then washed in HBSS and 100,000 

human neutrophils were added to each tube in a volume of 200uL. These samples were then 

incubated at 37°C for 30 minutes. The samples were then put on ice and run on the flow 

cytometer. Flow cytometry data was obtained using a BD Accuri C6 Flow Cytometer and 

analyzed using the BD Accuri software. The flow cytometer counted to 10,000 neutrophils by 

gating around the appropriate population and the percent of neutrophils that were positive for 

GFP were observed. 
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RESULTS 

Expression of pmrHFIJKLM operon increases at 21ºC, in rich growth media, and in human 

serum  

It is known that in Yersinia pestis and Yersinia enterocolitica the susceptibility to 

polymyxin is much greater at 37ºC than at lower temperatures [53, 79], and Y. enterocolitica has 

been shown to have decreased pmrF expression at 37ºC [79]. Interestingly, Y. 

pseudotuberculosis PB1 strain has shown to follow the opposite trend, in that susceptibility to 

polymyxin is greater at 21ºC [53]. The effect of temperature on expression of the pmrF operon 

has not been reported in Y. pseudotuberculosis strain IP32953. We wanted to determine whether 

the expression of the pmrF operon in Y. pseudotuberculosis IP32953 follows the same trend that 

has been seen in Y. pseudotuberculosis strain PB1 and Y. pestis, or if it would resemble Y. 

enterocolitica. A reporter plasmid carrying the pmrF promoter (including the PhoP binding site) 

fused to GFP was created. We tested the effect of growth temperature, both in rich growth media 

Terrific Broth (TB) and minimal media M9, on pmrF promoter activity. After the bacteria were 

grown in their respective media overnight at 30ºC, they were subcultured into the same media at 

21ºC or 37ºC for six hours and the fluorescence of the population was determined by flow 

cytometry. As seen in Fig. 4, the expression of the pmrF operon is slightly higher at 21ºC than at 

37ºC in both media conditions (p<0.05). In addition, there was significantly increased expression 

of the pmrF operon in TB over M9 media at both temperatures.  

We then wanted to determine if pmrF activity correlated with polymyxin resistance in Y. 

pseudotuberculosis IP32953.  We predicted that since we observed higher pmrF promoter 

activity at 21ºC than 37ºC, we would also see higher resistance to polymyxin at this temperature. 

We grew bacteria in TB media at either 21 or 37ºC and then exposed them to polymyxin for 2 
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hours in a low-osmolarity buffer. As seen in Fig. 5, the survival of the bacteria grown at 37 ºC 

was significantly higher than those grown at 21ºC, consistent with the pattern reported for strain 

PB1. Therefore, resistance to polymyxin does not mirror promoter activity of pmrF.  

When exposed to sublethal concentrations of antimicrobials, other bacteria increase 

PhoP-PhoQ signaling and thereby upregulate L-Ara4N addition [92]. This may be a survival 

mechanism where bacteria detect early signs of membrane disturbance and increase defensive 

mechanisms. To investigate whether similar response could occur in Y. pseudotuberculosis, we 

tested the effect of membrane-damaging antimicrobial substances that could be encountered 

during infection on pmrF expression. These included the chemokine CCL28, CCL20, and human 

serum. To test the effect of antimicrobial chemokines, the reporter strain was incubated with 

CCL28 or CCL20 for 3-4 hours in TB at 37ºC and flow cytometry was used to measure pmrF 

promoter activity. Incubating the bacteria in phosphate-buffered saline with either CCL28 or 

CCL20 had no effect on pmrF expression (Fig. 6).  To test the effect of normal human serum on 

pmrF expression, bacteria were cultured in TB broth with 10% serum for 6 hours at both 21ºC 

and 37 ºC. The presence of serum did result in a significant increase in promoter activity of the 

operon (p < 0.05), but only at 21ºC (Fig. 7).  

We reasoned that increased pmrF expression caused by serum in the growth media 

should result in enhanced resistance to polymyxin. To test this, we pretreated the bacteria in the 

same way as for the serum expression assay above. After the bacteria had incubated with or 

without serum at 21ºC and 37ºC in TB media, they were washed and their ability to withstand a 

polymyxin challenge was determined. Surprisingly, growth with serum at both temperatures 

increased survival of polymyxin-challenged bacteria (Fig. 8) compared to bacteria grown without 

serum. Therefore, increased expression of the pmrF operon when bacteria are exposed to human 
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serum at 21ºC may enhance bacterial protection against polymyxin. However, since we saw a 

similar increased resistance of bacteria grown in serum at 37ºC (despite no effect on pmrF 

expression), other changes independent of pmrF may be caused by serum that result in increased 

polymyxin resistance. 

The ΔpmrI mutant of Yersinia pseudotuberculosis is more susceptible to killing by antimicrobial 

chemokine CCL28 

To investigate the role of the pmrF operon in resistance to antimicrobial peptides, we 

created a ΔpmrI deletion mutant in the Y. pseudotuberculosis IP32953 strain. Since pmrF 

expression was shown to vary with temperature, we wanted to determine whether ΔpmrI 

mutation would affect resistance to polymyxin at 21ºC and 37 ºC. We tested the ability of wild 

type and the ΔpmrI mutant to grow in the presence of varying concentrations of polymyxin. As 

seen in Fig. 9, the mutant strain was significantly more sensitive to polymyxin at both growth 

temperatures. Whereas the wild-type strain was uninhibited even at the highest levels of 

polymyxin, the ΔpmrI mutant was no longer able to grow in polymyxin at the concentration of 

1.5 µg/mL at 21ºC and 3.1µg/mL at 37ºC. This verified that the polymyxin resistance phenotype 

was lost with knock-out of the gene. Interestingly we consistently saw slightly increased 

resistance to polymyxin at 37ºC compared to 21ºC in the ΔpmrI mutant. 

We then sought to determine the importance of the pmrF operon in Y. pseudotuberculosis 

survival against antimicrobial chemokines. Bacterial defenses against antimicrobial chemokines 

have not been thoroughly studied. However, since parallels have been made between 

antimicrobial chemokines and cationic antimicrobial peptides [28-30], we predicted that L-

Ara4N addition would be important in bacterial protection against these chemokines. We 
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measured the survival of ΔpmrI mutant strain of Y. pseudotuberculosis when challenged with 

CCL28 compared to those of the wild-type strain and to an hldD::Tn5 mutant, which has been 

previously shown to be very sensitive to CCL28 killing [84, 85]. Survival was calculated by 

dividing viable bacteria of the treated sample by viable bacteria in the BSA control. As shown in 

Fig. 10, the ΔpmrI mutant strain had decreased survival compared to the wild-type, yet was able 

to survive better than the hldD::Tn5 mutant. The difference between survival of the wild type 

and pmrI knock-out strain was significant (p < 0.05).  

CCL28 binding is reduced in the ΔpmrI mutant compared to wild type Y. pseudotuberculosis 

In previous studies, it has been shown that Y. pseudotuberculosis mutations that increase 

binding to CCL28 also result in reduced survival in the presence of the chemokine [84, 85]. To 

determine if this relationship is also true for the ΔpmrI mutant, binding levels of CCL28 to wild-

type, ΔpmrI, and ΔpmrI complemented strains of Y. pseudotuberculosis were measured using a 

flow cytometry assay. While the wild-type and the complemented mutant had similarly high 

levels of binding, surprisingly the ΔpmrI strain bound far less (p < 0.05) (Fig. 11).  

 Since these results conflict with previous studies using other mutants that have shown 

killing correlates with binding, we wanted to investigate this result further. One possible 

explanation is that the CCL28 is internalizing into the bacteria or falling off in solution. In an 

attempt to determine if either of these situations are occurring, a binding assay with 5, 15, and 30 

minute incubations with the chemokine was performed once. The results show that at each time 

point the ΔpmrI mutant has lower binding levels compared to the wild type and pmrI 

complement strains (data not shown).   
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Neutrophils less efficiently phagocytize ΔpmrI mutant Y. pseudotuberculosis  

Y. pseudotuberculosis depends on being able to resist the antimicrobial activities of 

phagocytic cells, including neutrophils. While colonizing mucosal surfaces, high pmrF 

expression levels and the presence of antimicrobial chemokines may influence the ability of 

neutrophils to phagocytose the bacteria. To investigate these possibilities, a neutrophil 

phagocytosis assay was developed wherein bacteria constitutively expressing GFP were 

incubated with human neutrophils and flow cytometry was used to observe the percent of 

neutrophils that had engulfed bacteria. The ΔpmrI strain of Y. pseudotuberculosis showed 

decreased phagocytosis efficiencies compared to wild-type, even when opsonized with human 

serum (p< 0.05) (Fig. 12). To determine if CCL28 binding has an effect on phagocytosis, wild-

type Y. pseudotuberculosis constitutively expressing GFP was pretreated with either human 

serum (positive opsonization control), CCL28, or BSA (negative control) and then incubated 

with human neutrophils. Flow cytometry analysis revealed that the serum-opsonized bacteria 

were better engulfed than non-opsonized bacteria. There was no change in neutrophil 

phagocytosis ability when CCL28 was bound to the bacteria (Fig. 13).  
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DISCUSSION 

 In these studies, we investigated how the bacterial environment influences expression of 

the Y. pseudotuberculosis strain IP32953 pmrF operon, and how its activity influences bacterial 

phenotypes relevant to virulence. We found that similar to other Yersinia species [53, 81], pmrF 

expression in strain IP32953 at 37ºC is decreased as compared to 21ºC. However, it appears that 

the media has a stronger influence on expression than growth temperature. There was a 

significant decrease in expression when grown in M9 minimal media, compared to rich growth 

media TB (Fig. 4).  

The effects of nutrient availability may be relevant to the infectious strategy of Y. 

pseudotuberculosis. Previous studies have used rich growth media when measuring pmrF 

activity [53, 60], and we have determined here that nutrient availability may be a greater 

influence on pmrF expression than temperature. As Y. pseudotuberculosis move through the 

intestinal environment they would be exposed to high levels of nutrients, resulting in an increase 

in pmrF expression. This could prepare them to resist antimicrobial peptides that are present in 

the mucosal layer and are produced by epithelial cells when crossing the epithelial membrane. 

After the bacteria cross the epithelial barrier and migrate through the lymph system they would 

have decreased nutrient availability, possibly resulting in lower levels of pmrF expression.  

According to our results in nutrient-reduced media, potentially reduced pmrF expression 

beyond the intestinal mucosa could then increase survival against immune cells. The fact that 

neutrophils were better able to phagocytose wild-type (pmrF expressing) bacteria than pmrI 

mutants (Fig. 12) could indicate that downregulation of these genes might prevent clearance by 

phagocytes. Further, others have shown that lipopolysaccharides from Burkholderia that have L-

Ara4N induce stronger inflammatory responses than LPS without L-Ara4N [76, 77]. If the same 
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is true for Y. pseudotuberculosis LPS then downregulation of the pmrF operon in this 

environment might reduce cytokine production and activation of immune cells, thereby 

promoting colonization in deeper tissues.  To test this, pmrF transcript levels could be measured 

using qPCR after Y. pseudotuberculosis mouse infection. It has previously been shown that L-

Ara4N modified LPS can strongly activate the TLR4 complex on immune cells, even when lipid 

A has a lower acylation pattern [77]. To test if the change in phagocytosis that is seen is purely a 

TLR4 response to L-Ara4N modified bacteria, an anti-TLR4 antibody could be added to the 

neutrophils to inhibit TLR4 activity before the bacteria are introduced. If the decrease in 

phagocytosis was absent in the ΔpmrI strain, then it could be assumed that the decrease is due to 

lower TLR4 activation on the neutrophils. 

 After determining that pmrF promoter activity was increased at 21ºC compared to 37 ºC, 

we decided to test whether pmrF promotor activity correlated with polymyxin resistance. As 

seen in Fig. 5, the survival of the bacteria grown at 37 ºC was significantly higher than those 

grown at 21ºC, consistent with the pattern reported for strain PB1 [53]. Therefore, resistance to 

polymyxin does not mirror promoter activity of pmrF. This may suggest that there are additional 

regulatory mechanisms that act downstream of pmrF promoter activity that could modulate L-

Ara4N addition, or that bacterial factors unrelated to the pmrF operon could influence survival in 

polymyxin, especially at 37 ºC. The fact that a slight increase in resistance to polymyxin was 

observed in the ΔpmrI mutant at 37ºC compared to 21ºC (Fig. 9) may indicate another 

mechanism contributing to polymyxin resistance. To test this, we could create random 

transposon mutants of the ΔpmrI mutant and perform the resazurin growth curve in various 

levels of polymyxin to look for a mutant that results in no difference in survival against 

polymyxin at either temperature.  
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 An important caveat of our results is that we measured expression only by pmrF reporter 

expression. To verify these results, it will be necessary to further test pmrF expression by qPCR 

transcriptional analysis of genes in this operon. Others have reported that transcripts of pmrF 

virtually disappear at temperatures below 37ºC [60], but those studies used a different strain and 

they did not show this data. If the qPCR analysis showed increased transcripts compared to 

promoter activity, then we could assume that there is possibly another promoter site and alternate 

regulator for the genes. However, if the transcript levels were comparative to that of the 

promoter activity, then it’s possible that there is a downstream regulator possibly cleaving the 

RNAs and preventing them from being translated. It would also be reasonable to assume that 

there is another mechanism contributing to polymyxin resistance at 37ºC. Our finding that the 

ΔpmrI mutant strain is hyper-susceptible to polymyxin both at 21ºC and at 37ºC strongly 

suggests that L-Ara4N is added at both temperatures. Further, others have detected the presence 

of L-Ara4N by mass spectrometry analysis of purified lipid A from Y. pseudotuberculosis at both 

temperatures [60]. It is unknown the exact amount of L-Ara4N that is added at either 

temperature. It will also be important to determine whether the PhoP-PhoQ system in Y. 

pseudotuberculosis controls the temperature-dependent pmrF expression and polymyxin 

resistance. 

 We decided to test pmrF expression in other conditions that Y. pseudotuberculosis might 

encounter during infection that could cause membrane disruption, such as human serum and 

antimicrobial chemokines. We found that in the presence of normal human serum there was an 

increase in pmrF expression at 21ºC, but no significant effect at 37ºC (Fig. 7). Y. 

pseudotuberculosis has the ability to resist killing by human serum at 37ºC due to expression of 

YadA and Ail proteins at this temperature that prevent complement related killing [93]. Thus it is 
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possible that complement activation does not progress sufficiently at 37ºC to activate similar 

transcriptional changes seen at 21ºC. Clearly, it would be rare for Y. pseudotuberculosis to be 

exposed to serum at lower temperatures. Thus the physiological relevance of the enhanced pmrF 

expression in the presence of serum may be questioned. However, our results showing that 

growth in serum at both 21ºC and 37ºC enhances bacterial survival on subsequent exposure to 

polymyxin suggests an additional adaptive response independent of pmrF and L-Ara4N addition 

that may contribute to resistance to host defense mechanisms (Fig. 8). In order to test if pmrF has 

an effect on Y. pseudotuberculosis resistance against human serum, we could perform a normal 

human serum killing assay with the wild-type and ΔpmrI strains of Y. pseudotuberculosis. To 

test if the effects of the pmrF expression changes were due to complement binding, the same 

expression assay could be repeated with heat killed serum. If there was still an increase in pmrF 

expression, it could not be due to complement.  

The addition of L-Ara4N in Y. pseudotuberculosis has benefits to the survival of the 

bacteria when challenged against cationic antimicrobial peptides. This is well characterized in 

several bacterial strains and the pmrF operon genes responsible for the addition of L-Ara4N have 

appropriately been named for their effect on resistance to polymyxin (pmr stands for polymyxin 

resistence). Antimicrobial chemokines can be constitutively produced by the intestinal lumen and 

increased when bacteria invade. It is reasonable to assume that Y. pseudotuberculosis would 

encounter CCL28 while entering a host. To determine the role that the pmrF operon plays in 

bacterial protection against antimicrobial chemokines, two different antimicrobial chemokines, 

CCL28 and CCL20 (a non-mucosal chemokine produced most highly in the lymph nodes, liver 

and appendix [94]), were incubated with the bacteria for 3-4 hours and pmrF expression was 

measured using flow cytometry. As seen in Fig. 6, there was no difference in pmrF expression 
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when incubated with antimicrobial chemokine. This result is surprising, since when we tested 

survival of the ΔpmrI mutant strain of Y. pseudotuberculosis against CCL28, we identified a 

decreased survival rate compared to the wild-type (Fig. 10). However, survival of the bacteria, 

while significant, is only marginally decreased, and other bacterial mutations have shown greater 

reduction of survival [85]. It is possible that the addition of L-Ara4N is not one of the most 

important methods to avoid killing by antimicrobial chemokines.  

Previous research has shown that strains of Y. pseudotuberculosis that have high binding 

to CCL28 also have low resistance to killing by CCL28 [84, 85]. Since we were seeing decreased 

survival against CCL28 in the ΔpmrI mutant, we predicted that we would see increased binding 

of the mutant compared to the wild-type bacteria. The levels of CCL28 binding to wild-type, 

ΔpmrI, and ΔpmrI complemented strains of Y. pseudotuberculosis were not what we predicted. 

As seen in Fig. 11, CCL28 appears to have high levels of binding to the wild-type and ΔpmrI 

complemented strains, while the ΔpmrI strain had very low levels of binding. It is hard to say 

what exactly is happening, but it is possible that the chemokine may be quickly internalizing into 

the bacteria, or not stable enough on the surface of the bacteria to stay attached to the ΔpmrI 

mutant. In an attempt to clarify the binding result, CCL28 levels on the surface were measured 5, 

15, and 30 minutes after addition to the bacteria. If internalized, we expected to see high binding 

of the ΔpmrI strain at the 5-minute mark, with increasingly lower binding at the other time 

points. The ΔpmrI strain still had consistently lower binding than the wild-type and 

complemented strains at every time point (data not shown). This would suggest that if the 

chemokine is internalizing into the bacteria or falling off, then it is happening before we are able 

to measure it using flow cytometry. It may be possible to detect internalized CCL28 by Western 
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blot of bacterial lysates. It is also possible that the ΔpmrI mutation causes changes that interfere 

with detection of bound CCL28.  

One key difference in these experiments is that we used a virulent (pYV+) strain of Y. 

pseudotuberculosis IP32953. CCL28 binding and killing patterns were previously determined in 

a non-virulent strain of IP32953 [85]. Some preliminary data comparing the non-virulent and 

virulent strains of IP32953 showed that CCL28 binding was very low in the pYV- strain and 

high binding was seen in the pYV+ (data not shown). To follow up on this result, we created a 

new pYV- strain from the pYV+ strain to see if the low binding phenotype would be observed, 

and it was not. We chose to use the virulent strain for these experiments to maximize 

applicability to strains able to cause human infection. CCL28 binding differences between 

virulent and non-virulent strains of Y. pseudotuberculosis should be further explored.  

Since the effects of CCL28 binding to the surface of bacteria have not been studied, we 

wanted to know if there were any consequences to neutrophil phagocytosis when encountering a 

bacterium that has been coated with CCL28. While it was hypothesized that binding of 

antimicrobial chemokine to the surface of a bacterium would have an effect on neutrophil 

phagocytosis, there appeared to be none (Fig. 13). It is possible that if the experiment were 

modified to use a phagocyte that had receptors for CCL28, then perhaps the opsonization effect 

would be seen. Eosinophils have chemokine receptor CCR10 that is one of the receptors for 

CCL28 [33]. While neutrophils have not been shown to have CCR10, it has been seen in people 

with chronic inflammatory diseases that neutrophils are able to produce the other CCL28 

receptor, CCR3 [95]. 

Overall, these results indicate that additional investigation of polymyxin resistance 

mechanisms in Y. pseudotuberculosis, as well as regulatory mechanisms for the pmrF operon in 
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Yersinia species are warranted. They also suggest the intriguing possibility that while the pmrF 

operon could be important for resistance against antimicrobial peptides, it may also increase 

neutrophil phagocytosis (Fig. 14). This could help explain why previous research has shown no 

effect of pmrF deletion on Y. pseudotuberculosis virulence in mice [60]. However, in a highly 

virulent species like Y. pestis, removal of L-Ara4N at higher temperatures may be important for 

escaping immune detection and phagocytosis. Thus, the regulatory differences in pmrF 

expression that we observe may be adaptive and help explain the pathogenic differences between 

these species. 
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TABLES 

 

Table 1. Primers used 

 

  

pmrI upstream F CTA CAG GGA AAT CAA TGG GTG ACT 

pmrI upstream R ACT CAT CTT TAG GGG CTG CAG TTT TCC CAC GCA ACC AAT 
ATC ATG ATA GG  

pmrI downstream F TGC CTA TCA TGA TAT TGG TTG CGT GGC CCT AAA GAT GAG 
TTG AAC GCA TG  

pmrI downstream R GTA CAC TCC CTA AGC TGC CAT TAG  

pmrI nested F GGC CGA TCT AGA GGT GAC TAC GGC TGC ATG CT  

pmrI nested R GCG ACG TCG ACC CTA AGC TGC CAT TAG GCA AC  

pmrH pro F GCG TGT CTA GAG GCG TTT AGT TTT CGT TAA CTT ATC 
TGG GC 

pmrH pro R GCG CCG AAG CTT ACC TAT TGC TGG CCT AGA AAA AGG 
CAA 

Gfp F HindIII GCG CCG AAG CTT ATG AGT AAA GGA GAA GAA CTT TTC 
ACT G 

Gfp R SalI GCG AGC GTC GAC TTA TTT GTA TAG TTC ATC CAT GCC 
ATG 

Listed are all primers used for mutant and reporter generation. 
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FIGURES  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Lipid A modifications  

The addition of L-Ara4N and acyl chain differences in the lipid A is shown here. These are modifications 
made to Y. pestis as a model. The addition of L-Ara4N reduces the net-negative charge of the bacteria to 
decrease detectability by cationic AMPs. Y. pseudotuberculosis has been shown to add L-Ara4N at both 
temperatures, but follows the same trend for acylation pattern. Decreasing to a tetra-acylated pattern results in 
lower immunostimulation, and increased chances of a successful infection. 

© 2002, American Society for Microbiology 
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Figure 2. The role of individual genes in the addition of L-Ara4N  

Figure 2a. The pmrHFIJKLM (pmrF) operon in Y. pseudotuberculosis is responsible for the production and 
addition of L-ara4N to the lipid A.  

Figure 2b. The functions that each gene in the pmrF operon carry out for the addition of L-ara4N. The pmrE 
gene (not a part of the pmrF operon) produces the PmrE protein (Ugd) which transforms UDP-Glucose to UDP-
Glucuronic Acid. The C-terminal domain of PmrI (ArnA) causes the transition to UDP-ara4O. PmrH (ArnB) 
makes a reversible change to UDP-L-ara4N. The N-terminal domain of PmrI can then add a formyl group to the 
molecule and then PmrF (ArnC) transfers the molecule to the inner membrane by losing UDP and attaching to an 
undecaprenyl phosphate. PmrJ (ArnD) removes the formyl group and then is transferred to the outer membrane 
by an unknown function. PmrK (ArnT) is then able to transfer the L-ara4N onto the lipid A. It has been shown 
that a loss of pmrL and pmrM does not prevent L-Ara4N addition (Yan 2007), but they are able to aid in the 
transferring of L-Ara4N to the outer membrane. It is assumed that there are other genes that can supplement the 
loss of pmrL and pmrM (Marceau 2009).  

       

pmrH pmrF pmrI pmrJ pmrK pmrL pmrM 

A 

© Williams et al. 2005 

B 



39 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3. PhoP-PhoQ regulatory mechanisms are compared between Y. psedotuberculosis, Y. pestis, and Salmonella 
typhimurium  

ugd 

In Salmonella typhimurium, as well as Y. pestis, both the PhoP-PhoQ and the PmrA-PmrB regulatory 
mechanisms are required for pmrF operon expression (A.). In Salmonella, when PhoP-PhoQ is activated by low 
Mg2+ the pmrD gene is turned on and produces the PmrD protein which can activate the PmrA-PmrB regulatory 
system, resulting in activation of the pmrF operon. PmrA-PmrB can also be activated by high Fe3+ levels. Y. 
pestis lacks the pmrD gene and PmrA-PmrB activation is independent of PmrD (B). 

In Y. pseudotuberculosis the regulation of the pmrF operon is independent of the PmrA-PmrB system and only 
requires PhoP-PhoQ activation (C). Y. pseudotuberculosis does not have pmrD.  It has been shown that ΔpmrA-
pmrB mutants of Y. pseudotuberculosis do not have any pmrF defect. The same group has also shown that 
pmrF expression can be regulated by a LysR-type regulator that increases expression in low Fe3+ conditions 
(Marceau et al. 2004,2009).  

© Winfield, Latifi, and Groisman 2005 

C Y. pseudotuberculosis 

Y. pestis 
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A pmrF operon reporter strain of Y. pseudotuberculosis was incubated at 37°C and 21°C in either TB or M9 
media. It is well known in other bacterial strains that pmrF expression is downregulated at 37°C, however it 
appears that growth in rich media compared to minimal media is more important for expression. Differences in 
expression are statistically significant between all test conditions (p > 0.05) and figure is representative of one 
experiment done in triplicate. Experiment was performed with the same results three times.   

 

 

 

 

 

 

 

 

 

Figure 4. pmrF expression depends more on nutrient availability than temperature 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Y. pseudotuberculosis is more resistant to polymyxin at 37ºC than 21ºC 

 

 

Y. pseudotuberculosis was grown in TB media at either 21ºC or 37ºC and then exposed to polymyxin for 2 hours 
in a low-osmolarity buffer. The survival of the bacteria grown at 37 ºC was significantly higher than those 
grown at 21ºC (p > 0.05), consistent with previous studies. 

* 

* 
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A pmrF operon reporter strain of Y. pseudotuberculosis was incubated at 37°C with and without the presence of 
antimicrobial chemokines CCL28 and CCL20. There was no difference in pmrF expression between the negative 
control and the addition of chemokine.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.  Antimicrobial chemokine presence does not affect pmrF expression 
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A pmrF operon reporter strain of Y. pseudotuberculosis was incubated at 37°C and 21°C in TB and M9 media 
with and without being supplemented with 10% human serum.  It is known that at 37°C, Y. pseudotuberculosis 
is resistant to killing by human serum, and it appears that at this temperature serum has no effect on pmrF 
expression.  However, when incubated at 21°C, there appears to be an increase in expression when grown in 
TB. Expression of pmrF at 37ºC is higher with serum than without (p > 0.05) and figure is representative of 
one experiment done in triplicate. Experiment was performed with the same results three times. 

Y. pseudotuberculosis was pretreated in TB at 37°C and 21°C with and without 10% human serum for three 
hours. A killing assay was then performed with polymyxin to see if the apparent increase in pmrF expression 
would increase survival of the bacteria. The survival rate of the bacteria was significantly higher (p<0.05) when 
pretreated with human serum at both 37°C and 21°C. Figure is representative of one experiment done in triplicate. 
Experiment was performed with the same results three times. 

 

 

 

 

 

 

 

 

Figure 7.  Human serum increases pmrF expression at 21°C in TB  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.  Human serum helps protect Y. pseudotuberculosis from death by polymyxin 
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* * 
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To confirm that the created ΔpmrI mutant of Y. pseudotuberculosis had indeed lost the ability to survive in 
polymyxin, and that pmrF expression related to polymyxin resistance, a growth curve was performed with 
wild-type and ΔpmrI over 4.5 hours in varying levels of polymyxin at 21ºC and 37ºC. Growth was measured 
by rezasurin metabolism. The wild-type bacteria were uninhibited by even the highest level of polymyxin 
(left), while the ΔpmrI mutant was unable to grow in the higher concentrations (right).  Suggesting that L-
ara4N is not being added in the ΔpmrI strain. This also shows that pmrF promoter activity does not 
necessarily correlate with polymyxin resistance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.  The ΔpmrI mutant has decreased survival in polymyxin 
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The wild-type, ΔpmrI, ΔpmrI complement, and hldD::Tn5 strains of Y. pseudotuberculosis were incubated with 
CCL28 in a low osmolarity media to determine how well they can survive against CCL28 killing. The wild-
type and ΔpmrI + ppmrI strains were unaffected by CCL28, while the ΔpmrI strain had about a 30% decrease 
in survival. HldD::Tn5 was used as a positive control for killing, with about a 50% survival rate. These results 
show that L-ara4N addition is important as a bacterial defense against antimicrobial chemokines. The ΔpmrI 
mutant has decreased survival compared to wild-type survival (p > 0.05) and figure is representative of one 
experiment done in triplicate. Experiment was performed with the same results three times. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10.  Addition of L-ara4N helps protect Y. pseudotuberculosis against killing by antimicrobial chemokine 
CCL28 
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Wild-type, ΔpmrI, and ΔpmrI complemented strains of Y. pseudotuberculosis were incubated with CCL28 followed 
by anti-CCL28 flurecently labeled antibody, to observe the amount of bacteria that were binding to CCL28. These 
results show high binding for the wild-type and ΔpmrI + ppmrI strains of Y. pseudotuberculosis, with very low 
binding to the ΔpmrI strain (p < 0.05).  This conflicts what has been seen previously (Erickson 2016).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11.  The ΔpmrI mutant has decreased CCL28 binding 
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Y. pseudotuberculosis containing the pAKgfp plasmid was pretreated with human serum (positive control), 
BSA (negative control), and CCL28. The bacteria were then incubated with isolated human neutrophils for 30 
minutes.  The cells were then observed on a flow cytometer and the percent of neutrophils positive for GFP 
were counted. The opsonized bacteria show a higher level of neutrophil engulfment. There was no difference 
in engulfment from the negative control when the bacteria were bound to CCL28. These results suggest that 
CCL28 does not act as a neutrophil opsonin.   

The neutrophil phagocytosis assay was performed with fluorescent wild-type, ΔpmrI, and ΔpmrI complemented 
strains. They were pretreated with or without serum opsonization. The results show that there is a decrease in 
neutrophil phagocytosis when the pmrI gene is knocked out (p < 0.05). This is consistent with other recent 
research that has been done showing that L-ara4N modified lipid A can be a greater stimulator of the innate 
immune system. This can help to explain why the pmrF operon is down-regulated at 37°C. Figure is representative 
of one experiment done in triplicate. Experiment was performed with the similar results three times. 

 

 

 

 

 

 

 

Figure 12.  L-ara4N addition increases neutrophil phagocytosis 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13.  CCL28 binding has no effect on neutrophil phagocytosis 

  

* 

* 



47 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14. L-Ara4N addition most likely results in no change to net virulence 

  

L-Ara4N 

Y. pseudotuberculosis 

Neutrophil 
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Antimicrobial Chemokines 

Although data suggests that the pmrF operon is be important for resistance against antimicrobial peptides, data 
presented here suggests that it may also increase neutrophil phagocytosis. Combined these results help explain 
why previous research has shown no effect of pmrF deletion on Y. pseudotuberculosis virulence in mice 
(Marceau et al 2004).  
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