
Brigham Young University
BYU ScholarsArchive

All Theses and Dissertations

2018-07-01

The Diversity Found Among Carbapenem-
Resistant Bacteria
Galen Edward Card
Brigham Young University

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

Part of the Microbiology Commons

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in All Theses and Dissertations by an
authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

BYU ScholarsArchive Citation
Card, Galen Edward, "The Diversity Found Among Carbapenem-Resistant Bacteria" (2018). All Theses and Dissertations. 6949.
https://scholarsarchive.byu.edu/etd/6949

http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F6949&utm_medium=PDF&utm_campaign=PDFCoverPages
http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F6949&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu?utm_source=scholarsarchive.byu.edu%2Fetd%2F6949&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F6949&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F6949&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/48?utm_source=scholarsarchive.byu.edu%2Fetd%2F6949&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/6949?utm_source=scholarsarchive.byu.edu%2Fetd%2F6949&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

The Diversity Found Among Carbapenem-Resistant Bacteria

Galen Edward Card

A thesis submitted to the faculty of
Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Richard A. Robison, Chair
Kim L. O’Neill
Joel S. Griffitts

Department of Microbiology and Molecular Biology

Brigham Young University

Copyright © 2018 Galen Edward Card

All Rights Reserved

ABSTRACT

The Diversity Found Among Carbapenem-Resistant Bacteria

Galen Edward Card
Department of Microbiology and Molecular Biology, BYU

Master of Science

This work will look at two factors that add to the diversity of carbapenem resistant
bacteria. First, it focuses on the diversity of carbapenemase resistance plasmids. 446 plasmids
were characterized by size, gene content and replicon groups. We identified that on average, over
30% of the encoded proteins on each plasmid have an unknown function. Plasmid sizes ranged
from 1.6kb to 500kb, with an average of around 100kb and median of 80kb. Additionally, six
replicon groups account for 80% of all the carbapenemase resistance plasmids. We also highlight
the lack of data available for carbapenemase carrying plasmids from bacterial genera other than
Escherichia and Klebsiella, and plasmids that carry the New Delhi metallo-β- lactamase or the
Verona-integron encoded metallo-β-lactamase.

Second, we characterized the β-lactamase diversity of a single carbapenemase resistant

Klebsiella pneumoniae. This isolate encodes six distinct β-lactamases, all of which are
functional, and three of which are redundant. Additionally, we determined that the CTX-M-15
cephalosporinase imparts a greater fitness when grown in aztreonam (a monobactam) than
ceftazidime (a cephalosporin). Finally, we show that individually, these β-lactamases do not
account for the elevated levels of resistance seen in the parent strain, indicating that the passive
resistance mechanisms (i.e. efflux pumps, altered membrane porins) may play a larger role than
originally thought.

Keywords: Antimicrobial resistance, β-lactamase, carbapenem resistant Enterobacteriaceae,
Klebsiella pneumoniae, Extended-spectrum β-lactamase, ESBL, plasmid, horizontal gene
transfer

ACKNOWLEDGEMENTS

 I would like to take this space to express my thanks to all who have helped me in my

pursuit of this Master’s. First, I’d like to thank my committee. Dr. Robison, thank you for

providing an environment where I could grow and develop individual thought in my research.

Dr. Griffitts, thank you for your help and guidance through my struggles with the molecular

cloning work. Dr. O’Neill, thank you for your key insights in all the committee meetings, your

input helped me address issues that I would not have noticed on my own.

 Second, my sincerest thanks to my family. Amy and Liam, coming home to you makes

going back to the lab the next day easier. For my parents, thank you for your support and

glowing pride in me. To the Underwoods, thank you for providing a place for us to live and

more, allowing me to focus on academics.

 Third, thank you to my fellow graduate students in the Robison Lab and the MMBio

Department. Your friendship and assistance has been immeasurable.

iv

TABLE OF CONTENTS

TITLE PAGE ... i

ABSTRACT .. ii

ACKNOWLEDGEMENTS ... iii

TABLE OF CONTENTS ... iv

LIST OF TABLES .. vii

LIST OF FIGURES ... viii

INTRODUCTION .. 1

The Rise of Antimicrobial Resistance ... 1

The use of antimicrobials in agriculture ... 1

The clinical misuse of antimicrobials ... 2

Spread of antimicrobial resistance within a bacterial population ... 2

β-lactams and Their Hydrolases .. 5

Extended-Spectrum β-lactamases ... 8

Carbapenems and Their Hydrolases .. 11

Klebsiella pneumoniae carbapenemase .. 11

New-Delhi metallo-β-lactamase ... 12

Verona integron-encoded metallo-β-lactamase .. 12

Imipenem resistant Pseudomonas metallo-β-lactamase ... 12

Summary .. 13

CHAPTER 1 ... 14

ABSTRACT .. 14

BACKGROUND ... 14

v

METHODS .. 16

Sequence acquisition ... 16

Plasmid gene composition .. 17

Incompatibility group/Replicon typing and plasmid characterization 17

Statistical analyses .. 17

RESULTS .. 18

Plasmid gene composition .. 18

Plasmid Incompatibility group/Replicon typing ... 20

DISCUSSION .. 20

Funding .. 23

Acknowledgements ... 23

Conflicts of Interest ... 23

CHAPTER 2 ... 24

ABSTRACT .. 24

INTRODUCTION ... 24

ΜΕTHODS .. 25

Genome sequencing, assembly, and annotation ... 25

β-lactamase cloning .. 26

Growth curve analysis... 27

Statistical analysis ... 29

RESULTS .. 29

Klebsiella pneumoniae 1300761 possesses six β-lactamase-encoding genes....................... 29

Resistance profiles of β-lactamase clones... 29

vi

β-lactam preferences for a single β-lactamase .. 30

Growth of the parent strain K. pneumoniae 1300761 is not inhibited by any β-lactam tested

... 33

DISCUSSION .. 33

ACKNOWLEDGEMENTS... 34

SUMMARY .. 35

REFERENCES ... 36

APPENDIX A ... 46

APPENDIX B ... 57

Supplementary Bioinformatics Methods ... 57

APPENDIX C ... 99

APPENDIX D ... 100

APPENDIX E ... 101

vii

LIST OF TABLES

TABLE 1: The four classes of β-lactam antibiotics and examples of each. 6

TABLE 2: PCR primers for the cloning of β-lactamase genes found in Klebsiella pneumoniae

1300761... 28

TABLE 3: Key Words used to characterize CR-plasmid gene content. 46

TABLE 4: CR-plasmid accession numbers .. 99

TABLE 5: Percent of plasmids belonging to each incompatibility group. 100

TABLE 6: Relative abundance of incompatibility groups among carbapenemase-carrying

plasmids. ... 101

viii

LIST OF FIGURES

FIGURE 1: Acquisition of antibiotic resistance gene within a transposable element. 4

FIGURE 2: The four classes of β-lactam antibiotics. ... 7

FIGURE 3: β-lactamase mediated hydrolysis of a cephalosporin. ... 9

FIGURE 4: ESBL variants of TEM-1. ... 10

FIGURE 5: Characteristics of carbapenemase-encoding plasmids. ... 19

FIGURE 6: Relative abundance of incompatibility groups among plasmids. 21

FIGURE 7: Growth curves grouped by growth conditions. ... 31

FIGURE 8: Growth curves of the β-lactamase clones. ... 32

1

INTRODUCTION

The Rise of Antimicrobial Resistance

Since the dawn of the antimicrobial era in 1937 with the introduction of sulfonamides,

and the subsequent resistance of microbes arising in 1942, we have been in an arms race against

rapidly evolving bacteria (1). Like clockwork, with each implementation of a new antimicrobial,

resistance to that antimicrobial has appeared shortly thereafter (2). During the past several

decades we have seen the rapid emergence of multi-drug resistant (MDR) and pan-resistant

bacteria (3). With limited treatment options for these MDR organisms, and no treatments for

pan-resistant organisms, we are facing what is being called the post-antimicrobial era, a time in

which a seemingly routine infection presents the threat of death. Indeed, this threat is real with

fatality rates of certain MDR bacteria reaching 50% (4). Many factors play a part in the rise and

dissemination of antimicrobial resistance. The most important are the use of antimicrobials in

agriculture, the clinical misuse of antimicrobials, and the facile spread of resistance within a

bacterial population.

The use of antimicrobials in agriculture – What started as a prophylactic measure to

prevent loss of livestock and enhance weight gain of food animals has led to a burgeoning

healthcare crisis (5). Furthermore, it has been predicted that antibiotic use in agriculture will

increase by 67% from 2010 through 2030, despite the restrictions that have been placed on their

use in many countries (6). When antimicrobials are mixed in livestock feed, they quickly become

diluted as rain and runoff mixes with the feed. The diluted antimicrobial then reaches a sub-

inhibitory concentration that doesn’t kill some bacteria. Instead, it creates a selective pressure

that kills a majority, allowing the few bacteria that can cope with the diluted antimicrobials

propagate (7-10). This leads to rapid mutation and evolution as the bacteria improve their

2

resistance mechanisms to the antimicrobials. This then contributes to the human healthcare crisis

as the zoonoses found on farms enter the human population through contaminated food products

(11-13). Studies have shown that many species within the Enterobacteriaceae family that are

found on farms have also been found on hospital surfaces and isolated from infected patients

(14-17), giving credence to the threat posed to human health from the use of antimicrobials in

agriculture.

The clinical misuse of antimicrobials – The misuse of antimicrobials in a clinical setting

has two parts: the prescription of antimicrobials for a non-susceptible infection and prescribing a

prolonged antimicrobial regimen (2, 18-20). Since antibiotics have no effect on viral infections,

using them to treat viral infections only provides an opportunity to select for resistant isolates

and should not be done. Second, the World Health Organization has shown through current

research that prolonged courses of antimicrobials may increase the rates of antimicrobial

resistance (2, 21). This persistent exposure to antimicrobials provides an environment wherein

the bacteria have time to mutate and develop resistance to the antimicrobial. Proper antimicrobial

stewardship in the healthcare setting is essential if we are to slow the spread of resistance.

Spread of antimicrobial resistance within a bacterial population – The third, and perhaps

most important, factor that contributes to the rise and dissemination of antimicrobial resistance is

the facile transfer of antimicrobial resistance genes within a bacterial community. Many of the

antimicrobial resistance genes are found within mobile genetic elements such as plasmids and

transposons. Transposons, in their simplest form, are stretches of DNA that encode machinery

that can replicate, excise, and integrate these regions into other DNA sequences (22). Throughout

their “lifespan”, transposons can acquire genes from their host chromosome and transfer them to

plasmids (2, 18, 23-25). These genes can then be passed within a bacterial community as the

3

plasmids are shared. The opposite can also occur. Resistance genes can be transferred from a

plasmid to the host’s chromosome. This is a permanent event. Once the resistance gene has

entered the chromosome, there is no straightforward way to eliminate the gene. On the other

hand, plasmids are more transient, and there are methods that can ‘cure’ bacterial strains of

plasmids (26-28). Figure 1 shows a possibility of how a transposon may acquire and transfer

resistance genes as it inserts and removes itself from the area surrounding the gene.

As mentioned, transposons can, and often do, integrate into plasmids. A plasmid is a circular

piece of extra-chromosomal DNA that is maintained and replicated along with the chromosome.

Ranging in size from less than 1kb to well over 200kb, they have the capability of carrying

numerous genes. These genes can fall into several categories ranging from basic housekeeping or

metabolism genes, to critical virulence genes, like the toxins responsible for the lethality of

Bacillus anthracis. One unique feature of some plasmids is that they also carry a cluster of tra

genes, or transfer genes. These genes provide a means for the plasmid to pass promiscuously

between strains of bacteria via horizontal transfer (2, 24). Plasmids can also carry genes that

cause the host bacterium to die if it does not retain the plasmid (29-32). These ‘plasmid addiction

systems’ function using a toxin/antitoxin strategy. Encoded on the plasmid is a toxin, and its

corresponding antitoxin. Of these two protein products, the toxin component is more stable. If

the plasmid is lost from the host strain, the levels of antitoxin within the cytoplasm will decrease

as it degrades quicker than the toxin. This in turn leaves the toxin free to exert its lethal effects

within the cell. All these mechanisms contribute to the facile spread and maintenance of

antimicrobial resistance among bacterial populations.

4

FIGURE 1: Acquisition of antibiotic resistance gene within a transposable element.
1) Wild type DNA receives transposon. 2) A transposition event occurs, leaving a scar upstream
of an antibiotic resistance gene as the transposon jumps downstream. 3) A second transposition
event leads to two possible scenarios where the antibiotic resistance gene is transferred to
another mobile genetic element such as a plasmid. Other recombination events are possible;
however, they do not transfer the antibiotic resistance to the new DNA.

5

β-lactams and Their Hydrolases

The most widely known class of antibiotics and one for which resistance has become a

grave issue due to the reasons mentioned, are the β-lactams. So named due to the presence of a

β-lactam ring as the central chemical backbone, these antibiotics have a four-membered ring, as

depicted in Figure 2. Table 1 lists the four classes of β-lactams and provides examples of each.

The first β-lactam antibiotic is also the original antibiotic discovered, penicillin. Penicillin and its

derivatives, along with all β-lactams employ the same mode of action to kill bacteria. Known as

cell wall inhibitors, β-lactams bind to and inactivate the penicillin-binding protein. This protein,

so named for penicillin’s action against it, is responsible for covalently cross-linking

peptidoglycan during bacterial cell wall synthesis. Without cross-linked peptidoglycan, cell

morphology becomes more elongated, cell structure is fragile, and bacterial lysis occurs in most

environments as water rushes into the cell to balance osmolarity. However, as with all

antibiotics, bacterial resistance to β-lactams quickly arose after their discovery.

This resistance is mediated by a β-lactam specific hydrolase, or a β-lactamase, of which

there are several types and various classification schemes. The simplest classification was

implemented by Ambler in 1980, in which β-lactamases were grouped based on protein sequence

(33). His scheme divides the β-lactamases into four classes, Ambler Classes A through D.

Classes A, C, and D are serine-mediated β-lactamases (34). The class B β-lactamases are

metallo-β-lactamases (MBLs) and require a zinc ion to assist in the hydrolysis reaction (35).

Figure 3 (adapted from original (36)) depicts how a serine β-lactamase catalyzes the

hydrolysis of a β-lactam. First, a serine residue of the β-lactamase will attack the carbonyl,

pushing electrons of the double bond onto the oxygen (Step 1). This leaves a highly unstable

6

TABLE 1: The four classes of β-lactam antibiotics and examples of each.

β-lactam Antimicrobials

Penicillins

Penicillin Penicillin G
Penicillin V

Aminopenicillin
Ampicillin
Amoxicillin

Carboxypenicillin
Carbenicillin
Ticarcillin

Penicillinase-
resistant penicillin

Methicillin
Nafcillin
Oxacillin
Cloxacillin

Monobactams Aztreonam

Cephalosporins

1st Generation
Cephalothin
Cephalexin
Cefazolin

2nd Generation

Cefamandole
Cefaclor
Cefuroxime
Cefoxitin
Cefotetan

3rd Generation

Ceftriaxone
Ceftazidime
Cefotaxime
Ceftozominem
Ceftibuten

4th Generation Cefepime
Cefpirome

Carbapenems

Imipenem
Doripenem
Ertapenem
Meropenem

7

FIGURE 2: The four classes of β-lactam antibiotics.
The core β-lactam is highlighted in red. Each derivative within each class will deviate in the R
groups. When hydrolyzed, the bond between the nitrogen and the carbonyl carbon is cleaved. A
few examples are given.

8

negatively charged oxygen. To reduce this strain, the electrons collapse back down, and orbital

resonance dissipates the energy across the molecule, opening the β-lactam ring in the process

(Step 2). Then a two-step proton transfer from water to the serine residue of the β-lactamase

resolves the hydrolysis reaction (Steps 3-5).

The most commonly encountered β-lactamases are the class A β-lactamases TEM (named

for the patient in which it was first identified, Temoniera) and SHV (sulfhydryl variable) types,

with 90% of the ampicillin resistance encountered in E. coli mediated by TEM-1 (18). And due

to their widespread prevalence, β-lactamase inhibitors have been developed. These inhibitors do

not affect the activity of penicillin binding protein, and administration of these in conjunction

with a β-lactam can kill the bacteria. However, these inhibitors are only effective against the

serine mediated β-lactamases, exhibiting no effect on the class B MBLs due to their use of zinc

ions in the hydrolysis reaction (37, 38).

Extended-Spectrum β-lactamases – One cause of multi-drug resistant bacteria is due to

the emergence of extended-spectrum β-lactamases (ESBLs). Many of these ESBLs are from the

Ambler Class A and are derivatives of TEM and SHV type β-lactamases (2, 33). More

specifically, ESBLs are classified as oxyimino-cephalosporinases (2, 23), and are able to

hydrolyze penicillin as well as cephalosporins such as ceftazidime and cefepime (Table 1). Many

of these ESBLs have arisen due to only a few point mutations in either TEM or SHV β-

lactamases (2, 39, 40). These point mutations alter the active site of the β-lactamase enough to

accept a diverse range of β-lactams. However, they have also been shown to increase their

susceptibility to β-lactamase inhibitors such as clavulanate; but of course, additional mutations

can make them resistant (2, 38, 41). Figure 4 shows an example of the mutations that lead from

TEM-1 to several ESBL TEM variants (2).

9

FIGURE 3: β-lactamase mediated hydrolysis of a cephalosporin.
A serine residue of the β-lactamase will attack the carbonyl, pushing electrons of the double
bond onto the oxygen (Step 1). This leaves a highly unstable negatively charged oxygen. To
reduce this strain, the electrons collapse back down, and orbital resonance dissipates the energy
across the molecule, opening the β-lactam ring in the process (Step 2). Then, a two-step proton
transfer from water to the serine residue of the β-lactamase resolves the hydrolysis reaction
(Steps 3-5). [36] (Adapted from original.)

10

FIGURE 4: ESBL variants of TEM-1.
The common mutations among ESBL variants of TEM-1 are listed. The amino acid numbering is
according the conventions set forth by Ambler. *TEM-2 is not an ESBL, but several ESBLs are
derivates of TEM-2. **TEM-50 and TEM-68 are resistant to β-lactamase inhibitors. [2]

11

Carbapenems and Their Hydrolases

In another effort to avoid the havoc wrought by β-lactamases on the efficacy of these

antibiotics, an additional class of β-lactams (carbapenems) was discovered. Because resistance to

carbapenems is very infrequent, they are used as a last resort for treating infections to avoid the

development of resistance. However, resistance to carbapenems developed anyway. Currently

there are about nine diverse types of carbapenemases falling into Ambler Classes A, B, and D

(42, 43). Each of those nine types have several variations. We will focus on four clinically

relevant types found in Enterobacteriaceae, the Class A serine-mediated Klebsiella pneumoniae

carbapenemase (KPC), and the three Class B metallo-β-lactamases (MBL): The New Delhi MBL

(NDM), the Verona integron-encoded MBL (VIM), and the Imipenem resistant Pseudomonas-

type MBL (IMP).

Klebsiella pneumoniae carbapenemase – First identified in 2001 (44), KPC was not the

first carbapenemase, as several MBLs that could hydrolyze carbapenem had already been

identified in Japan in the 1990’s (45). This initial variant (KPC-1) provided resistance to many of

the β-lactams, including all the cephalosporins and aztreonam, and was also resistant to the β-

lactamase inhibitors clavulanic acid and tazobactam (44). A recent review indicates that there are

currently 12 reported variants of the KPC enzyme (46). While KPC may not be the first

carbapenemase identified, it is the most common in the United States. As of February 27, 2018

the Centers for Disease Control and Prevention (CDC) report that KPC positive infections have

been reported from all 50 states and the District of Columbia (47). KPC enzymes have also been

reported from many other nations and in numerous gram-negative species, including

Acinetobacter baumanii, Pseudomonas aeruginosa, and nearly all the Enterobacteriaceae (48-

50).

12

New-Delhi metallo-β-lactamase – Originally isolated from India in 2008, there are

currently more than ten reported variants of NDM (51). It is present in 34 states (47) and

multiple countries including the United Kingdom, Pakistan, India, Sweden and others (50). The

NDM carbapenemases have shown greater affinities for the penicillins, cephalosporins, and a

few of the carbapenems than the VIM and IMP carbapenemases (43). Additionally, a minimum

inhibitory concentration assay when NDM is cloned into susceptible strains show it conferring

high levels of resistance to penicillins (>256 μg/mL), cephalosporins (>256 μg/mL), the

monobactam aztreonam (>24 μg/mL), and all of the carbapenems (>16 μg/mL) (43), but other

reports indicate that NDM cannot hydrolyze aztreonam and, as a MBL, it is resistant to β-

lactamase inhibitors (52).

Verona integron-encoded metallo-β-lactamase – VIM has 14 reported variants with

amino acid content varying up to 10% (51). VIM originated from Pseudomonas aeruginosa in

the Mediterranean in 1997, but quickly spread into Enterobacteriaceae and proceeded to spread

globally. Reports indicate that VIM can hydrolyze all β-lactams except monobactams and, as an

MBL, it is resistant to β-lactamase inhibitors like clavulanate as tazobactam (53). Like the other

carbapenemases, plasmids are the primary mechanism for horizontal gene transfer of this

carbapenemase. According to the CDC, only 11 states have reported VIM positive infections

(47).

Imipenem resistant Pseudomonas metallo-β-lactamase – IMP shares many of the same

characteristics as VIM, but the amino acid content between the two diverges by 70% (51). IMP

also represents the most diverse type of carbapenemase with 18 variants reported (51). Isolated

in 1991 in Japan from Pseudomonas, it is the earliest carbapenemase discovered of the four, and

is resistant to the inhibitor clavulanic acid (54). Currently, IMP has been found in many of the

13

enteric organisms, including Serratia, Providencia, and Klebsiella. As of February 2018, 13

states have reported IMP positive infections (47). As with many of the other carbapenemases,

IMP has the ability to hydrolyze many of the β-lactams, but it cannot hydrolyze the

monobactams (55).

Summary

While it is evident that much has been reported on the carbapenemases themselves, there

is a distinct lack of published papers characterizing the diversity of plasmids that carry one of

these four carbapenemases. Additionally, many of the reviews cited here mention that these

carbapenemase-resistance plasmids carry multiple β-lactamases, but the relationship and

interplay between the β-lactamases on a single plasmid is not well understood. The following

two chapters will clarify these two points.

14

CHAPTER 1

Characterization of Carbapenemase-Resistance Plasmids

Galen E. Card, Brandon D. Pickett, Perry G. Ridge, Richard A. Robison

ABSTRACT

Carbapenem-resistant bacteria have quickly become a critical concern in nosocomial

infections. In treating these infections, a rapid diagnosis is crucial. Current practices may take up

to 76 hours, by which time the infection may become systemic, and the mortality rate is near

50%. To aid in carbapenemase understanding and detection, this report characterizes the gene

content and replicon types of 446 carbapenemase-carrying plasmids available in GenBank and

identifies the six most prevalent replicon types among these plasmids. The importance of this

work is twofold: First, there is no published work that characterizes the plasmids that carry some

of the most threatening antibiotic resistance genes, the carbapenemases. Having this information

available can aid in knowing where efforts need to be placed to complete our understanding of

these plasmids. Second, it highlights challenges that must be overcome if we are to adequately

diagnose and restrict the spread of these plasmids.

Key words: Plasmid, Antimicrobial resistance, Carbapenemase, Enterobacteriaceae

BACKGROUND

Nosocomial infections have quickly become a significant cause of mortality. In 2002, the

US Centers for Disease Control and Prevention estimated that the national mortality rate due to

hospital acquired infections was 5.8% (56). In 2011, that rate increased to 10.4% (57). While

these same reports show that the chance of acquiring an infection at the hospital has decreased,

the infections are becoming more lethal.

15

One significant reason for this increase in mortality is the acquisition of antibiotic

resistance in bacterial populations (25). Bacterial strains such as the carbapenem resistant

Enterobacteriaceae (CREs), and multi-drug resistant Pseudomonas aeruginosa present

diagnostic challenges which in turn lead to poor prognoses. Treatment of these bacterial

infections usually begins with the administration of standard antibiotic regimens. The

ineffectiveness of the initial treatment is usually apparent within 24-48 hours. At this time, the

physician needs to reevaluate, order additional antibiotic susceptibility tests, and administer a

more advanced antibiotic regimen. This new treatment may include carbapenem antibiotics. For

resistant Enterobacteriaceae and Pseudomonas, this is an additional, ineffective 24-48-hour

period before it is apparent that the patient’s condition is not improving. At this time, about 76

hours after initial diagnosis, the infection may have become systemic. Once a CRE infection has

become systemic, the mortality rate is near 50% (58).

Antibacterial resistance is usually conferred to these organisms through mobile genetic

elements, predominately extra-chromosomal DNA called plasmids (25). Plasmids often carry the

molecular machinery to replicate themselves. This machinery allows for the transfer of the

plasmid between different bacterial strains, and sometimes between any gram-negative bacteria

(24). Furthermore, the antibiotic resistance genes on the plasmid can be located within a

transposable element. This transposable element has the potential to replicate and integrate itself

into new DNA sites, increasing the rate of spread (59). Additionally, many carbapenemase-

carrying plasmids are large; therefore, they often carry a toxin/antitoxin plasmid addiction

system to prevent the bacterium from losing the plasmid (31).

To assist in the identification and treatment of drug resistant infections, a better

understanding of these carbapenemase carrying plasmids is needed. This brief report is the first

16

large-scale attempt to characterize the diversity of plasmids carrying carbapenemases from the

Klebsiella pneumoniae-producing carbapenemase (KPC), the New-Delhi metallo-β-lactamase

(NDM), the Verona-integron encoded metallo-β-lactamase (VIM), and the IMP-type metallo-β-

lactamase (IMP) families in seven clinically-relevant gram-negative bacteria (Enterobacter

aerogenes, Enterobacter cloacae, Escherichia coli, Klebsiella pneumoniae, Pseudomonas

aeruginosa, Providencia stuartii, and Serratia marcescens).

METHODS

Sequence acquisition

532 complete plasmid sequences were obtained from GenBank by a discontiguous

megablast nucleotide search (60) of four representative carbapenemase genes (IMP, KPC, NDM,

VIM, Supplementary File 1) to allow for variations within the carbapenemase family. We

employed the same Entrez strategy to filter for complete plasmids as used by Orlek et al. (61):

“biomol_genomic[PROP] AND plasmid[filter] NOT complete cds[Title] NOT

gene[Title] NOT genes[Title] NOT contig[Title] NOT scaffold[Title] NOT whole

genome map[Title] NOT partial sequence[Title] NOT partial plasmid[Title] NOT

locus[Title] NOT region[Title] NOT fragment[Title] NOT integron[Title] NOT

transposon[Title] NOT insertion sequence[Title] NOT insertion element[Title]

NOT phage[Title] NOT operon[Title]”

This blast search was done separately for the seven organisms of interest: Enterobacter

aerogenes, Enterobacter cloacae, Escherichia coli, Klebsiella pneumoniae, Pseudomonas

aeruginosa, Providencia stuartii, and Serratia marcescens. GenBank files were downloaded for

each blast alignment that scored >80% identity and query coverage. These sequences were

retrieved on 5 March 2018.

17

Plasmid gene composition

A list of key terms was derived by a manual survey of 10% of the acquired GenBank

files, with cross reference to QuickGO, the European Bioinformatics Institute’s Gene Ontology

reference database (62), to classify gene products into one of the following categories: (a)

Antimicrobial resistance, with β-lactamases as a subset, (b) Plasmid transfer genes, (c)

Toxin/antitoxin systems, (d) DNA maintenance, modifying, and repair proteins, (e) Mobile

genetic elements, (f) Hypothetical genes, and (g) other. See Appendix A for the list of key terms.

Incompatibility group/Replicon typing and plasmid characterization

Plasmid incompatibility groups were determined by nucleotide BLAST (60, 63) against a

local download of the PlasmidFinder v1.3 Enterobacteriaceae database (64) downloaded on 1

March 2018. The incompatibility groups were assigned when matches met the following criteria:

(a) >=80% identity, (b) >=60% subject coverage, and (c) within 1% of the percent identity of the

highest match. Accordingly, more than one incompatibility group could be reported for any

given plasmid. Further characterization was accomplished as follows: (a) extracting the CDS

regions for each plasmid, (b) searching these CDS regions for key terms using regular

expressions, and (c) combining the results for plasmid groups of interest (e.g., those that belong

to Enterobacteriaceae). Please see Appendix B for a more detailed description. This

characterization of each plasmid and of groups of plasmids was accomplished using custom

scripts, made freely available at https://github.com/ridgelab/plasmidCharacterization.

Statistical analyses

Since plasmid length distributions are not normal (left-skewed), all statistical analyses

were performed with the Mann-Whitney U-test or the Kruskal-Wallis ranked ANOVA where

18

appropriate, for non-parametric distributions. In an effort to be conservative, statistical

significance was determined if P<0.0001.

RESULTS

Plasmid gene composition

Due to the inherent inconsistencies of GenBank record annotations, our search method

required discarding 86/532 accessions, leaving a total of 446 accessions in this analysis

(accession numbers available in Appendix C). The criteria for keeping an accession in the

analysis was if at least one and no more than six carbapenemase genes were identified on the

plasmid. Of those 446 plasmids, 198 carry KPC, 168 carry NDM, 49 carry IMP, and 31 carry

VIM. When divided by species, 7 belong to E. aerogenes, 33 to E. cloacae, 142 to E. coli, 235 to

K. pneumoniae, 18 to P. aeruginosa, 3 to P. stuartii, and 8 to S. marcescens. The mean size of all

carbapenemase-carrying plasmids was 104,222 bp, with a median length of 87,663 bp. The

largest plasmid was 500,840 bp and the smallest, 1,635 bp. The average percent gene content of

all plasmids was as follows: Antimicrobial resistance genes, 8.0%; Plasmid transfer genes,

15.8%; DNA modification genes, 14.7%; Mobile genetic elements, 9.3%; Hypothetical genes,

33.2%; Other/Metabolic genes, 18.9% (Figure 4A). The plasmids carried, on average, ~2 β-

lactamases, with 22.6% of the plasmids carrying three or more, and the most β-lactamases on a

single plasmid being six. The carbapenemase copy number of these plasmids ranged from 1-3,

with 97.98% of the plasmids harboring only one carbapenemase.

When comparing certain plasmid features such as the presence or absence of plasmid

addiction systems (236/446 or 52.9% of plasmids contain one), polymerase genes, or the family

of carbapenemase on the plasmid to plasmid length, the average length of plasmids that carry

addiction systems and polymerases are significantly larger than those that do not (Mann-Whitney

19

FIGURE 5: Characteristics of carbapenemase-encoding plasmids.
A) Mean percent gene content of all plasmids. B) Relationship between characteristics of interest
and plasmid length. C) Relationship between species and plasmid length. D) Relationship
between incompatibility group and plasmid length, Significance is determined against the
average size of all plasmids. B-C) Mann-Whitney U-test, D) Kruskal-Wallis ranked ANOVA.
**** P<0.0001. All error bars indicate the 95% CI.

20

U-test, P<0.0001, Figure 4B) and the average length of plasmids that carry KPC are

smaller than those that carry IMP (Kruskal-Wallis ranked ANOVA, P<0.05, Figure 4B).

However, removing an unusually large IMP plasmid (>500 kb) from this dataset eliminated this

significance. When observing average plasmid length by species, the only near-significant

difference was observed between E. coli and K. pneumoniae, with the latter being larger

(P=0.0018, Figure 4C). It is important to note that these two species also represent most of the

plasmids analyzed (377/446 or 84.5%).

Plasmid Incompatibility group/Replicon typing

No incompatibility group presented itself as the most abundant; however, the following

six groups constitute 80.27% of the plasmids: IncA/C (53/446 or 11.88%), IncFIB (57/446 or

12.78%), IncFII (88/446 or 19.73%), IncN (61/446 or 13.68%), IncR (40/446 or 8.97%), and

IncX3 (59/446 or 13.23%) (see Appendix D). Notably, 7.62% (34/446) of the plasmids could not

be accurately typed using this method. 58 plasmids carried more than one replicon, and these

were significantly larger than those that carried a single replicon (Mann-Whitney U-test

P<0.0001, data not shown). Additionally, the following incompatibility groups were found to

have an average length statistically different (Kruskal-Wallis ranked ANOVA, P<0.0001) than

the average of all plasmids: IncA/C2, IncFIB, IncHI1B, and IncX3 (Figure 4D). Figure 5 shows

the relative abundance of each incompatibility group among plasmids that carry the same family

of carbapenemase (full dataset available, Appendix E).

DISCUSSION

One of the most notable findings of this study was the amount of hypothetical and

uncharacterized genes found on these plasmids. It is possible that many of these genes may be

phage derived. This is of great concern when considering phage therapy as an alternative to

21

FIGURE 6: Relative abundance of incompatibility groups among plasmids.
Predominant incompatibility groups from each carbapenemase family: KPC, IncFIB 18.2%,
IncFII 20.2%, IncN 17.7%, and IncR 13.6%; NDM, IncA/C2 17.9%, IncFIB 10.7%, IncFII
28.0%, and IncX3 29.2%; IMP, IncA/C2 22.4%, IncL/M 10.2%, IncN 34.7%, and NA 16.3%;
VIM, IncA/C2 16.1%, IncN 12.9%, IncR 12.9%, and NA 35.5%.
Note: Percent totals are larger than 100% because some plasmids have multiple replicon types.

22

antibiotics. With potentially large regions of homology to phage genomes, a phage may

incorporate into these plasmids through homologous recombination. Then, as the recombinant

phage genome is packaged into the progeny phage, it may be possible that carbapenemases could

be included, resulting in a replication-deficient phage vector capable of transferring a

carbapenemase to a new bacterium through transduction. Before phage therapy of these

organisms is seriously pursued, this concept should be investigated so that another mechanism of

resistance transfer is not potentiated, as it has been shown for phage and other virulence genes

(65).

Additionally, for non-amplification, DNA-based identification of carbapenemase

production, it is important to realize that the plasmids of interest are quite large. With their

median length over 80 kb, plasmid isolation becomes difficult if necessary for the application,

and many of the replicon types identified are for low-copy number plasmids. This also

compounds the difficulties when detecting carbapenemase gene presence from a whole-blood

specimen, where concentrations are around 10 CFU/mL. This results in approximately 10 copies

of an ~800 bp gene that needs to be identified amongst the millions of base pairs in a milliliter of

blood.

Finally, this report has identified a few potential targets to slow the spread of

carbapenemase plasmids. First, the antitoxin of the plasmid addiction system could be targeted

(31). Doing so could prevent its binding with the toxin, resulting in the death of the host

harboring the plasmid. Second, 90.4% (403/446) of the plasmids carry transfer genes to pass the

plasmid between bacteria. Preventing pilus formation could dramatically reduce the spread of

these plasmids. This method is currently being pursued by several groups and include strategies

such as bacteriophage, colloidal clays, and antibodies (66). Finally, many of the plasmids carry a

23

plasmid partitioning system, responsible for ensuring that each daughter receives a copy of the

plasmid. Targeting the motor or the partition-site binding protein of these systems, in

conjunction with the toxin/antitoxin system, could dramatically reduce the spread and persistence

of these plasmids in the hospital. These treatments could be used in a sterilization bath for

medical equipment prior to traditional sterilization techniques.

In conclusion, there is an abundance of data for the commonly encountered KPC and

NDM carbapenemases from K. pneumoniae and E. coli, and several non-traditional avenues that

may be pursued to help stop the spread of these resistance plasmids. However, this report is

lacking data for many of the other species, and for the VIM and IMP carbapenemases. Therefore,

a greater surveillance of the other species and carbapenemases is needed. P. aeruginosa is a

bacterium where much more data is needed to accurately characterize the diversity of

carbapenemase-carrying plasmids in this highly significant pathogen.

Funding

This work was supported by the U.S. National Institutes of Health (R01 AI116989).

Acknowledgements

GEC conceptualized this analysis, determined the functional groups of interest, generated

the key terms, and analyzed the output from the scripts. BDP wrote the scripts for the analysis

and assisted in writing a portion of the manuscript. PGR and RAR advised this work and

reviewed the manuscript. We thank the Fulton Supercomputing Laboratory

(https://marylou.byu.edu) at Brigham Young University for their consistent efforts to support our

research.

Conflicts of Interest

The authors have no conflicts of interest to declare.

https://marylou.byu.edu/

24

CHAPTER 2

β-lactamase Diversity of a Single, Carbapenem-

Resistant Enterobacteriaceae Isolate

Galen E. Card, Joel S. Griffitts Ph.D., Joshua D. Urquiaga, Richard A. Robison Ph.D.

ABSTRACT

Antibiotic resistance is quickly becoming an urgent problem in health care. One class of

antibiotics, the -lactams, has become severely compromised by emerging resistance. Resistance

to last-resort β-lactams (the carbapenems) is quickly spreading across the globe. We investigated

a carbapenem-resistant isolate of Klebsiella pneumoniae possessing six β-lactamase genes:

CMY-6, CTX-M-15, NDM-4, OXA-1, SHV-11, and TEM-1. Each of these genes was

functionally characterized in Escherichia coli using 5 β-lactam antibiotics (ampicillin,

carbenicillin, ceftazidime, aztreonam, and imipenem). These tests revealed distinct as well as

overlapping functions. Most notably, we observed that the carbapenemase NDM-4 provides a

greater fitness advantage when grown in a cephalosporin than the cephalosporinase CTX-M-15.

Also, we provide evidence that a sizable portion of the resistance that this strain of Klebsiella

exhibits against aztreonam and imipenem is not enzyme mediated.

INTRODUCTION

To date, there are about 20 different derivates of β-lactam antibiotics approved for

therapeutic use. Many of these antibiotics have been put on the World Health Organization’s

‘WATCH GROUP’, due to the higher potential for resistance among bacterial populations [1]. β-

lactam antibiotics fall into four broad classes; penicillins, cephalosporins, monobactams, and

carbapenems, each class representing several clinically important structural derivatives (Fig. 1).

With such a wide variety of β-lactams available, most infections can be treated effectively with

25

these antibiotics. However, the mortality rate from nosocomial infections has been on the rise [2,

3] due to the increased incidence of multi-drug resistant infections [4, 5].

Many genera of the Enterobacteriaceae family have recently joined this class of multi-

drug resistant bacteria [6, 7] as they have acquired genes encoding extended-spectrum β-

lactamases (ESBL) and carbapenemases (carbapenem resistant Enterobacteriaceae, CRE). Septic

infections with ESBL or CRE strains of Klebsiella pneumoniae have a mortality rate of near 50%

[5].

We have in our collection various CRE isolates possessing 1-6 β-lactamase (bla) genes.

In this work, we characterize one of these isolates (Klebsiella pneumoniae strain 1300761), a

CRE isolate from which we have identified six distinct bla genes: CMY-6, CTX-M-15, NDM-4,

OXA-1, SHV-11 and TEM-1. Of these, five belong to the Ambler class A or C, designated as

serine mediated hydrolases, with the exception being NDM, which belongs to class B, the

metallo-β-lactamases which require zinc ions in the active site to catalyze the reaction [8]. Three

of them are recognized as ESBLs (CMY-6, CTX-M-15, and NDM-4,) and three are narrow-

spectrum β-lactamases (OXA-1, SHV-11, and TEM-1). While hydrolytic activity of these bla

genes is well documented through MICs, the in vivo fitness advantage provided by them by

analyzing growth kinetics is not. In this study, we use a standardized susceptible E. coli strain to

test resistance conferred by each of these bla genes, in response to challenge by five different β-

lactam antibiotics. Our observations shed light on the relative contributions of each gene and

contribute to our understanding of how multi-gene β-lactamase arsenals may function along with

alternative resistance mechanisms to provide strong β-lactam resistance in CRE strains.

ΜΕTHODS

Genome sequencing, assembly, and annotation

26

Genome sequencing and read processing

A carbapenem resistant Klebsiella pneumoniae isolate was obtained from the Centers for

Disease Control and Prevention (K. pneumoniae 1300761) and DNA was extracted following the

recommended protocol for the MagNA Pure LC system (Roche Life Sciences). DNA was

quantified by fluorometry and 2μg was submitted to the BYU DNA Sequencing Center for

250bp paired end reads on an Illumina HiSeq 2500. Low complexity reads were filtered using

PRINSEQ version 0.20.4 [9] and adapter sequence removal and quality trimming was

accomplished using Trim Galore! version 0.4.3 with a phred score cutoff of 28. An additional

10bp were trimmed from the 5’ end of each read. All reads shorter than 150 bp were then

discarded and if their paired read was longer than 150 bp and passed the other quality checks,

they were retained as a singleton for use in assembly. Read quality statistics were then assessed

using FastQC version 0.11.4 [10].

Genome assembly and annotation

The reads were assembled using the St. Petersburg Assembler (SPAdes) version 3.10.1

[11]. K-mer values of 21, 33, 55, 77, 99, 129 were used for the assembly iterations. Assembly

statistics were compiled using QUAST version 4.0 [12]. Gene annotation was undertaken using

Prokka version 1.12 [13].

β-lactamase cloning

TABLE 2 contains primer pairs used to introduce restriction sites, a synthetic ribosome

binding site, and amplify the corresponding β-lactamases from K. pneumoniae 1300761. Each

bla gene was individually cloned into pJG780 with XbaI/SalI restriction sites (plasmid sequence

available in supplemental file 1) and transformed into NEB5-alpha (New England BioLabs), a

DH5-alpha derivative, following the manufacturer’s provided protocol with a recovery

27

incubation of 90 minutes. The β-lactamase expression is under the control of a rhamnose-

inducible promoter. Each clone was then sequence verified using the following plasmid specific

sequencing primer: CTGTCAGTAACGAGAAGGTCG. The resulting strains were named using

the following convention: Host vector_bla (i.e. E. coli pJG780_CMY-6) and are referred to by

the β-lactamase they produce (E. coli pJG780_CMY-6 is referred to as CMY-6)

Growth curve analysis

A single colony of the β-lactamase clones were grown in 5 ml of LB containing 30

μg/mL of kanamycin to ensure plasmid retention for 12-18 hours. Then, 100 μL was inoculated

in a 5 mL 1-hour subculture containing 30 μg/mL kanamycin and 0.3% rhamnose to induce β-

lactamase expression. Microtiter plates (96-well) were loaded with 190 μL of the selective media

(30 μg/mL kanamycin, 0.3% rhamnose, appropriate β-lactamase) and inoculated with 10 μL of

the 1-hour subculture. Preliminary results (data not shown) indicated that the β-lactamase clone

growth curves should be performed at the following concentrations: ampicillin (16 μg/mL),

carbenicillin (16 μg/mL), ceftazidime (8 μg/mL), aztreonam (8 μg/mL), and imipenem (2

μg/mL). These concentrations are half of the concentration used to determine antibiotic

resistance by the Clinical Laboratory Standards Institute (74). This is relevant since

approximately 80 μL of media was lost to evaporation over the course of the growth curve. The

plates were then incubated in a BioTek Synergy HT Microplate Reader at 37 ℃. OD600 readings

were taken after a brief shaking every 30 minutes over a 10.5-hour growth period. The growth

curves were also performed on the parent strain (K. pneumoniae 1300761) in LB with the

previously indicated antibiotics. Each growth curve was measured in duplicate, and the

experiment was repeated three times.

28

TABLE 2: PCR primers for the cloning of β-lactamase genes found in Klebsiella pneumoniae
1300761.
bla gene Forward Primer Reverse Primer

CMY-6 cagctctagaggagGATTTCATGATGA

AAAAATCGTTATGCTGC

cagcgtcgacGCCTCATCGTCAGTT

ATTGCAGC

CTX-M-15 cagctctagaggaggAATCCCATGGTT

AAAAAATCACTGC

cagcgtcgaCGCTATTACAAACCGT

CGGTG

NDM-4 cagctctagaggaggAACTTGATGGAA

TTGCCCAATATTATG

cagcgtcgacGTCAGCCATGGCTCA

GCGC

OXA-1 cagctctagaggaggCTTATTATGAAA

AACACAATACATATCAACTTCGC

cagcgtcgacGGGTTGGGCGATTTT

GCCATTAG

SHV-11 cagctctagaggagGTGGTTATGCGTT

ATATTCGCCTGTGT

cagcgtcgacGGGTTAGCGTTGCCA

G

TEM-1 cagctctagaggaggAAGAGTATGAGT

ATTCAACATTTTCGTGTC

cagcgtcgacTTGGTCTGACAGTTA

CCAATGCTTAATC

Restriction site Ribosome binding site

29

Statistical analysis

A two-way ANOVA in conjunction with Fisher’s Least Significant Difference test was

used to compare all time points against the control. Significance was determined if P<0.05.

When a β-lactamase clone reached absorbance levels significantly different than the control

before another in the same antibiotic, it was determined that the clone that reached significant

absorbance levels first is more efficient at hydrolyzing that β-lactam. When comparing growth

curves of a single β-lactamase in different growth conditions, if the growth curve in one

antibiotic reached significant absorbance levels at an earlier time point than another, it was

determined that that β-lactamase was more efficient at hydrolyzing the β-lactam that allowed

quicker growth.

RESULTS

Klebsiella pneumoniae 1300761 possesses six β-lactamase-encoding genes

Illumina sequencing produced 3,653,470 paired reads, and read processing reduced that

number to 3,370,288 with 80,534 retained as singletons, for approximately 150X coverage of the

genome. The average quality score of all reads is greater than 37, with an average length of 215.

Assembly generated 196 contigs larger than 1,000 bp, with an N50 of 238,732 and N75 of

112,412. The genome length is 5,972,622 bp. Annotation predicted 5,733 genes. Notably, 6

distinct bla genes were detected (Supplemental File 2) and confirmed by BLAST search [15] as

the following; blaCMY-6, blaCTX-M-15, blaNDM-4, blaOXA-1, blaSHV-11, and blaTEM-1. These bla genes

were then cloned into NEB5-α for further characterization.

Resistance profiles of β-lactamase clones

The control group in these Figs 2A-F is the pJG780 empty vector. When grown in

nutrient rich, non-selective LB, the only significant results were CTX-M-15, NDM-4 and OXA-

30

1; which had a significantly lower carrying capacity at 630 minutes (Fig 2A). When growth

occurred in LB ampicillin, all β-lactamases except CMY-6 reached growth levels significantly

different than the control by 300 minutes and by 630 minutes, CMY-6 also reached significant

levels (Fig 2B). In LB carbenicillin, all β-lactamases were at significant levels by 300 minutes,

and CMY-6 after 630 minutes (Fig 2C). In LB ceftazidime, NDM growth was evident by 300

minutes and CTX-M-15 by 630 minutes (Fig 2D). CTX-M-15 was the only β-lactamase that

hydrolyzed aztreonam, and significant levels were reached by 630 minutes (Fig 2E). NDM-4 was

the only β-lactamase that hydrolyzed imipenem, with growth observed by 300 minutes, but not

reaching significant levels until 630 minutes (Fig 2F). Complete growth curves are reported in

Fig S1, raw data in Table S1.

β-lactam preferences for a single β-lactamase

In these comparisons, the growth curve for pJG780 grown in ampicillin was used as a

negative control (Figs 3A-G). As expected, pJG780 only grew in LB, and attained growth levels

significantly different from the negative control by 300 minutes (Fig 3A). CMY-6 was able to

grow in ampicillin, and carbenicillin, however, this clone grew slowly in ampicillin, reaching

growth levels different than the control by 630 minutes (Fig 3B). CTX-M-15 grew in all

antibiotics except imipenem and growth was observed in ceftazidime by 630 minutes, but not yet

above background levels. By 300 minutes growth was evident in ampicillin and carbenicillin and

by 630 minutes for aztreonam (Fig 3C). NDM-4 grew in all antibiotics, except aztreonam.

Ampicillin, carbenicillin and ceftazidime reached significance by 300 minutes and imipenem by

630 minutes. (Fig 3D). OXA-1, SHV-11, and TEM-1 only grew in ampicillin and carbenicillin,

reaching significant levels in each case by 300 minutes (Fig 3E-H). Complete growth curves can

be found in Fig S2, raw data in Table S1.

31

FIGURE 7: Growth curves grouped by growth conditions.
A) Nonrestrictive LB broth. B) Ampicillin. C) Carbenicillin. D) Ceftazidime. E) Aztreonam. F)
Imipenem. *P<0.05 **P<0.01, ***P<0.001, ****P<0.0001.

32

FIGURE 8: Growth curves of the β-lactamase clones.
The clones were grown for 630 minutes, and the OD600 was measured every 30 minutes. A) The
pJG780 empty vector control strain. B) The CMY-6 clone. C) The CTX-M-15 clone. D) The
NDM-4 clone. E) The OXA-1 clone. F) The SHV-11 clone. G) The TEM-1 clone. H) The parent
strain K. pneumoniae 1300761. *P<0.05 **P<0.01, ***P<0.001, ****P<0.0001.

33

Growth of the parent strain K. pneumoniae 1300761 is not inhibited by any β-lactam

tested

The two-way ANOVA indicated that antibiotic has no significant impact on growth, even

though individual time points may have randomly showed significance from the LB control (i.e.

imipenem at 630 minutes) (Fig 3H). Additionally, the lack of a significant lag phase when this

isolate was introduced to antibiotic-containing media, indicated that these genes are

constitutively expressed in K. pneumoniae 1300761.

DISCUSSION

The antibiotic crisis is reaching a crescendo as nosocomial bacteria acquire resistance to

the common, and last resort, antibiotics. Furthermore, it appears that individually, these bla

genes may not pose a large threat, as the fitness provided is relatively weak (i.e. imipenem,

ceftazidime, aztreonam). But there appears to be a synergistic effect as they are combined, and

that the additional resistance factors Klebsiella possesses (truncated porins, multi-drug efflux

pumps) aid greatly in its resistance. At the concentrations assayed, it seems that NDM-4 is

superior to CTX-M-15 as a cephalosporinase. Interestingly, it also appears that the

cephalosporinase CTX-M-15 provides a greater fitness advantage to aztreonam (a monobactam)

than ceftazidime (a cephalosporin). Finally, CMY-6 provides a better degree of fitness when

grown in ampicillin then carbenicillin. Tblahis result is interesting, and several blaCMY genes

have been shown to hydrolyze cephalosporins at aztreonam at high concentrations (76, 77).

Another path that could shed greater light on fitness provided by these various β-lactamases

would be to perform competition assays between them in the various antibiotics. Additionally,

this strategy could also help characterize the differences between the various carbapenemases.

34

In conclusion, this study helps us understand that these organisms may acquire redundant

genes for the synergism acquired. This synergism provides the parent strain enhanced fitness in

antibiotics such as aztreonam and imipenem, where only one of the antibiotics hydrolyzes it, but

the parent strain grows normally. Additionally, this disparity in growth curve statistics may also

indicate that the passive resistance mechanisms (i.e. efflux pumps, altered porins) play a more

substantial role in resistance than previously thought, and they should receive more concentrated

attention.

ACKNOWLEDGEMENTS

GEC was responsible for designing and performing experiments, assembling and

annotating the genome, and drawing conclusions and he is the primary author of this manuscript.

JSG helped design the molecular cloning methodology and assisted in the molecular cloning

work. JDU helped perform experiments. RAR secured funding, and experiments were performed

in his laboratory. We would like to express our thanks to the BYU Fulton Supercomputing

Laboratory (https://marylou.byu.edu), the BYU Research Instrumentation Core

(https://ricfacility.byu.edu), and the BYU DNA Sequencing Center (https://dnasc.byu.edu) for

their consistent efforts to support our research. This work was funded by the U.S. National

Institutes of Health (R01 AI116989). The authors have no conflicts of interest to declare.

https://marylou.byu.edu/
https://ricfacility.byu.edu/
https://dnasc.byu.edu/

35

SUMMARY

 This thesis provides only a starting point for further investigation. Much is still needed to

fully characterize these plasmids, and a greater surveillance of carbapenem-resistance plasmids is

needed to create a more comprehensive picture. Furthermore, several points are identified in

chapter 1 that can be exploited by small molecule inhibition to limit or eliminate the spread of

these plasmids. Additionally, there is a wealth of data available for the Escherichia coli and

Klebsiella pneumoniae carbapenem resistant isolates. This data could be mined for numerous

points of interest and conclusions made.

 Second, the assay set up in chapter two could be used to assess the level of fitness

provided by the various carbapenemases. Additionally, as mention in chapter 2, competition

assays between these strains would also help determine if a fitness advantage is provided by the

β-lactamase activity, or if metabolic costs of producing the β-lactamase are a detriment to fitness.

36

REFERENCES

1. Iredell J, Brown J, Tagg K. 2016. Antibiotic resistance in Enterobacteriaceae:

mechanisms and clinical implications. Bmj-British Medical Journal 352:19.

2. Bradford PA. 2001. Extended-Spectrum β-Lactamases in the 21st Century:

Characterization, Epidemiology, and Detection of This Important Resistance Threat.

Clinical Microbiology Reviews 14:933-951.

3. Sonnevend A, Ghazawi A, Hashmey R, Haidermota A, Girgis S, Alfaresi M, Omar M,

Paterson DL, Zowawi HM, Pal T. 2017. Multihospital Occurrence of Pan-Resistant

Klebsiella pneumoniae Sequence Type 147 with an ISEcp1-Directed bla(OXA-181)

Insertion in the mgrB Gene in the United Arab Emirates. Antimicrobial Agents and

Chemotherapy 61:9.

4. Borer A, Saidel-Odes L, Riesenberg K, Eskira S, Peled N, Nativ R, Schlaeffer F, Sherf

M. 2009. Attributable Mortality Rate for Carbapenem-Resistant Klebsiella pneumoniae

Bacteremia. Infection Control and Hospital Epidemiology 30:972-976.

5. WHO/FAO. 2015. Codex texts on foodborne antimicrobial resistance. World Helath

Organization/Food and Agriculture Organization of the United Nations, Rome, Italy.

6. Hudson JA, Frewer LJ, Jones G, Brereton PA, Whittingham MJ, Stewart G. 2017. The

agri-food chain and antimicrobial resistance: A review. Trends in Food Science &

Technology 69:131-147.

7. Dunlop RH, McEwen SA, Meek AH, Clarke RC, Black WD, Friendship RM. 1998.

Associations among antimicrobial drug treatments and antimicrobial resistance of fecal

Escherichia coli of swine on 34 farrow-to-finish farms in Ontario, Canada. Preventive

Veterinary Medicine 34:283-305.

37

8. Agersø Y, Sandvang D. 2005. Class 1 Integrons and Tetracycline Resistance Genes in

Alcaligenes, Arthrobacter, and Pseudomonas spp. Isolated from Pigsties and Manured

Soil. Applied and Environmental Microbiology 71:7941-7947.

9. Zhang X-X, Zhang T, Fang HHP. 2009. Antibiotic resistance genes in water

environment. Applied Microbiology and Biotechnology 82:397-414.

10. Keen PL, Knapp CW, Hall KJ, Graham DW. 2018. Seasonal dynamics of tetracycline

resistance gene transport in the Sumas River agricultural watershed of British Columbia,

Canada. Science of the Total Environment 628-629:490-498.

11. Aarestrup FM. 1999. Association between the consumption of antimicrobial agents in

animal husbandry and the occurrence of resistant bacteria among food animals.

International Journal of Antimicrobial Agents 12:279-285.

12. Wegener HC. 2003. Antibiotics in animal feed and their role in resistance development.

Current Opinion in Microbiology 6:439-445.

13. Liu YY, Wang Y, Walsh TR, Yi LX, Zhang R, Spencer J, Doi Y, Tian G, Dong B,

Huang X, Yu LF, Gu D, Ren H, Chen X, Lv L, He D, Zhou H, Liang Z, Liu JH, Shen J.

2016. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals

and human beings in China: a microbiological and molecular biological study. Lancet

Infect Dis 16:161-8.

14. Willems RJL, Top J, Braak van den N, van Belkum A, Endtz H, Mevius D, Stobberingh

E, van den Bogaard A, van Embden JDA. 2000. Host Specificity of Vancomycin-

Resistant Enterococcus faecium. The Journal of Infectious Diseases 182:816-823.

15. Bruinsma N, Willems RJL, van den Bogaard AE, van Santen-Verheuvel M, London N,

Driessen C, Stobberingh EE. 2002. Different Levels of Genetic Homogeneity in

38

Vancomycin-Resistant and -Susceptible Enterococcus faecium Isolates from Different

Human and Animal Sources Analyzed by Amplified-Fragment Length Polymorphism.

Antimicrobial Agents and Chemotherapy 46:2779-2783.

16. Angulo FJ, Nargund VN, Chiller TC. 2004. Evidence of an Association Between Use of

Anti‐ microbial Agents in Food Animals and Anti‐ microbial Resistance Among

Bacteria Isolated from Humans and the Human Health Consequences of Such Resistance.

Journal of Veterinary Medicine, Series B 51:374-379.

17. Poulsen MN, Pollak J, Sills DL, Casey JA, Rasmussen SG, Nachman KE, Cosgrove SE,

Stewart D, Schwartz BS. 2018. Residential proximity to high-density poultry operations

associated with campylobacteriosis and infectious diarrhea. International Journal of

Hygiene and Environmental Health 221:323-333.

18. Livermore DM. 1995. Beta-lactamases in laboratory and clinical resistance. Clinical

Microbiology Reviews 8:557.

19. Ellner PD, Fink DJ, Neu HC, Parry MF. 1987. Epidemiologic factors affecting

antimicrobial resistance of common bacterial isolates. Journal of Clinical Microbiology

25:1668-1674.

20. Sanders CC, Sanders WE. 1992. Beta-lactamase resistance in gram-negative bacteria -

global trends and clinical impact. Clinical Infectious Diseases 15:824-839.

21. WHO. 2017. Does stopping a course of antibiotics early lead to antibiotic resistance?, on

World Health Organization. http://www.who.int/features/qa/stopping-antibiotic-

treatment/en/. Accessed 1/29/2018.

22. Weaver RF. 2012. Molecular Biology, 5th ed. McGraw-Hill, New York City, NY.

http://www.who.int/features/qa/stopping-antibiotic-treatment/en/
http://www.who.int/features/qa/stopping-antibiotic-treatment/en/

39

23. Bush K, Jacoby GA, Medeiros AA. 1995. A functional classification scheme for beta-

lactamases and its correlation with molecular structure. Antimicrobial Agents and

Chemotherapy 39:1211-1233.

24. Logan LK, Weinstein RA. 2017. The Epidemiology of Carbapenem-Resistant

Enterobacteriaceae: The Impact and Evolution of a Global Menace. The Journal of

Infectious Diseases 215:S28-S36.

25. Read AF, Woods RJ. 2014. Antibiotic resistance management. Evolution, Medicine, and

Public Health 2014:147.

26. Lauritsen I, Kim SH, Porse A, Nørholm MH. 2018. Standardized Cloning and Curing of

Plasmids, p 469-476, Synthetic Biology. Springer.

27. Zhou Y. 2018. Plasmid Curing in Yersinia pestis, p 173-182, Yersinia Pestis Protocols.

Springer.

28. Onifade AK, Palmer OG. 2018. Plasmid Profile Analysis and Curing of Multidrug-

Resistant Bacteria Isolated from Hospital Environmental Surfaces in Akure Metropolis,

Ondo State, Nigeria. American Journal of Information Science and Technology 2:18-23.

29. Fernández-García L, Blasco L, Lopez M, Bou G, García-Contreras R, Wood T, Tomas

M. 2016. Toxin-Antitoxin Systems in Clinical Pathogens. Toxins 8:227.

30. Engelberg-Kulka H, Glaser G. 1999. Addiction modules and programmed cell death and

antideath in bacterial cultures. Annu Rev Microbiol 53:43-70.

31. Tsang J. 2017. Bacterial plasmid addiction systems and their implications for antibiotic

drug development. Postdoc journal : a journal of postdoctoral research and postdoctoral

affairs 5:3-9.

40

32. Hayes F. 2003. Toxins-Antitoxins: Plasmid Maintenance, Programmed Cell Death, and

Cell Cycle Arrest. Science 301:1496-1499.

33. Ambler RP. 1980. The structure of beta-lactamases. Philos Trans R Soc Lond B Biol Sci

289:321-31.

34. Medeiros A, Mayer KH, Opal SM. 1988. Plasmid-mediated beta-lactamases.

Antimicrobic Newsletter 5:61-65.

35. Bonomo RA, Tolmasky ME. 2007. Enzyme-Mediated Resistance to Antibiotics :

Mechanisms, Dissemination, and Prospects for Inhibition. ASM Press, Washington,

United States.

36. Tomanicek SJ, Wang KK, Weiss KL, Blakeley MP, Cooper J, Chen Y, Coates L. 2011.

The active site protonation states of perdeuterated Toho-1 β-lactamase determined by

neutron diffraction support a role for Glu166 as the general base in acylation. FEBS

Letters 585:364-368.

37. Walsh TR, Toleman MA, Poirel L, Nordmann P. 2005. Metallo-beta-lactamases: the

quiet before the storm? Clin Microbiol Rev 18:306-25.

38. Drawz SM, Bonomo RA. 2010. Three Decades of β-Lactamase Inhibitors. Clinical

Microbiology Reviews 23:160-201.

39. Sougakoff W, Goussard S, Courvalin P. 1988. The TEM-3 beta-lactamase, which

hydrolyzes broad-spectrum cephalosporins, is derived from the TEM-2 penicillinase by 2

amino-acid substitutions. Fems Microbiology Letters 56:343-348.

40. Sougakoff W, Goussard S, Gerbaud G, Courvalin P. 1988. Plasmid-mediated resistance

to 3rd-generation cephalospoins caused by point mutations in TEM-type penicillinase

genes. Reviews of Infectious Diseases 10:879-884.

41

41. Jacoby GA, Sutton L. 1991. Properties of plasmids responsible for production of

extended-spectrum beta-lactamases. Antimicrobial Agents and Chemotherapy 35:164-

169.

42. Overturf GD. 2010. Carbapenemases: A Brief Review for Pediatric Infectious Disease

Specialists. The Pediatric Infectious Disease Journal 29:68-70.

43. Yong D, Toleman MA, Giske CG, Cho HS, Sundman K, Lee K, Walsh TR. 2009.

Characterization of a New Metallo-β-Lactamase Gene, bla(NDM-1), and a Novel

Erythromycin Esterase Gene Carried on a Unique Genetic Structure in Klebsiella

pneumoniae Sequence Type 14 from India. Antimicrobial Agents and Chemotherapy

53:5046-5054.

44. Yigit H, Queenan AM, Anderson GJ, Domenech-Sanchez A, Biddle JW, Steward CD,

Alberti S, Bush K, Tenover FC. 2001. Novel Carbapenem-Hydrolyzing β-Lactamase,

KPC-1, from a Carbapenem-Resistant Strain of Klebsiella pneumoniae. Antimicrobial

Agents and Chemotherapy 45:1151-1161.

45. Paterson DL, Bonomo RA. 2005. Extended-Spectrum β-Lactamases: a Clinical Update.

Clinical Microbiology Reviews 18:657-686.

46. Sotgiu G, Are BM, Pesapane L, Palmieri A, Muresu N, Cossu A, Dettori M, Azara A,

Mura II, Cocuzza C, Aliberti S, Piana A. 2018. Nosocomial transmission of carbapenem-

resistant Klebsiella pneumoniae in an Italian university hospital: a molecular

epidemiological study. Journal of Hospital Infection

doi:https://doi.org/10.1016/j.jhin.2018.03.033.

https://doi.org/10.1016/j.jhin.2018.03.033

42

47. Anonymous. Feb 27, 2018. Tracking CRE, on Centers for Disease Control and

Prevention. https://www.cdc.gov/hai/organisms/cre/trackingcre.html. Accessed June 08,

2018.

48. Arnold RS, Thom KA, Sharma S, Phillips M, Johnson JK, Morgan DJ. 2011. Emergence

of Klebsiella pneumoniae Carbapenemase (KPC)-Producing Bacteria. Southern medical

journal 104:40-45.

49. Codjoe FS, Donkor ES. 2018. Carbapenem Resistance: A Review. Medical Sciences 6:1.

50. Perez F, Van Duin D. 2013. Carbapenem-resistant Enterobacteriaceae: A menace to our

most vulnerable patients. Cleveland Clinic journal of medicine 80:225-233.

51. Bedenić B, Plečko V, Sardelić S, Uzunović S, Godič Torkar K. 2014. Carbapenemases in

Gram-Negative Bacteria: Laboratory Detection and Clinical Significance. BioMed

Research International 2014:841951.

52. Shakil S, Azhar EI, Tabrez S, Kamal MA, Jabir NR, Abuzenadah AM, Damanhouri GA,

Alam Q. 2011. New Delhi Metallo-beta-Lactamase (NDM-1): An Update. Journal of

Chemotherapy 23:263-265.

53. Marsik FJ, Nambiar S. 2011. Review of carbapenemases and AmpC-beta lactamases.

Pediatr Infect Dis J 30:1094-5.

54. Watanabe M, Iyobe S, Inoue M, Mitsuhashi S. 1991. Transferable imipenem resistance in

Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy 35:147-151.

55. Laraki N, Franceschini N, Rossolini GM, Santucci P, Meunier C, de Pauw E, Amicosante

G, Frère JM, Galleni M. 1999. Biochemical Characterization of the Pseudomonas

aeruginosa 101/1477 Metallo-β-Lactamase IMP-1 Produced by Escherichia coli.

Antimicrobial Agents and Chemotherapy 43:902-906.

https://www.cdc.gov/hai/organisms/cre/trackingcre.html

43

56. Klevens RM, Edwards JR, Richards CL, Horan TC, Gaynes RP, Pollock DA, Cardo DM.

2007. Estimating Health Care-Associated Infections and Deaths in U.S. Hospitals, 2002.

Public Health Reports 122:160-166.

57. Magill SS, Edwards JR, Bamberg W, Beldavs ZG, Dumyati G, Kainer MA, Lynfield

R, Maloney M, McAllister-Hollod L, Nadle J, Ray SM, Thompson DL, Wilson LE,

Fridkin SK. 2014. Multistate Point-Prevalence Survey of Health Care–Associated

Infections. New England Journal of Medicine 370:1198-1208.

58. Gross M. 2013. Antibiotics in crisis. Current Biology 23:R1063-R1065.

59. Cuzon G, Naas T, Nordmann P. 2011. Functional Characterization of Tn4401, a Tn3-

Based Transposon Involved in bla(KPC) Gene Mobilization. Antimicrobial Agents and

Chemotherapy 55:5370-5373.

60. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic Local Alignment

Search Tool. Journal of Molecular Biology 215:403-410.

61. Orlek A, Phan H, Sheppard AE, Doumith M, Ellington M, Peto T, Crook D, Walker AS,

Woodford N, Anjum MF, Stoesser N. 2017. Ordering the mob: Insights into replicon and

MOB typing schemes from analysis of a curated dataset of publicly available plasmids.

Plasmid 91:42-52.

62. Anonymous. QuickGO: Gene Ontology and GO Annotations, on EMBL-EBI.

https://www.ebi.ac.uk/QuickGO/. Accessed 03/05/18.

63. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL.

2009. BLAST+: architecture and applications. BMC Bioinformatics 10:421.

64. Carattoli A, Zankari E, Garcia-Fernandez A, Voldby Larsen M, Lund O, Villa L, Moller

Aarestrup F, Hasman H. 2014. In silico detection and typing of plasmids using

https://www.ebi.ac.uk/QuickGO/

44

PlasmidFinder and plasmid multilocus sequence typing. Antimicrob Agents Chemother

58:3895-903.

65. Moon BY, Park JY, Robinson DA, Thomas JC, Park YH, Thornton JA, Seo KS. 2016.

Mobilization of Genomic Islands of Staphylococcus aureus by Temperate Bacteriophage.

Plos One 11:16.

66. Getino M, de la Cruz F. 2018. Natural and Artificial Strategies To Control the

Conjugative Transmission of Plasmids. Microbiology Spectrum 6.

67. WHO. 2017. WHO Model List of Essential Medicines. World Health Organization,

68. de Lencastre H, Oliveira D, Tomasz A. 2007. Antibiotic resistant Staphylococcus aureus:

a paradigm of adaptive power. Current opinion in microbiology 10:428-435.

69. Schmieder R, Edwards R. 2011. Quality control and preprocessing of metagenomic

datasets. Bioinformatics 27:863-4.

70. Andrews S. 2017. FastQC: a quality control tool for high throughput sequence data.

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/. Accessed

71. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM,

Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G,

Alekseyev MA, Pevzner PA. 2012. SPAdes: A New Genome Assembly Algorithm and

Its Applications to Single-Cell Sequencing. Journal of Computational Biology 19:455-

477.

72. Gurevich A, Saveliev V, Vyahhi N, Tesler G. 2013. QUAST: quality assessment tool for

genome assemblies. Bioinformatics 29:1072-1075.

73. Seemann T. 2014. Prokka: rapid prokaryotic genome annotation. Bioinformatics

30:2068-9.

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/

45

74. CLSI. 2016. Performance Standards for Antimicrobial Susceptibility Testing, 26th ed.

Clinical Laboratory Standards Institute, Wayne, Pennsylvania.

75. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment

search tool. J Mol Biol 215:403-10.

76. Bauernfeind A, Stemplinger I, Jungwirth R, Giamarellou H. 1996. Characterization of the

plasmidic beta-lactamase CMY-2, which is responsible for cephamycin resistance.

Antimicrobial Agents and Chemotherapy 40:221-224.

77. Bauernfeind A, Stemplinger I, Jungwirth R, Wilhelm R, Chong Y. 1996. Comparative

characterization of the cephamycinase blaCMY-1 gene and its relationship with other

beta-lactamase genes. Antimicrobial Agents and Chemotherapy 40:1926-1930.

46

APPENDIX A

TABLE 3: Key Words used to characterize CR-plasmid gene content.

Categories Key Word Python Regular Expression
A

n
ti

m
ic

ro
b

ia
l R

es
is

ta
n

ce

aac aac

aad aad

aminoglyco* aminoglyco[^\s]

aph aph

arr- arr-

arsa ars[a-dhr]

arsb "

arsc "

arsd "

arsh "

arsr "

arsen* arsen[^\s]

bleomycin bleomycin

catr catr

chloramphenicol chloramphenicol

cmea cme[abc]

cmeb "

cmec "

47

copper copper

dfra (?:[^a-z]|^)dfra(?:$|[^a-z])

efflux pump efflux pump

flor flor

fluoroquino* fluoroquino[^\s]

folp (?:[^a-z]|^)folp(?:$|[^a-z])

macrolide macrolide

mercur* mercur[^\s]

mph mph

multidrug multidrug

ncra (?:[^a-z]|^)ncr[a-c,y](?:$|[^a-z])

ncrb "

ncrc "

ncry "

nickel resistant
(?:sulfonamide|trimethoprim|nickel)[

-]resistant

nirb (?:[^a-z]|^)nirb(?:$|[^a-z])

sulfonamide resistant "

trimethoprim resistant "

pcoa pco[a-ers]

pcob "

48

pcoc "

pcod "

pcoe "

pcor "

pcos "

qace qace

resistance resistance

rifampin rifamp(?:in|icin)

sila sil[abcefprs]

silb "

silc "

sile "

silf "

silp "

silr "

sils "

silver silver

streptomycin streptomycin

sul (?:[^a-z]|^)sul[12](?:$|[^a-z])

teller* teller[^\s]

49

tera ter[abcfw-z](?:$|[^a-z])

terb "

terc "

terf "

terw "

terx "

tery "

terz "

tetr tetr(?:$|[^a]|acycline)

A
n

ti
m

ic
ro

b
ia

l R
es

is
ta

n
ce

,B
et

a-
la

ct
am

as
e

ampr (?:^|[^p])ampr

beta lactam* beta[-]lactam[^\s]

beta-lactam* "

bla (?:^|[^p])bla

cephalosporin* cephalosporin[^\s]

cmy- (?:^|[^p])cmy-

ctx- (?:^|[^p])ctx-

dha- (?:^|[^p])dha-

oxa- (?:^|[^p])oxa-

oxacillin* oxacillin[^\s]

penicillin* penicillin[^\s]

50

sfo- (?:^|[^p])sfo-

shv- (?:^|[^p])shv-

tem- (?:^|[^p])tem-

A
n

ti
m

ic
ro

b
ia

l R
es

is
ta

n
ce

, B
et

a-
la

ct
am

as
e,

 B
et

a-
la

ct
am

as
e

Sp
ec

ia
l

carbapenem* carbapenem[^\s]

imp not (impa or impb or impc) (?:^|[^b-z])imp(?:$|[^abc])

kpc (?:^|[^b-z])kpc

ndm (?:^|[^b-z])ndm

vim (?:^|[^b-z])vim

P
la

sm
id

 T
ra

n
sf

er

conjuga* conjuga[^\s]

fertility inhibition fertility inhibition

fino fino

icm* icm[^\s]

moba mob[a-e]

mobb "

mobc "

mobd "

mobe "

pili* pili[^\s]

pilus pilus

pilx pilx

51

secretion system secretion system

tivb* tivb[^\s]

traa tra[a-rtuwxy](?:$|[^a-z])

trab "

trac "

trad "

trae "

traf "

trag "

trah "

trai "

traj "

trak "

tral "

tram "

tran "

trao "

trap "

traq "

trar "

52

trat "

trau "

traw "

trax "

tray "

trba trb[a-gilm]

trbb "

trbc "

trbe "

trbf "

trbg "

trbi "

trbl "

trbm "

type iv type[-]iv

type-iv "

vir* not virulence vir[^ugo\s]

To
xi

n
/A

n
ti

to
xi

n

Sy
st

em

abrb abrb

cbta cbta

ccda ccd[ab]

53

ccdb "

hica hica

higa hig[ab]

higb "

hokg hokg

pard par[de]

pare "

pemi pem[ik]

pemk "

relb rel[be]

rele "

stbd stb[de]

stbe "

toxi* (?:^|[^a-z]|anti)toxi[^\s]

yafo yafo

D
N

A

M
ai

n
te

n
an

ce
/M

o
d

if
ic

at
io

n

chromosome chromosome

dna dna

eex eex

entry exclusion entry exclusion

exca exca

54

helicase helicase

integrase integrase

kfra kfra

kora kor[ab]

korb "

methylase methylase

nucleoti* nucleoti[^\s]

para par[ab]

parb "

plasmid plasmid

recombinase (not serine or tyrosine
recombinase)

(?<!ser_|ine)recombinase

relaxase relaxase

repa repa

replication replication

replication protein replication protein

ruma ruma

single-strand binding protein single-strand binding protein

ssb ssb

topb topb

topoisomerase topoisomerase

55

trfa trfa

uvr* uvr[^\s]

vagc vag[cd]

vagd "

D
N

A

M
ai

n
te

n
an

ce
/M

o
d

if
ic

at
io

n
,

D
N

A

M
ai

n
te

n
an

ce
/M

o
d

if
ic

at
io

n

Sp
ec

ia
l

muca muc[ab]

mucb "

polymerase polymerase

umuc umu[cd]

umud "

M
o

b
ile

 G
en

et
ic

 E
le

m
en

ts

ista ist[ab](?:$|[^a-z0-9])

istb "

resolvase resolvase

reverse transcriptase reverse transcriptase

tnp tnp

transpos* transpos[^\s]

urf2 urf2

H
yp

o
th

et
ic

al
 G

en
es

 domain containing domain[-]containing

domain-containing "

hypothetical hypothetical

uncharacterized protein uncharacterized protein

56

unknown function unknown function

Ig
n

o
re

d

disrupted disrupted

imperfect imperfect

interrupted interrupted

intron intron

is(?:[a-z]{2}|)[0-9]{2,4} is(?:[a-z]{2}|)[0-9]{2,4}

kl.pn.i3 kl\.pn\.i3

morpho morpho

ncrna ncrna

non functional non[-]?functional

non-functional "

partial partial

patho patho

repeat region repeat region

se.ma.* se\.ma\.[\s]

truncated truncated

57

APPENDIX B

Supplementary Bioinformatics Methods

This is a more detailed explanation of the bioinformatics methods required for

incompatibility group/replicon typing and plasmid characterization. This will describe a step-by-

step walkthrough of the process. Please note that most of these steps will be simple data

formatting. Also note that it would have been easier in some cases to combine multiple steps into

one. The choice to separate each piece of the process was for clarity and to enable another to

modify this process for their own purposes. For our work, all steps could be run interactively;

i.e., not requiring a high-performance computing (HPC) architecture. Our work was completed

on a machine running Red Hat Enterprise Linux.

Summary

This process begins with one fasta file and multiple GenBank files. The formats for these

files are described in steps 0 and 2, respectively. The fasta file contains the incompatibility group

sequences. In our work, this was a download of the PlasmidFinder v1.3 Enterobacteriaceae

database (64). The GenBank files contain one or more GenBank records in them, where each

record could itself be considered a GenBank file for a single accession number. Thus, these

GenBank files are concatenations of multiple GenBank records. Effectively, this is how we

grouped accessions of interest. The same accession may appear in multiple groupings. Note, if

you attempt to re-use our process with your own data and have GenBank files as a single file per

accession, combining them into groups will feel unnecessary. We began this way because that is

what we had to start with.

The results of the entire process are CSV files with information about each plasmid in a

group and a text file with summary statistics about each group. The file contains basic

58

information (e.g., plasmid length), the incompatibility group(s) the plasmid best aligns to, and

some gene/function annotation based on key term searches of the GenBank file's CDS regions.

To accomplish this, each (input) group GenBank file is split into a single GenBank file per

accession and the sequences are extracted as fasta files. The sequence lengths are recorded and

these sequences are individually aligned (using the NCBI BLAST+ Suite (60, 63)) to the

incompatibility group sequences. After filtering out the "best" alignments, the incompatibility

group is determined and saved for later assimilation into the final outputs. The CDS regions are

extracted from the GenBank files and searched for key terms using regular expressions. Each key

term belongs to one or more categories. Matches in each category are counted and summarized

in the final output. For more details on this searching strategy, please see step #11. The key terms

are listed with their Python regular expression in Appendix A.

This summary concludes with an outline of the steps. Each step will be detailed, followed by

the references. The code in the detailed steps has, in many cases, been simplified. In other cases,

the code is several pages long and would be difficult to copy and paste effectively. Especially the

with Python code, readability suffers as lines wrap because a standard page is not wide enough to

contain some code statements on a single line. Accordingly, we encourage you to visit the online

repository for the code: https://github.com/ridgelab/plasmidCharacterization.

Outline of Steps

Step 0. Format Incompatibility Groups Fasta File

Step 1. Create Incompatibility Groups BLAST database

Step 2. Split Multi-Accession GenBank Files

Step 3. Extract ORIGIN Sequence from GB to Fasta

Step 4. Extract Group Lists

https://github.com/ridgelab/plasmidCharacterization

59

Step 5. Blast Incompatibility Groups

Step 6. Subset BLAST Results by Coverage Cutoff of 60%

Step 7. Add Incompatibility Group Family as Column to BLAST Results

Step 8. Filter Best Matches in BLAST Results

Step 9. Extract Incompatibility Families

Step 10. Extract Plasmid Search Regions

Step 11. Identify Plasmid Matches

Step 12. Generate Plasmid CSVs

Step 13. Create CSVs from Plasmid CSVs

Step 14. Create Group Matches from Plasmid Matches

Step 15. Calculate Group Statistics from Group CSV

Step 0. Format Incompatibility Groups Fasta File

Input: Fasta file with incompatibility group sequences. Each sequence may be on one or

more lines. The headers might start with “Inc”.

Output: Same fasta file as the input, but sequences occur on only one line. Headers without

“Inc” now have “Inc” prepended.

Code:

Bash Command

awk -f formatIncGroupFasta.awk \

 original_incomp-grp.fasta \

 > incomp-grp.fasta

 AWK Script (formatIncGroupFasta.awk)

#! /bin/awk -f

{

 if ($0 ~ /^>.+$/) {

60

 if (NR != 1) {

 printf "\n";

 }

 if ($0 ~ /^>Inc.+$/) {

 print $0;

 }

 else {

 printf "%s%s\n", ">Inc", substr($0, 2);

 }

 }

 else {

 printf "%s", $0;

 }

}

END {

 printf "\n";

}

Step 1. Create Incompatibility Groups BLAST database

Input: Fasta file with incompatibility group sequences. Each sequence is on only one line.

The headers start with “>Inc”.

Output: BLAST database of the incompatibility group sequences.

Code:

Bash Command

makeblastdb \

 -dbtype nucl \

 -in incompatibility.fasta \

 -input_type fasta \

 -title incompatibility \

 -parse_seqids \

 -hash_index \

 -out incompatibility \

 -max_file_sz 2GB \

 -logfile makeBlastDB.log

BLAST Software

NCBI (United States National Center for Biotechnology Information) BLAST+ Suite version

2.4.0 (60, 63).

61

Step 2. Split Multi-Accession GenBank Files

Input: 1+ GenBank files, each with 1+ records. Each record is itself a GenBank file for a

single Accession. Thus, the multi-accession GenBank files are simply concatenations of

multiple single-accession GenBank files. Assume that these GenBank files are in a directory

called original_gb.

Output: One GenBank file for each accession. If the same accession exists in more than one

multi-accession file, assume they are the same and overwrite it. Assume that the output

GenBank files will be in a directory called plasmid_gb.

Code:

Bash Command

cd plasmid_gb

while read ifn

do

 awk -f splitMultiGB.awk "${ifn}"

done < <(ls -1 original_gb/*.gb)

 AWK Script (splitMultiGB.awk)

#! /bin/awk -f

BEGIN {

FS="[]+";

 accession="";

 ofn="";

}

{

 if ($0 == "//" || $0 == "")

 {

 accession = "";

 ofn = "";

 }

 else if ($1 == "LOCUS")

 {

 accession = $2;

 ofn = accession ".gb";

 print $0 > ofn;

62

 }

 else

 {

 print $0 >> ofn;

 }

}

END {

 print "done splitting " FILENAME " by accession";

}

Step 3. Extract ORIGIN Sequence from GB to Fasta

Input: One GenBank file with a single accession in it. Assume it is in the directory

plasmid_gb and it is named after the pattern ${ACCESSION}.gb.

Output: One Fasta file with the sequence from the ORIGIN section of the GenBank file. The

Fasta file has sequences that are each on only one line. It will be in the directory

plasmid_fasta.

Code:

Bash Command

while read ifn

do

 ACCESSION=`basename "${ifn}" ".gb"`

 awk -f extractOriginSeqFromGBtoFasta.awk \

 "plasmid_gb/${ACCESSION}.gb" \

 > "plasmid_fasta/${ACCESSION}.fasta"

done < <(ls -1 plasmid_gb/*.gb)

 AWK Script (extractOriginSeqFromGBtoFasta.awk)

#! /bin/awk -f

BEGIN {

FS = "[]+";

 origin_found = 0; # false

}

{

63

 if (origin_found)

 {

 sub(/ *[0-9]+ /, "", $0);

 gsub(/ +/, "", $0);

 printf toupper($0);

 }

 else if ($1 == "ORIGIN")

 {

 origin_found = 1; # true

 print ">" gensub(/^(.+)\.gb$/, "\\1", "-1", gensub(/^.*\//,

"", "-1", FILENAME));

 }

}

END {

 printf "\n";

 print "done extracting ORIGIN seq from " FILENAME " to fasta" >

"/dev/stderr";

}

Step 4. Extract Group Lists

Input: One GenBank file with a multiple accessions in it. Assume it is in the directory

original_gb and it is named after the pattern ${GROUP}.gb.

Output: Multiple text files, each with the extension ".list". Each file is a line separated list of

accession numbers that make up the group. The files will be in a directory called groups

with the name ${GROUP}.list.

Code:

Bash Command

while read ifn

do

 awk -f extractGroupLists.awk \

 "${ifn}"

done < <(ls -1 original_gb/*.gb)

AWK Script (extractGroupLists.awk)

#! /bin/awk -f

BEGIN {

64

FS="[]+";

 accession="";

 ofn="";

}

{

 if (NR == 1)

 {

 ofn = gensub(/^(.+)\.gb$/, "\\1", "-1", gensub(/^.*\//, "", "-

1", FILENAME)) ".list";

 }

 if ($1 == "LOCUS")

 {

 accession = $2;

 print accession >> ofn;

 }

}

END {

 print "done extracting accessions from " FILENAME;

}

Step 5. Blast Incompatibility Groups

Input: Fasta files. Each contains the sequence from a single accession. Assume they are in the

directory plasmid_fasta and they are named after the pattern ${ACCESSION}.fasta.

Input: The incompatibility groups BLAST database created in step #1. It is named

incompatibility.

Output: One tab-separated value file for each input file. Each file is a modified version of the

BLAST output format 6. The format is specified as seen using the -outfmt option with blastn.

The columns are as follows: qseqid, sseqid, pident, length, evalue, qframe, qlen, qstart, qend,

sframe, slen, sstart, send, qseq, and sseq. The files will be in a directory called

blast_results and named after the pattern ${ACCESSION}_fmt6c.tsv. Note that a match

was not included in the output if the percent identity was <80%.

Code:

65

Bash Command

THREADS=8

while read ifn

do

 ACCESSION=`basename "${ifn}" ".fasta"`

 blastn \

 -query "${ifn}" \

 -strand both \

 -task blastn \

 -db icompatibility \

 -out blast_results/${ACCESSION}_fmt6c.tsv \

 -outfmt "6 qseqid sseqid pident length evalue qframe

qlen qstart qend sframe slen sstart send qseq sseq" \

 -num_threads ${THREADS} \

 -perc_identity 80

done < <(ls -1 plasmid_fasta/*.fasta)

BLAST Software

NCBI (United States National Center for Biotechnology Information) BLAST+ Suite version

2.4.0 (60, 63).

Step 6. Subset BLAST Results by Coverage Cutoff of 60%

Input: Tab-separated value files. Each contains the results from blasting the sequence of a

single accession against the incompatibility groups BLAST database. Assume they are in the

directory blast_results and they are named after the pattern ${ACCESSION}_fmt6c.tsv.

Output: One tab-separated value file for each input file. Each file is a copy of its respective

input file except some results may be omitted if the coverage was less than 60%. The files

will be in a directory called blast_results and named after the pattern

${ACCESSION}_fmt6c_cov60.tsv. Note that a new column was inserted as column number

14 (1-based indexing). The columns will now be as follows: qseqid, sseqid, pident, length,

evalue, qframe, qlen, qstart, qend, sframe, slen, sstart, send, scov, qseq, and sseq.

66

Code:

Bash Command

while read ifn

do

 ACCESSION=`basename "${ifn}" "_fmt6c.tsv"`

 awk -f subCovCutoff60.awk \

 "${ifn}" \

 > "blast_results/${ACCESSON}_fmt6c_cov60.tsv"

done < <(ls -1 blast_results/*_fmt6c.tsv)

AWK Script (subCovCutoff60.awk)

#! /bin/awk -f

BEGIN {

 FS="\t";

 OFS="\t";

 ORS="\n";

 count=0;

}

{

 # 4 = length, 11 = slen, scov = length / slen

 scov = $4 / $11;

 if (scov >= 0.6)

 {

 count += 1

 # keep 1-13, add new column, keep 14-15 (will become 15-16)

 for (i = 1; i <= 13; i++)

 {

 printf "%s", $i OFS;

 }

 printf "%f", scov OFS;

 for (i = 14; i <= NF; i++)

 {

 printf "%s", $i (i == NF ? ORS : OFS);

 }

 }

}

END {

 print FILENAME ": " count > "/dev/stderr";

}

Step 7. Add Incompatibility Group as Column to BLAST Results

Input: Tab-separated value files. Each contains the results from blasting the sequence of a

67

single accession against the incompatibility groups BLAST database. It has an added column

with the subject coverage and has only records with coverage >60%. Assume they are in the

directory blast_results and they are named after the pattern

${ACCESSION}_fmt6c_cov60.tsv.

Output: One tab-separated value file for each input file. Each file is a copy of its respective

input file except that an additional column is added. This column has the family or root of the

incompatibility group from column #2 (sseqid). The files will be in a directory called

blast_results and named after the pattern ${ACCESSION}_fmt6c_cov60_fam.tsv. Note

that a new column was inserted as column number 3 (1-based indexing). The columns will

now be as follows: qseqid, sseqid, fam, pident, length, evalue, qframe, qlen, qstart, qend,

sframe, slen, sstart, send, scov, qseq, and sseq.

Code:

Bash Command

while read ifn

do

 ACCESSION=`basename "${ifn}" "_fmt6c_cov60.tsv"`

 awk -f addFamCol.awk \

 "${ifn}" \

 > "blast_results/${ACCESSON}_fmt6c_cov60_fam.tsv"

done < <(ls -1 blast_results/*_fmt6c_cov60.tsv)

AWK Script (addFamCol.awk)

#! /bin/awk -f

BEGIN {

 FS="\t";

 OFS="\t";

 ORS="\n";

}

{

 # 2 = subject_id, keep 1-2, add new column, keep 3-16 (will become 4-

68

17)

 for (i = 1; i <= 2; i++)

 {

 printf "%s", $i OFS;

 }

 printf "%s", gensub(/^([^(_]+).*$/, "\\1", "-1", $2) OFS;

 for (i = 3; i <= NF; i++)

 {

 printf "%s", $i (i == NF ? ORS : OFS);

 }

}

Step 8. Filter Best Matches in BLAST Results

Input: Tab-separated value files. Each contains the results from blasting the sequence of a

single accession against the incompatibility groups BLAST database. It has two added

columns with the subject coverage (and has only records with coverage >60%) and family.

Assume they are in the directory blast_results and are named after the pattern

${ACCESSION}_fmt6c_cov60_fam.tsv.

Output: One tab-separated value file for each input file. Each file is a copy of its respective

input file except that some results are omitted. The “best” results are retained. “Best” is

defined as the result(s) with the highest percent identity and those that have percent identities

within only 1 percent of the highest one. The files will be in a directory called

blast_results and named after the pattern ${ACCESSION}_fmt6c_cov60_fam_best.tsv.

As in the input file, the columns will be as follows: qseqid, sseqid, fam, pident, length,

evalue, qframe, qlen, qstart, qend, sframe, slen, sstart, send, scov, qseq, and sseq.

Code:

Bash Command

while read ifn

do

69

 ACCESSION=`basename "${ifn}" "_fmt6c_cov60_fam.tsv"`

 python3 filterBestResults.py \

 "${ifn}" \

 > "blast_results/${ACCESSON}_fmt6c_cov60_fam_best.tsv"

done < <(ls -1 blast_results/*_fmt6c_cov60_fam.tsv)

Python Version

Python 3.6.4 (https://www.python.org).

Python Script (filterBestResults.py)

def handleArgs():

 if len(sys.argv) != 3:

 sys.stderr.write("\n\tERROR: You must provide 2

arguments\n\t\t1- input blast results cov60 fam\n\t\t2- output blast

results file\n\n")

 sys.exit(1)

 input_br = sys.argv[1]

 output_br = sys.argv[2]

 return input_br, output_br

==== #

MAIN #

==== #

if __name__ == "__main__":

 import sys

 # handle args

 ibrfn, obrfn= handleArgs()

 # set some handy vars

 records = [] # each line

 per_ids = [] # percent identities (the 4th column)

 with open(ibrfn, 'r') as ifd:

 for line in ifd:

 records.append(line)

 per_ids.append(float(line.rstrip('\n').split('\t')[3]))

 # figure out which ones to keep

 keep = []

 max_per_id = max(per_ids) if len(records) > 0 else 0.0

 for i,per_id in enumerate(per_ids):

 if abs(max_per_id - per_id) <= 1.0:

 keep.append(i)

70

 # write output

 with open (obrfn, 'w') as ofd:

 for i in keep:

 ofd.write(records[i])

 # exit

 sys.exit(0)

Step 9. Extract Incompatibility Families

Input: Tab-separated value files. Each contains the results from blasting the sequence of a

single accession against the incompatibility groups BLAST database. It has two added

columns with the subject coverage (and has only records with coverage >60%) and family.

Only the “best” results remain. Assume they are in the directory blast_results and are

named after the pattern ${ACCESSION}_fmt6c_cov60_fam_best.tsv.

Output: One file for each input file. Each file is a line-delimited list of incompatibility group

roots/families. The files will be in a directory called blast_results and named after the

pattern ${ACCESSION}_families.list.

Code:

Bash Command

while read ifn

do

 ACCESSION=`basename "${ifn}"

"_fmt6c_cov60_fam_best.tsv"`

 cut -f 3 "${ifn}" \

 | sort \

 | uniq \

 > blast_results/"${ACCESSON}_families.list"

done < <(ls -1 blast_results/*_fmt6c_cov60_fam_best.tsv)

Step 10. Extract Plasmid Search Regions

Input: This Python program requires 3 inputs. 1- The accession number of the plasmid it will

71

extract the search regions from. 2- The directory where the output will be placed. 3- The

directory where the GenBank file is located for that plasmid. We assume the GenBank file is

named after the pattern ${ACCESSION}.gb.

Output: One text file containing the lines from input GenBank file that will be searched using

the key terms. We assume the output file will be named after the following pattern:

${ACCESSION}_searchRegions.txt. For convenience, it will also generate a copy of the

input GenBank file with shell color codes, marking the CDS regions in blue, the portions of

the CDS regions that will be included in green, and the portion of the CDS regions that will

not be searched in red. This file will have the same name as the .txt file, but will have the

extension .gb instead of .txt. Note that intended search space is to consider each CDS

region as a separate entity. However, only the following subsections of each CDS region are

to be considered: \function, \gene, \note, and \product.

Code:

Bash Command

while read ifn

do

 ACCESSION=`basename "${ifn}" ".gb"`

 python3 extractPlasmidSearchRegions.py \

 "${ACCESSION}" \

 plasmid_searchRegions \

 plasmid_gb

done < <(ls -1 plasmid_gb/*.gb)

Python Version

Python 3.6.4 (https://www.python.org).

Python Script (extractPlasmidSearchRegions.py)

72

========= #
FUNCTIONS #

========= #

def handleArgs():

 import sys

 if len(sys.argv) != 4:

 sys.stderr.write("\n\tERROR: You must provide 3

arguments\n\t\t1- plasmid accession\n\t\t2- output search regions

dir\n\t\t3- input gb dir\n\n")

 sys.exit(1)

 plasmid_accession = sys.argv[1]

 output_search_regions_dir = sys.argv[2].rstrip('/')

 input_gb_dir = sys.argv[3].rstrip('/')

 return plasmid_accession, output_search_regions_dir, input_gb_dir

def parseGbFile(input_gb_fn, output_search_regions_fn, output_gb_fn):

 with open (output_search_regions_fn, 'w') as osrd:

 with open(output_gb_fn, 'w') as ogbd:

 red = "\033[0;31m"

 green = "\033[0;32m"

 blue = "\033[0;34m"

 no_color = "\033[0m"

 with open(input_gb_fn, 'r') as ifd:

 section_names = ("assembly_gap", "CDS",

"gene", "misc_difference", "misc_feature", "misc_recomb",

"mobile_element", "ncRNA", "operon", "oriT", "primer_bind",

"protein_bind", "regulatory", "repeat_region", "rep_origin",

"sig_peptide", "source", "tRNA")

 subsection_names_of_interest = ("function",

"gene", "note", "product")

 # skip from LOCUS to FEATURES

 line = ifd.readline() # grab the first line

("LOCUS")

 while line.rstrip('\n').lstrip(' ').split('

')[0] != "FEATURES":

 ogbd.write(line)

 line = ifd.readline()

 # write then skip past FEATURES

 ogbd.write(line)

 line = ifd.readline()

 # skip any lines necessary until CDS or ORIGIN

is found

 tag_word = line.rstrip('\n').lstrip('

').split(' ')[0]

 while tag_word != "ORIGIN" and tag_word !=

"CDS":

73

 ogbd.write(line)

 line = ifd.readline()

 tag_word = line.rstrip('\n').lstrip('

').split(' ')[0]

 # First time: found ORIGIN or CDS. If ORIGIN,

we're done. If CDS, read through each CDS region, until ORIGIN.

 # thereafter: found ORIGIN or CDS or other

section name. If ORIGIN, we're done. If CDS, read through each CDS

region, until ORIGIN. If section name, skip till ORIGIN or next CDS.

 while tag_word != "ORIGIN":

 # first time: this loop will be

skipped. Thereafter, if a section name (other than CDS), skip to next

CDS or ORIGIN.

 while tag_word != "ORIGIN" and tag_word

!= "CDS":

 ogbd.write(line)

 line = ifd.readline()

 tag_word =

line.rstrip('\n').lstrip(' ').split(' ')[0]

 if tag_word == "CDS":

 # write the CDS line

 osrd.write(line)

 ogbd.write(blue + line +

no_color)

 else: # if tag_word == "ORIGIN":

 break

 # skip past the CDS line (guaranteed to

now have a CDS line)

 line = ifd.readline()

 tag_word = line.rstrip('\n').lstrip('

').split(' ')[0]

 # read through important data and stop

at end of CDS (marked by next CDS or ORIGIN or other section name)

 # first time: guaranteed inside a CDS

region. Note that a CDS line is NEVER *immediately* followed by another

section name line (at least in our data).

 # thereafter: It could be anything

between the CDS and ORIGIN.

 while tag_word != "ORIGIN" and tag_word

not in section_names:

 if line.rstrip('\n').lstrip('

')[0] == '/': # it is a CDS subsection headerline

 subsection_name =

line.strip().split('=')[0].lstrip('/').lower()

 subsection =

'='.join(line.strip().split('=')[1:])

 if subsection_name in

subsection_names_of_interest: # the subsection is one we care to look

in

 osrd.write(line)

 ogbd.write(green

74

+ line + no_color)

 if subsection[0]

== '"' and subsection[-1] != '"': # the subsection spans multiple lines

 line =

ifd.readline()

 tag_word

= line.rstrip('\n').lstrip(' ').split(' ')[0]

 while

line.rstrip('\n')[-1] != '"': # keep searching to find the end of the

subsection of interest

 osrd.write(line)

 ogbd.write(green + line + no_color)

 line = ifd.readline()

 tag_word = line.rstrip('\n').lstrip(' ').split(' ')[0]

 osrd.write(line)

 ogbd.write(green + line + no_color)

 line =

ifd.readline()

 tag_word =

line.rstrip('\n').lstrip(' ').split(' ')[0]

 else: # the subsection

is not one we care to look in

 #if

len(subsection) < 1:

 #

 print("subsection len == 0")

 #

 print(line)

 #

 print(subsection_name)

 #

 print(subsection)

 # simple version

that works, but doesn't write it all in red

 #ogbd.write(line)

 #line =

ifd.readline()

 #tag_word =

line.rstrip('\n').lstrip(' ').split(' ')[0]

 # uneccesary

version that actually makes it write it all in red

 ogbd.write(red +

line + no_color)

 if

len(subsection) and subsection[0] == '"' and subsection[-1] != '"': #

the subsection spans multiple lines

75

 line =

ifd.readline()

 tag_word

= line.rstrip('\n').lstrip(' ').split(' ')[0]

 while

line.rstrip('\n')[-1] != '"': # keep searching to find the end of the

subsection of interest

 ogbd.write(red + line + no_color)

 line = ifd.readline()

 tag_word = line.rstrip('\n').lstrip(' ').split(' ')[0]

 ogbd.write(red + line + no_color)

 line =

ifd.readline()

 tag_word =

line.rstrip('\n').lstrip(' ').split(' ')[0]

 else: # it is not a CDS

subsection headerline

 ogbd.write(line)

 line = ifd.readline()

 tag_word =

line.rstrip('\n').lstrip(' ').split(' ')[0]

 # NOTE: the remainder of the file contains the

sequence data

 ogbd.write(line) # write the ORIGIN

 ogbd.write(ifd.read()) # write the rest of the

file (i.e., the sequence data)

==== #

MAIN #

==== #

if __name__ == "__main__":

 import sys

 # handle args

 plasmid_accession, output_search_regions_dir, input_gb_dir =

handleArgs()

 # set some helpful vars

 osrn = output_search_regions_dir + '/' + plasmid_accession +

"_searchRegions.txt"

 ogbn = output_search_regions_dir + '/' + plasmid_accession +

"_searchRegions.gb"

 igbn = input_gb_dir + '/' + plasmid_accession + ".gb"

 # get CDS info (Antimicrobial Resistance CDS (%) ... Total CDS)

 parseGbFile(igbn, osrn, ogbn)

 # exit

 sys.exit(0)

76

Step 11. Identify Plasmid Matches

Input: This Python program requires 3 inputs. 1- The accession number of the plasmid in

which it will identify matches. 2- The directory where the input search regions file is located.

3- The directory where the output matches will be placed. We assume the input search

regions file is named after the pattern ${ACCESSION}_searchRegions.txt.

Output: One tab-separated value file containing matches. We assume the output file will be

named after the following pattern: ${ACCESSION}_matches.tsv. The columns of the file are

as follows:

1. Ignored (True/False)

2. Categories (c1[,c2,…,cN])

3. Search Term

4. CDS Region

Column 1 is a simple flag denoting if the term was to be ignored. This could also be

determined based on the second column, but it was convenient to have a simple flag as its

own column. Column 2 contains the category (categories) that the search term belonged to.

Column 3 contains the regular expression used. Column 4 contains the CDS region that was

searched (all tabs and newlines were converted to \t (backslash and a t, not a tab) and \n

(backslash and an n, not a newline) to not interfere with the tab-separated value file format

and keep each record on a single line).

Search Strategy: The search terms are each part of one or more categories. It can belong to

multiple categories only if the categories are subsets of each other. Five principal categories

77

exist, two of which have subcategories. The category structure is as follows:

 Antimicrobial Resistance

o Beta-lactamase

 Beta-lactamase Special

 Toxin/Antitoxin System

 DNA Maintenance/Modification

o DNA Maintenance/Modification Special

 Mobile Genetic Elements

 Hypothetical Genes

The strategy could be described as top-to-bottom, in-to-out; i.e., Antimicrobial Resistance is

more important that Toxin/Antitoxin System and Beta-lactamase Special is more important

than Beta-lactamase and Antimicrobial Resistance. The reason these are shown nested

instead of simply above their parents is because a match for a Beta-lactamase Special search

term will increment the count for not only itself, but also its parents. If no matches are found,

the CDS region being searched is classified as "Other". Some CDS regions will never be

searched for these terms if they first match a term in a special "Ignored" category. Provided a

CDS region is not to be ignored, it will be searched with Beta-lactamase Special terms, then

Beta-lactamase terms, then Antimicrobial Resistance Terms, then Toxin/Antitoxin System

terms, and so-forth, until a match is found (thus halting the search on this CDS region) or no

more search terms remain (it is assigned to the "Other" category). All CDS regions are

converted to lowercase before being searched as described. See Supplementary Table 1 for a

table of search terms.

78

Code:

Bash Command

while read ifn

do

 ACCESSION=`basename "${ifn}" "_searchRegions.txt"`

 python3 identifyPlasmidMatches.py \

 "${ACCESSION}" \

 plasmid_searchRegions \

 plasmid_matches

done < <(ls -1 plasmid_searchRegions/*_searchRegions.txt)

Python Version

Python 3.6.4 (https://www.python.org).

Python Script (identifyPlasmidMatches.py)

========= #

FUNCTIONS #

========= #

def handleArgs():

 import sys

 if len(sys.argv) != 4:

 sys.stderr.write("\n\tERROR: You must provide 3

arguments\n\t\t1- plasmid accession\n\t\t2- input search regions

dir\n\t\t3- output matches dir\n\n")

 sys.exit(1)

 plasmid_accession = sys.argv[1]

 input_search_regions_dir = sys.argv[2].rstrip('/')

 output_matches_dir = sys.argv[3].rstrip('/')

 return plasmid_accession, input_search_regions_dir, output_matches_dir

def writeLineToMatchesFile(matches_fd, ignored, categories,

search_term, cds_search_region):

 matches_fd.write(str(ignored) + '\t' + ','.join(categories) + '\t' +

search_term + '\t' +

convertCDSsearchRegionToOneLineStr(cds_search_region) + '\n')

def ignoreCDS(cds_search_region, matches_fd):

 key_terms = [r"truncated", r"interrupted", r"partial", r"disrupted",

 r"intron", r"kl\.pn\.i3", r"se\.ma\.[\s]", r"morpho",

 r"repeat region", r"patho", r"ncrna", r"imperfect",

 r"non[-]?functional", r"is(?:[a-z]{2}|)[0-9]{2,4}"]

79

 return searchCdsRegionForKeyTerms(cds_search_region, key_terms,

matches_fd, True, ["Ignored"])

def betaLactSpecialCopyNum(cds_search_region, matches_fd):

 key_terms = [r"(?:^|[^b-z])ndm", r"(?:^|[^b-z])imp(?:$|[^abc])",

r"(?:^|[^b-z])vim", r"(?:^|[^b-z])kpc", r"carbapenem[^\s]"]

 return searchCdsRegionForKeyTerms(cds_search_region, key_terms,

matches_fd, False, ["Antimicrobial Resistance", "Beta-lactamase",

"Beta-lactamase Special"])

def betaLactSearch(cds_search_region, matches_fd):

 if not betaLactSpecialCopyNum(cds_search_region, matches_fd):

 key_terms = [r"(?:^|[^p])bla", r"beta[-]lactam[^\s]",

r"(?:^|[^p])oxa-",

 r"(?:^|[^p])dha-", r"(?:^|[^p])sfo-", r"(?:^|[^p])shv-

", r"(?:^|[^p])tem-",

 r"(?:^|[^p])ctx-", r"(?:^|[^p])ampr", r"(?:^|[^p])cmy-

", r"oxacillin[^\s]",

 r"penicillin[^\s]", r"cephalosporin[^\s]"]

 return searchCdsRegionForKeyTerms(cds_search_region,

key_terms, matches_fd, False, ["Antimicrobial Resistance", "Beta-

lactamase"])

 else:

 return True

def antimicrobResistSearch(cds_search_region, matches_fd):

 if not betaLactSearch(cds_search_region, matches_fd):

 key_terms = [r"aac", r"aad", r"aph", r"arr-",

 r"resistance", r"aminoglyco[^\s]", r"streptomycin",

r"chloramphenicol",

 r"cme[abc]", r"catr", r"multidrug", r"efflux pump",

 r"mercur[^\s]", r"teller[^\s]", r"arsen[^\s]", r"qace",

 r"macrolide", r"mph", r"silver", r"copper",

 r"flor", r"ter[abcfw-z](?:$|[^a-z])",

r"fluoroquino[^\s]", r"bleomycin",

 r"tetr(?:$|[^a]|acycline)", r"pco[a-ers]", r"ars[a-

dhr]", r"sil[abcefprs]",

 r"(?:sulfonamide|trimethoprim|nickel)[-]resistant",

r"(?:[^a-z]|^)folp(?:$|[^a-z])",

 r"(?:[^a-z]|^)sul[12](?:$|[^a-z])", r"(?:[^a-

z]|^)dfra(?:$|[^a-z])",

 r"(?:[^a-z]|^)ncr[a-c,y](?:$|[^a-z])", r"(?:[^a-

z]|^)nirb(?:$|[^a-z])", r"rifamp(?:in|icin)"]

 return searchCdsRegionForKeyTerms(cds_search_region,

key_terms, matches_fd, False, ["Antimicrobial Resistance"])

 else:

 return True

def plasmidTransferSearch(cds_search_region, matches_fd):

 key_terms = [r"conjuga[^\s]", r"pili[^\s]", r"pilus", r"type[-]iv",

 r"secretion system", r"fertility inhibition", r"tivb[^\s]",

r"icm[^\s]",

80

 r"tra[a-rtuwxy](?:$|[^a-z])", r"trb[a-gilm]", r"mob[a-e]",

r"fino",

 r"vir[^ugo\s]", r"pilx"]

 return searchCdsRegionForKeyTerms(cds_search_region, key_terms,

matches_fd, False, ["Plasmid Transfer"])

def toxinSearch(cds_search_region, matches_fd):

 key_terms = [r"(?:^|[^a-z]|anti)toxi[^\s]", r"stb[de]", r"hig[ab]",

r"cbta",

 r"rel[be]", r"hica", r"yafo", r"ccd[ab]",

 r"abrb", r"par[de]", r"pem[ik]", r"hokg"]

 return searchCdsRegionForKeyTerms(cds_search_region, key_terms,

matches_fd, False, ["Toxin System"])

def dnaMaintSpecialCopyNum(cds_search_region, matches_fd):

 key_terms = [r"muc[ab]", "umu[cd]", "polymerase"]

 return searchCdsRegionForKeyTerms(cds_search_region, key_terms,

matches_fd, False, ["DNA Maintenance", "DNA Maintenance Special"])

def dnaMaintSearch(cds_search_region, matches_fd):

 if not dnaMaintSpecialCopyNum(cds_search_region, matches_fd):

 key_terms = [r"methylase", r"single-strand binding protein",

r"ssb", r"topb",

 r"replication protein", r"kfra", r"kor[ab]", r"trfa",

 r"helicase", r"dna", r"chromosome", r"entry exclusion",

 r"eex", r"exca", r"nucleoti[^\s]", r"topoisomerase",

 r"integrase", r"(?<!ser_|ine)recombinase",

r"replication", r"nuclease",

 r"relaxase", r"plasmid", r"ruma", r"repa",

 r"uvr[^\s]", r"par[ab]", r"vag[cd]"]

 return searchCdsRegionForKeyTerms(cds_search_region,

key_terms, matches_fd, False, ["DNA Maintenance"])

 else:

 return True

def mobileGeneticElementsSearch(cds_search_region, matches_fd):

 key_terms = [r"transpos[^\s]", r"reverse transcriptase", r"tnp",

 r"ist[ab](?:$|[^a-z0-9])", r"resolvase", "urf2"]

 return searchCdsRegionForKeyTerms(cds_search_region, key_terms,

matches_fd, False, ["Mobile Genetic Elements"])

def hypotheticalGenesSearch(cds_search_region, matches_fd):

 key_terms = [r"hypothetical", r"domain[-]containing",

r"uncharacterized protein", r"unknown function"]

 return searchCdsRegionForKeyTerms(cds_search_region, key_terms,

matches_fd, False, ["Hypothetical Genes"])

def convertCDSsearchRegionToOneLineStr(cds_search_region):

 return "\\n".join(list(map(lambda x: x.replace('\t',

"\\t").replace('\n', ""), cds_search_region)))

81

def searchCDSRegion(cds_search_region, matches_fd):

make cds_search_region all lowercase

 cds_search_region = list(map(lambda x: x.lower(), cds_search_region))

make all the search regions lowercase

 if not ignoreCDS(cds_search_region, matches_fd):

 if not antimicrobResistSearch(cds_search_region, matches_fd):

 if not plasmidTransferSearch(cds_search_region,

matches_fd):

 if not toxinSearch(cds_search_region,

matches_fd):

 if not

dnaMaintSearch(cds_search_region, matches_fd):

 if not

mobileGeneticElementsSearch(cds_search_region, matches_fd):

 if not

hypotheticalGenesSearch(cds_search_region, matches_fd):

 writeLineToMatchesFile(matches_fd, False, ["Other"], "NA",

cds_search_region)

def searchCdsRegionForKeyTerms(cds_search_region, key_terms,

matches_fd, ignored, categories):

 import re

 for search_sub_region in cds_search_region:

 for key_term in key_terms:

 if re.search(key_term, search_sub_region) is not None:

 writeLineToMatchesFile(matches_fd, ignored,

categories, key_term, cds_search_region)

 return True

 return False

def parseSearchRegionFile(input_sr_fn, matches_fn):

 import re

 with open(input_sr_fn, 'r') as ifd:

 with open(matches_fn, 'w') as mfd:

 mfd.write("Ignored (True/False)\tCategories

(c1[,c2,...,cN])\tSearch Term\tCDS Region\n")

 cds_search_region = []

 # All data is important. Read through all CDS regions

separately and search through them.

 # Each CDS region begins with CDS and ends with another

CDS record or the end of file

 # grab first line (always a CDS line)

 line = ifd.readline()

 tag_word = line.rstrip('\n').lstrip(' ').split(' ')[0]

 cds_search_region.append(line)

 # grab the next line

82

 line = ifd.readline()

 tag_word = line.rstrip('\n').lstrip(' ').split(' ')[0]

 while line != "":

 while line != "" and tag_word != "CDS":

 cds_search_region.append(line)

 line = ifd.readline()

 tag_word = line.rstrip('\n').lstrip('

').split(' ')[0]

 # search the region

 searchCDSRegion(cds_search_region, mfd)

 cds_search_region = []

 # grab the next line

 cds_search_region.append(line)

 line = ifd.readline()

 tag_word = line.rstrip('\n').lstrip('

').split(' ')[0]

==== #

MAIN #

==== #

if __name__ == "__main__":

 import sys

 # handle args

 plasmid_accession, input_search_regions_dir, output_matches_dir =

handleArgs()

 # set some helpful vars

 isrn = input_search_regions_dir + '/' + plasmid_accession +

"_searchRegions.txt"

 mfn = output_matches_dir + '/' + plasmid_accession + "_matches.tsv"

 # search the search regions file for matches

 parseSearchRegionFile(isrn, mfn)

 # exit

 sys.exit(0)

Step 12. Generate Plasmid CSVs

Input: This Python program requires 5 inputs. 1- The accession number of the plasmid it will

generate a CSV file for. 2- The directory where the output CSV file is to be placed. 3- The

directory where the plasmid fasta file is located. We assume it is named after the pattern

${ACCESSION}.fasta. 4- The directory where the input plasmid matches file is located. We

assume it is named after the pattern ${ACCESSION}_matches.tsv. 5- The directory where

83

the input incompatibility groups (derived from the BLAST results) are located. We assume it

is named after the pattern ${ACCESSION}_families.list.

Output: One comma-separated value file. It will be placed in the directory specified in the

input position 2. We assume the output file will be named after the following pattern:

${ACCESSION}.csv. The columns of the file are as follows:

"Accession #", "Plasmid Length", "Antimicrobial Resistance CDS", "Antimicrobial

Resistance CDS %", "Beta-lactamase CDS", "Beta-lactamase CDS %", "Beta-lactamase

Special (Carbapenem*,IMP,KPC,NDM,VIM) Copy #", "Beta-lactamase Special

(Carbapenem*,IMP,KPC,NDM,VIM) Copy # % of Beta-lactamase", "Beta-lactamase

Special (Carbapenem*,IMP,KPC,NDM,VIM) Absent (Yes/No)", "Plasmid Transfer

CDS", "Plasmid Transfer CDS %", "Toxin/Antitoxin System CDS", "Toxin/Antitoxin

System CDS %", "Toxin/Antitoxin System Present (Yes/No)", "DNA

Maintenance/Modification CDS", "DNA Maintenance/Modification CDS %", "DNA

Maintenance/Modification Special (mucA,mucB,polymerase,umuC,umuD) Copy #",

"DNA Maintenance/Modification Special (mucA,mucB,polymerase,umuC,umuD) Copy

% of DNA Maintenance/Modification", "DNA Maintenance/Modification Special

(mucA,mucB,polymerase,umuC,umuD) Copy # % of Total", "DNA

Maintenance/Modification Special (mucA,mucB,polymerase,umuC,umuD) Present

(Yes/No)", "Mobile Genetic Elements CDS", "Mobile Genetic Elements CDS %",

"Hypothetical Genes CDS", "Hypothetical Genes CDS %", "Other CDS", "Other CDS

%", "Total CDS", "Incompatibility Groups"

Code:

84

Bash Command

while read ifn

do

 ACCESSION=`basename "${ifn}" ".fasta"`

 python3 generatePlasmidCSV.py \

 "${ACCESSION}" \

 plasmid_csv \

 plasmid_fasta \

 plasmid_matches \

 blast_results

done < <(ls -1 plasmid_fasta/*.fasta)

Python Version

Python 3.6.4 (https://www.python.org).

Python Script (generatePlasmidCSV.py)

========= #

FUNCTIONS #

========= #

def handleArgs():

 import sys

 if len(sys.argv) != 6:

 sys.stderr.write("\n\tERROR: You must provide 5

arguments\n\t\t1- plasmid accession\n\t\t2- output csv dir\n\t\t3-

input fasta dir\n\t\t4- input matches dir\n\t\t5- input incompatibility

groups blast output dir\n\n")

 sys.exit(1)

 plasmid_accession = sys.argv[1]

 output_csv_dir = sys.argv[2].rstrip('/')

 input_fasta_and_length_dir = sys.argv[3].rstrip('/')

 input_matches_dir = sys.argv[4].rstrip('/')

 input_incompatibility_groups_blast_output_dir =

sys.argv[5].rstrip('/')

 return plasmid_accession, output_csv_dir, input_fasta_and_length_dir,

input_matches_dir, input_incompatibility_groups_blast_output_dir

def CSVify(some_str):

 return '"' + some_str + '"'

def getPlasmidLength(input_length_fn):

 with open(input_length_fn, 'r') as ifd:

 return int(ifd.readline().rstrip('\n'))

def getRegionCounts(categories):

 cats = ["Antimicrobial Resistance", "Beta-lactamase", "Beta-lactamase

85

Special",

 "Plasmid Transfer", "Toxin System", "DNA Maintenance",

 "DNA Maintenance Special", "Mobile Genetic Elements",

"Hypothetical Genes", "Other"]

 counts = [0] * len(cats)

 category_counts = {}

 for category in sorted(categories):

 if not category in category_counts:

 category_counts[category] = 0

 category_counts[category] += 1

 for i,cat in enumerate(cats):

 counts[i] = category_counts[cat] if cat in category_counts

else 0

 return counts

def updateCDScounts(cds_counts, cds_region_counts):

 for i,cds_region_count in enumerate(cds_region_counts):

 cds_counts[i] += cds_region_count

 return cds_counts

def parseMatchesFile(matches_fn):

 import re

 with open(matches_fn, 'r') as ifd:

 cds_counts = [0] * 10 # 10 CDS related columns in output

 # skip past the TSV header line

 ifd.readline()

 # grab first data line

 line = ifd.readline()

 while line != "":

 fields = line.rstrip('\n').split('\t')

 ignore = True if fields[0] == "True" else False

 categories = fields[1].split(',')

 key_term = fields[2]

 cds_search_region = fields[3]

 if not ignore:

 cds_counts = updateCDScounts(cds_counts,

getRegionCounts(categories))

 # grab the next line

 line = ifd.readline()

 tag_word = line.rstrip('\n').lstrip(' ').split(' ')[0]

 return cds_counts

86

def getPercentOfTotal(count, total):

 if total:

 return count / total

 else:

 return "NA"

def convertCdsInfoToOutputStr(antimicrob_resist_cds_count,

beta_lact_cds_count, beta_lact_special_copy_num,

plasmid_transfer_cds_count, \

 toxin_cds_count, dna_maint_cds_count,

dna_maint_special_copy_num, mobile_genetic_elements_cds_count, \

 hypothetical_genes_cds_count, other_cds_count):

 # initialize output list (will eventually become a giant string). Each

item will need to be easily converted to a string using str.

 output = []

 # find the total num of cds regions

 total_cds_count = sum((antimicrob_resist_cds_count,

plasmid_transfer_cds_count, toxin_cds_count, \

 dna_maint_cds_count, mobile_genetic_elements_cds_count,

hypothetical_genes_cds_count, other_cds_count))

 # append columns to output

 # antimicrob resist (w/ beta lact)

 # antimicrob resist

 output.append(antimicrob_resist_cds_count) # count

 output.append(getPercentOfTotal(antimicrob_resist_cds_count,

total_cds_count)) # percent of total

 # beta lact

 output.append(beta_lact_cds_count) # count

 output.append(getPercentOfTotal(beta_lact_cds_count, total_cds_count))

percent of total

 # special copy num

 output.append(beta_lact_special_copy_num) # count

 output.append(getPercentOfTotal(beta_lact_special_copy_num,

beta_lact_cds_count)) # percent of beta lact

 output.append(getPercentOfTotal(beta_lact_special_copy_num,

total_cds_count)) # percent of total

 output.append("No" if beta_lact_special_copy_num else "Yes") # absent

(Yes/No)

 # plasmid transfer

 output.append(plasmid_transfer_cds_count) # count

 output.append(getPercentOfTotal(plasmid_transfer_cds_count,

total_cds_count)) # percent of total

 # toxin system

 output.append(toxin_cds_count) # count

 output.append(getPercentOfTotal(toxin_cds_count, total_cds_count)) #

percent of total

 output.append("Yes" if toxin_cds_count else "No") # present (Yes/No)

 # dna maint

 output.append(dna_maint_cds_count) # count

 output.append(getPercentOfTotal(dna_maint_cds_count, total_cds_count))

87

percent of total

 # special copy num

 output.append(dna_maint_special_copy_num) # count

 output.append(getPercentOfTotal(dna_maint_special_copy_num,

dna_maint_cds_count)) # percent of dna maint

 output.append(getPercentOfTotal(dna_maint_special_copy_num,

total_cds_count)) # percent of total

 output.append("Yes" if dna_maint_special_copy_num else "No") # present

(Yes/No)

 # mobile genetic elements

 output.append(mobile_genetic_elements_cds_count) # count

 output.append(getPercentOfTotal(mobile_genetic_elements_cds_count,

total_cds_count)) # percent of total

 # hypothetical genes

 output.append(hypothetical_genes_cds_count) # count

 output.append(getPercentOfTotal(hypothetical_genes_cds_count,

total_cds_count)) # percent of total

 # other (/unknown)

 output.append(other_cds_count) # count

 output.append(getPercentOfTotal(other_cds_count, total_cds_count)) #

percent of total

 # total

 output.append(total_cds_count) # count

 # convert all elements to str, join by ",", and add leading and

trailing "

 output = CSVify("\",\"".join(list(map(str, output))))

 # return

 return output

def getIncompatibilityGroups(input_incompatibility_groups_fn):

 with open(input_incompatibility_groups_fn, 'r') as ifd:

 return [line.rstrip('\n') for line in ifd]

==== #

MAIN #

==== #

if __name__ == "__main__":

 import sys

 # handle args

 plasmid_accession, output_csv_dir, input_fasta_and_length_dir,

input_matches_dir, input_incompatibility_groups_blast_output_dir =

handleArgs()

 # set some helpful vars

 ocn = output_csv_dir + '/' + plasmid_accession + ".csv"

 ifn = input_fasta_and_length_dir + '/' + plasmid_accession + ".fasta"

 iln = input_fasta_and_length_dir + '/' + plasmid_accession + ".length"

 mfn = input_matches_dir + '/' + plasmid_accession + "_matches.tsv"

88

 iign = input_incompatibility_groups_blast_output_dir + '/' +

plasmid_accession + "_families.list"

 csv_header = ["Accession #",

 "Plasmid Length",

 "Antimicrobial Resistance CDS", "Antimicrobial Resistance CDS

%",

 "Beta-lactamase CDS","Beta-lactamase CDS %", "Beta-lactamase

Special (Carbapenem*,IMP,KPC,NDM,VIM) Copy #", "Beta-lactamase Special

(Carbapenem*,IMP,KPC,NDM,VIM) Copy # % of Beta-lactamase", "Beta-

lactamase Special (Carbapenem*,IMP,KPC,NDM,VIM) Copy # % of Total",

"Beta-lactamase Special (Carbapenem*,IMP,KPC,NDM,VIM) Absent (Yes/No)",

 "Plasmid Transfer CDS", "Plasmid Transfer CDS %",

 "Toxin/Antitoxin System CDS", "Toxin/Antitoxin System CDS %",

"Toxin/Antitoxin System Present (Yes/No)",

 "DNA Maintenance/Modification CDS", "DNA

Maintenance/Modification CDS %", "DNA Maintenance/Modification Special

(mucA,mucB,polymerase,umuC,umuD) Copy #", "DNA Maintenance/Modification

Special (mucA,mucB,polymerase,umuC,umuD) Copy # % of DNA

Maintenance/Modification", "DNA Maintenance/Modification Special

(mucA,mucB,polymerase,umuC,umuD) Copy # % of Total", "DNA

Maintenance/Modification Special (mucA,mucB,polymerase,umuC,umuD)

Present (Yes/No)",

 "Mobile Genetic Elements CDS", "Mobile Genetic Elements CDS

%",

 "Hypothetical Genes CDS", "Hypothetical Genes CDS %",

 "Other CDS", "Other CDS %",

 "Total CDS",

 "Incompatibility Groups"]

 # get necessary information

 # get CSV Header

 csv_header_output_str = CSVify("\",\"".join(csv_header))

 # get plasmid accession #

 plasmid_accession_output_str = CSVify(plasmid_accession)

 # get plasmid length

 plasmid_length = getPlasmidLength(iln)

 plasmid_length_output_str = CSVify(str(plasmid_length))

 # get CDS info (Antimicrobial Resistance CDS (%) ... Total CDS)

 cds_info = parseMatchesFile(mfn)

 cds_info_output_str = convertCdsInfoToOutputStr(*cds_info)

 # get incompatibility groups

 incompatibility_groups = getIncompatibilityGroups(iign)

 incompatibility_groups_output_str =

CSVify(','.join(incompatibility_groups)) if len(incompatibility_groups)

> 0 else CSVify("NA")

 # write output

 with open (ocn, 'w') as ocd:

 # csv header line

 ocd.write(csv_header_output_str + '\n') # csv header

 # csv data line

89

 ocd.write(plasmid_accession_output_str + ',') # accession #

 ocd.write(plasmid_length_output_str + ',') # plasmid length

 ocd.write(cds_info_output_str + ',') # CDS info (Antimicrobial

Resistance CDS (%) ... Total CDS)

 ocd.write(incompatibility_groups_output_str + '\n') #

incompatibility groups

 # exit

 sys.exit(0)

Step 13. Create CSVs from Plasmid CSVs

Input: The inputs required are the group list files that contain the plasmids in each group (see

step #4) and the individual plasmid CSVs (see step #12). The group list files are assumed to

be in the directory groups and named after the pattern ${GROUP}.list. The plasmid CSVs

are assumed to be in the plasmid_csv directory and named after the pattern

${ACCESSION}.csv.

Output: One comma-separated value file containing the same header line as all the plasmid

CSVs and a concatenation of the non-header lines from the plasmid CSVs. We assume the

output file will be in the directory group_csv and will be named after the following pattern:

${GROUP}.csv.

Code:

Bash Command

while read ifn

do

 GROUP=`basename "${ifn}" ".list"`

 ofn="group_csv/${GROUP}.csv"

 # get and write a header

 hfn=plasmid_csv/`head -q -n 1 "${ifn}"`".csv"

 head -q -n 1 "${hfn}" > "${ofn}"

 # get and write the non-headers lines

 nhfns=`cat "${ifn}" | sed -r 's,^(.+)$,plasmid_csv/\1.csv,' |

tr '\n' ' '`

 tail -q -n +2 ${nhfns} >> "${ofn}"

done < <(ls -1 groups/*.list)

90

sed Note

sed must be GNU (https://www.gnu.org) sed. -r does not enable extended regular

expression syntax with BSD (http://www.bsd.org) sed.

Step 14. Create Group Matches from Plasmid Matches

Note that this step is not technically necessary to generate the desired output (the group CSV

files (step #13) and the group statistics files (step #15)). This is really for convenience in

inspecting results.

Input: The inputs required are the group list files that contain the plasmids in each group (see

step #4) and the individual plasmid matches (see step #11). The group list files are assumed

to be in the directory groups and named after the pattern ${GROUP}.list. The plasmid

matches are assumed to be in the plasmid_matches directory and named after the pattern

${ACCESSION}_matches.tsv.

Output: One text file containing the matches for the group. We assume the output file will be

in the directory group_matches and will be named after the following pattern:

${GROUP}_matches.tsv.

Code:

Bash Command

while read ifn

do

 GROUP=`basename "${ifn}" ".list"`

 ofn="group_matches/${GROUP}_matches.tsv"

 fns=`cat "${ifn}" | sed -r

's,^(.+)$,plasmid_matches/\1_matches.tsv,' | tr '\n' ' '`

 head -q -n 1 ${fns} | head -n 1 > "${ofn}"

 tail -q -n +2 ${fns} >> "${ofn}"

done < <(ls -1 groups/*.list)

91

sed Note

sed must be GNU (https://www.gnu.org) sed. -r does not enable extended regular

expression syntax with BSD (http://www.bsd.org) sed

Step 15. Calculate Group Statistics from Group CSV

Input: This Python program requires 2 inputs. 1- The CSV file for a group. Here, we show

the CSV files in the directory group_csv, named after the pattern ${GROUP}.csv. 2- The

output statistics file for the group. Here, we show the statistics files in the directory

group_stats, named after the pattern ${GROUP}.stats.

Output: One text file named as described in position 2 of the input to the Python program.

That file is formatted as follows:

GROUP_NAME

===

Total # of Plasmids: ##

Incompatibility Groups Structure:

 Inc. Plasmid Size Size

 Group Count Mean St. Dev.

 IncGrp1 # #.### #.###

 IncGrp2 # ######.### #####.###

 .

 .

 .

 IncGrpN # #####.### ####.###

Plasmids Summary:

 Min: ####

 Max: ######

 Median: #####

 Mean: ######.###

 St. Dev.: ######.###

Key Words Structure:

 Key Plasmid Size Size

 Word Count Mean St. Dev.

 anti_microb_resist ## ######.### ######.###

 anti_microb_resist_not # ######.### ######

 beta_lact ## ######.### ######.###

 beta_lact_not # ######.### ######

 plasmid_transfer ## ######.### ######.###

 plasmid_transfer_not # #####.### #####.###

92

 toxin ## ######.### #####.###

 toxin_not ## #####.### ######.###

 dna_maint ## ######.### ######.###

 dna_maint_not # ######.### ######

 mob_gen_elem ## ######.### ######.###

 mob_gen_elem_not # ######.### ######.###

 hypo_genes ## ######.### ######.###

 hypo_genes_not # ######.### ######

 other ## ######.### ######.###

 other_not # ######.### ######.###

Plasmid Structure:

 This information is already reported in the CSV file: GROUP_NAME.csv

Code:

Bash Command

while read gfn

do

 GROUP=`basename "${gfn}" ".list"`

 ifn="group_csv/${GROUP}.csv"

 ofn="group_stats/${GROUP}.stats"

 python3 calcGroupCSVstats.py\

 "${ifn}" \

 "${ofn}"

done < <(ls -1 groups/*.list)

Python Version

Python 3.6.4 (https://www.python.org).

Python Script (calcGroupCSVstats.py)

#############

FUNCTIONS #

#############

def handleArgs(args, sefd, sexit):

 if len(args) != 3:

 sefd.write("\n\tERROR: Incorrect arguments\n\t\t1- input group

csv file\n\t\t2- output text file\n\n")

 sexit(1)

 ifn = sys.argv[1]

 ofn = sys.argv[2]

 return ifn, ofn

def writeIncGroupsStructure(ofd, inc_groups):

93

 output = []

 sizes = []

 header1 = ("Inc.", "Plasmid", "Size", "Size")

 header2 = ("Group", "Count", "Mean", "St. Dev.")

 output.append(header1)

 sizes.append(tuple(map(len, output[-1])))

 output.append(header2)

 sizes.append(tuple(map(len, output[-1])))

 for inc_group in sorted(inc_groups.keys()):

 if inc_group != "NA":

 lengths = inc_groups[inc_group]

 count = len(lengths)

 mean = count

 st_dev = 0

 if count > 1:

 mean = stats.mean(lengths)

 st_dev = stats.stdev(lengths)

 output.append((inc_group, str(count),

"{0:.3f}".format(mean), "{0:.3f}".format(st_dev)))

 sizes.append(tuple(map(len, output[-1])))

 c0 = 0

 c1 = 0

 c2 = 0

 c3 = 0

 for size in sizes:

 if size[0] > c0:

 c0 = size[0]

 if size[1] > c1:

 c1 = size[1]

 if size[2] > c2:

 c2 = size[2]

 if size[3] > c3:

 c3 = size[3]

 ofd.write("Incompatibility Groups Structure:\n")

 for o,s in zip(output,sizes):

 ofd.write('\t')

 ofd.write(o[0] + ' ' * (c0 - s[0] + 3))

 ofd.write(o[1] + ' ' * (c1 - s[1] + 3))

 ofd.write(o[2] + ' ' * (c2 - s[2] + 3))

 ofd.write(o[3] + ' ' * (c3 - s[3] + 3))

 ofd.write('\n')

def getGroupStructureMeanStr(lengths):

 if len(lengths) > 0:

 return "{0:.3f}".format(stats.mean(lengths))

 else:

 return "NA"

def getGroupStructureStDevStr(lengths):

 if len(lengths) > 1:

 return "{0:.3f}".format(stats.stdev(lengths))

 elif len(lengths) < 1: # == 0

94

 return "NA"

 else: # == 1

 return str(lengths[0])

def writeGroupStructure(ofd, all_group_structure_fields):

 # set up the group structure arrays (to be populated with plasmid

lengths)

 anti_microb_resist = []

 anti_microb_resist_not = []

 beta_lact = []

 beta_lact_not = []

 plasmid_transfer = []

 plasmid_transfer_not = []

 toxin = []

 toxin_not = []

 dna_maint = []

 dna_maint_not = []

 mob_gen_elem = []

 mob_gen_elem_not = []

 hypo_genes = []

 hypo_genes_not = []

 other = []

 other_not = []

 # extract the information and load it into the group structure arrays

 for group_structure_fields in all_group_structure_fields:

 # if three is a count, add it. else add it to the not. We're

adding the length.

 length = group_structure_fields[0]

 anti_microb_resist_count = group_structure_fields[1]

 beta_lact_count = group_structure_fields[2]

 plasmid_transfer_count = group_structure_fields[3]

 toxin_count = group_structure_fields[4]

 dna_maint_count = group_structure_fields[5]

 mob_gen_elem_count = group_structure_fields[6]

 hypo_genes_count = group_structure_fields[7]

 other_count = group_structure_fields[8]

 if anti_microb_resist_count:

 anti_microb_resist.append(length)

 else:

 anti_microb_resist_not.append(length)

 if beta_lact_count:

 beta_lact.append(length)

 else:

 beta_lact_not.append(length)

 if plasmid_transfer_count:

 plasmid_transfer.append(length)

 else:

 plasmid_transfer_not.append(length)

 if toxin_count:

 toxin.append(length)

 else:

 toxin_not.append(length)

 if dna_maint_count:

 dna_maint.append(length)

95

 else:

 dna_maint_not.append(length)

 if mob_gen_elem_count:

 mob_gen_elem.append(length)

 else:

 mob_gen_elem_not.append(length)

 if hypo_genes_count:

 hypo_genes.append(length)

 else:

 hypo_genes_not.append(length)

 if other_count:

 other.append(length)

 else:

 other_not.append(length)

 # for each of the arrays, calc mean & st. dev., write to file

 # calc

 anti_microb_resist_mean_str =

getGroupStructureMeanStr(anti_microb_resist)

 anti_microb_resist_stdev_str =

getGroupStructureStDevStr(anti_microb_resist)

 anti_microb_resist_not_mean_str =

getGroupStructureMeanStr(anti_microb_resist_not)

 anti_microb_resist_not_stdev_str =

getGroupStructureStDevStr(anti_microb_resist_not)

 beta_lact_mean_str = getGroupStructureMeanStr(beta_lact)

 beta_lact_stdev_str = getGroupStructureStDevStr(beta_lact)

 beta_lact_not_mean_str = getGroupStructureMeanStr(beta_lact_not)

 beta_lact_not_stdev_str = getGroupStructureStDevStr(beta_lact_not)

 plasmid_transfer_mean_str = getGroupStructureMeanStr(plasmid_transfer)

 plasmid_transfer_stdev_str =

getGroupStructureStDevStr(plasmid_transfer)

 plasmid_transfer_not_mean_str =

getGroupStructureMeanStr(plasmid_transfer_not)

 plasmid_transfer_not_stdev_str =

getGroupStructureStDevStr(plasmid_transfer_not)

 toxin_mean_str = getGroupStructureMeanStr(toxin)

 toxin_stdev_str = getGroupStructureStDevStr(toxin)

 toxin_not_mean_str = getGroupStructureMeanStr(toxin_not)

 toxin_not_stdev_str = getGroupStructureStDevStr(toxin_not)

 dna_maint_mean_str = getGroupStructureMeanStr(dna_maint)

 dna_maint_stdev_str = getGroupStructureStDevStr(dna_maint)

 dna_maint_not_mean_str = getGroupStructureMeanStr(dna_maint_not)

 dna_maint_not_stdev_str = getGroupStructureStDevStr(dna_maint_not)

 mob_gen_elem_mean_str = getGroupStructureMeanStr(mob_gen_elem)

 mob_gen_elem_stdev_str = getGroupStructureStDevStr(mob_gen_elem)

 mob_gen_elem_not_mean_str = getGroupStructureMeanStr(mob_gen_elem_not)

 mob_gen_elem_not_stdev_str =

getGroupStructureStDevStr(mob_gen_elem_not)

 hypo_genes_mean_str = getGroupStructureMeanStr(hypo_genes)

 hypo_genes_stdev_str = getGroupStructureStDevStr(hypo_genes)

 hypo_genes_not_mean_str = getGroupStructureMeanStr(hypo_genes_not)

 hypo_genes_not_stdev_str = getGroupStructureStDevStr(hypo_genes_not)

 other_mean_str = getGroupStructureMeanStr(other)

 other_stdev_str = getGroupStructureStDevStr(other)

 other_not_mean_str = getGroupStructureMeanStr(other_not)

96

 other_not_stdev_str = getGroupStructureStDevStr(other_not)

 # write to file

 ofd.write("Key Words Structure:\n")

 # create columned output

 output = []

 sizes = []

 header1 = ("Key", "Plasmid", "Size", "Size")

 header2 = ("Word", "Count", "Mean", "St. Dev.")

 output.append(header1)

 output.append(header2)

 output.append(("anti_microb_resist", str(len(anti_microb_resist)),

anti_microb_resist_mean_str, anti_microb_resist_stdev_str))

 output.append(("anti_microb_resist_not",

str(len(anti_microb_resist_not)), anti_microb_resist_not_mean_str,

anti_microb_resist_not_stdev_str))

 output.append(("beta_lact", str(len(beta_lact)), beta_lact_mean_str,

beta_lact_stdev_str))

 output.append(("beta_lact_not", str(len(beta_lact_not)),

beta_lact_not_mean_str, beta_lact_not_stdev_str))

 output.append(("plasmid_transfer", str(len(plasmid_transfer)),

plasmid_transfer_mean_str, plasmid_transfer_stdev_str))

 output.append(("plasmid_transfer_not",

str(len(plasmid_transfer_not)), plasmid_transfer_not_mean_str,

plasmid_transfer_not_stdev_str))

 output.append(("toxin", str(len(toxin)), toxin_mean_str,

toxin_stdev_str))

 output.append(("toxin_not", str(len(toxin_not)), toxin_not_mean_str,

toxin_not_stdev_str))

 output.append(("dna_maint", str(len(dna_maint)), dna_maint_mean_str,

dna_maint_stdev_str))

 output.append(("dna_maint_not", str(len(dna_maint_not)),

dna_maint_not_mean_str, dna_maint_not_stdev_str))

 output.append(("mob_gen_elem", str(len(mob_gen_elem)),

mob_gen_elem_mean_str, mob_gen_elem_stdev_str))

 output.append(("mob_gen_elem_not", str(len(mob_gen_elem_not)),

mob_gen_elem_not_mean_str, mob_gen_elem_not_stdev_str))

 output.append(("hypo_genes", str(len(hypo_genes)),

hypo_genes_mean_str, hypo_genes_stdev_str))

 output.append(("hypo_genes_not", str(len(hypo_genes_not)),

hypo_genes_not_mean_str, hypo_genes_not_stdev_str))

 output.append(("other", str(len(other)), other_mean_str,

other_stdev_str))

 output.append(("other_not", str(len(other_not)), other_not_mean_str,

other_not_stdev_str))

 for o in output:

 sizes.append(tuple(map(len, o)))

 c0 = 0

 c1 = 0

 c2 = 0

 c3 = 0

 for size in sizes:

97

 if size[0] > c0:

 c0 = size[0]

 if size[1] > c1:

 c1 = size[1]

 if size[2] > c2:

 c2 = size[2]

 if size[3] > c3:

 c3 = size[3]

 # actually write to file

 for o,s in zip(output,sizes):

 ofd.write('\t')

 ofd.write(o[0] + ' ' * (c0 - s[0] + 3))

 ofd.write(o[1] + ' ' * (c1 - s[1] + 3))

 ofd.write(o[2] + ' ' * (c2 - s[2] + 3))

 ofd.write(o[3] + ' ' * (c3 - s[3] + 3))

 ofd.write('\n')

########

MAIN #

########

if __name__ == "__main__":

 import sys

 import statistics as stats

 ifn, ofn = handleArgs(sys.argv, sys.stderr, sys.exit)

 group_name = '.'.join(ifn.strip().split('/')[-1].split('.')[:-1])

 with open(ofn, 'w') as ofd:

 # write the groupname title to the output

 ofd.write(group_name + '\n' + '=' * len(group_name) + '\n')

 # parse the input file and extract necessary information

 with open(ifn, 'r') as ifd:

 # skip past header line

 ifd.readline()

 # set some handy vars

 total_number_of_plasmids = 0

 plasmid_lengths = []

 all_inc_groups = {}

 all_group_structure_fields = []

 # loop through each plasmid_record (line) in the input

file

 for plasmid_record in ifd:

 # increment the total num of plasmids (one

plasmid exists per line)

 total_number_of_plasmids += 1

 # split the record into its 28 separate

columns/fields

 fields =

98

plasmid_record.rstrip('\n').rstrip('"').lstrip('"').split("\",\"")

 plasmid_accession = fields[0].strip('"')

 plasmid_length = int(fields[1].strip('"'))

 inc_groups = fields[28].strip('"').split(',')

 group_structure_fields = tuple(map(lambda

field: int(field.strip('"')), (fields[1], fields[2], fields[4],

fields[10], fields[12], fields[15], fields[21], fields[23],

fields[25])))

 # capture length information

 plasmid_lengths.append(plasmid_length)

 # capture info about inc groups

 for inc_group in inc_groups:

 if inc_group not in all_inc_groups:

 all_inc_groups[inc_group] = []

 all_inc_groups[inc_group].append(plasmid_length)

 # capture info about group structure

 all_group_structure_fields.append(group_structure_fields)

 # write stuff to the output file

 # total number of plasmids

 ofd.write("Total # of Plasmids: " +

str(total_number_of_plasmids) + '\n')

 ofd.write('\n') # extra newline

 # inc groups structure

 writeIncGroupsStructure(ofd, all_inc_groups)

 ofd.write('\n') # extra newline

 # group plasmids size

 ofd.write("Plasmids Summary:\n")

 ofd.write("\t Min: " + str(min(plasmid_lengths)) + '\n')

 ofd.write("\t Max: " + str(max(plasmid_lengths)) + '\n')

 ofd.write("\t Median: " + str(stats.median(plasmid_lengths))

+ '\n')

 ofd.write("\t Mean: " +

"{0:.3f}".format(stats.mean(plasmid_lengths)) + '\n')

 ofd.write("\tSt. Dev.: " +

"{0:.3f}\n".format(stats.stdev(plasmid_lengths)) if

len(plasmid_lengths) > 1 else '0' + '\n')

 ofd.write('\n') # extra newline

 # group structure

 writeGroupStructure(ofd, all_group_structure_fields)

 ofd.write('\n') # extra newline

 # plasmid structure

 ofd.write("Plasmid Structure:\n")

 ofd.write("\tThis information is already reported in the CSV

file: " + ifn.split('/')[-1] + '\n')

 ofd.write('\n') # extra newline

99

APPENDIX C

TABLE 4: CR-plasmid accession numbers

CP008933 CP006661 CP018974 CP021534 CP021961 CP024836 CP026577 JX101693 KF732966

KX214669 CP006799 CP018977 CP021536 CP021962 CP024840 CP026584 JX104759 KF874496

KX214670 CP012902 CP018981 CP021546 CP022126 CP025006 CP026589 JX104760 KF874497

KX214671 CP012990 CP018989 CP021548 CP022574 CP025009 CP026590 JX193301 KF874498

KP873171 CP014757 CP018992 CP021682 CP022693 CP025010 EU855787 JX193302 KF874499

CP010881 CP015835 CP018999 CP021687 CP023488 CP025039 EU855788 JX283456 KF914891

CP025626 CP015991 CP019001 CP021692 CP023554 CP025141 FJ628167 JX397875 KF954759

KT362706 CP016035 CP019006 CP021699 CP023871 CP025144 GU585907 JX424614 KF954760

MF353156 CP016402 CP019010 CP021709 CP023895 CP025147 GU595196 JX430448 KF976405

AB616660 CP016403 CP019014 CP021716 CP023910 CP025148 HF955507 JX442975 KF977034

AB759690 CP016921 CP019017 CP021720 CP023914 CP025458 HG969995 JX461340 KF992018

AP012055 CP017937 CP019026 CP021734 CP023923 CP025463 HG969996 JX988621 KF998104

AP012208 CP017981 CP019053 CP021738 CP023926 CP025467 HG969997 KC311431 KJ146687

AP013064 CP018366 CP019073 CP021743 CP023928 CP025468 HG969998 KC405622 KJ146688

AP018137 CP018426 CP019774 CP021750 CP023938 CP025517 HG969999 KC788405 KJ146689

AP018138 CP018432 CP020049 CP021754 CP023942 CP025710 HQ451074 KC845573 KJ187751

AP018139 CP018436 CP020056 CP021756 CP023948 CP025948 HQ589350 KC887916 KJ187752

AP018141 CP018668 CP020059 CP021759 CP023952 CP025952 JF503991 KC887917 KJ413946

AP018142 CP018669 CP020066 CP021778 CP023959 CP025964 JF714412 KC958437 KJ440075

AP018143 CP018675 CP020068 CP021835 CP024039 CP025965 JF785549 KC999035 KJ440076

AP018144 CP018817 CP020075 CP021860 CP024192 CP026175 JN157804 KF017315 KJ577613

AP018146 CP018884 CP020110 CP021861 CP024522 CP026179 JN233705 KF182187 KJ588779

AP018147 CP018887 CP020119 CP021881 CP024529 CP026201 JN420336 KF220657 KJ653815

AP018454 CP018945 CP020848 CP021899 CP024557 CP026204 JN687470 KF220658 KJ721789

AP018455 CP018949 CP020854 CP021900 CP024805 CP026205 JN861072 KF250428 KJ721790

CP003224 CP018956 CP020902 CP021936 CP024818 CP026394 JQ349086 KF295829 KJ802404

CP003997 CP018959 CP021177 CP021941 CP024825 CP026395 JQ364967 KF534788 KJ802405

CP004366 CP018963 CP021206 CP021947 CP024828 CP026401 JQ824049 KF623109 KJ812998

CP004367 CP018968 CP021210 CP021952 CP024833 CP026474 JQ837276 KF701335 KJ933392

MF344563 MF042356 KY882285 KY093014 KX711880 KU862632 KU167609 KR559890 KJ958926

MF344564 MF042357 KY887590 KY130431 KX756453 KU886034 KU295131 KR822247 KJ958927

MF344565 MF042358 KY887591 KY270849 KX783439 KU934011 KU295132 KT148595 KM400601

MF344566 MF042359 KY887594 KY270850 KX783440 KX023261 KU295133 KT185451 KM877517

MF344567 MF133495 KY887595 KY271403 KX783441 KX062091 KU295134 KT345946 KM977631

MF344574 MF150120 KY887596 KY271413 KX786648 KX094555 KU295135 KT345947 KP125892

MF511773 MF156708 KY930324 KY271414 KX833071 KX154765 KU295136 KT725788 KP345882

MF547507 MF156709 KY930325 KY271415 KX868553 KX236178 KU302800 KT725789 KP776609

MF547508 MF156711 KY978631 KY288024 KX881941 KX276209 KU302801 KT982613 KP868646

MF547509 MF156713 LT009688 KY399972 KX928750 KX348144 KU302802 KT982615 KP868647

MF547510 MF168402 LT009689 KY399973 KX928751 KX348145 KU314941 KT982616 KP893385

MF547511 MF168403 LT216438 KY399974 KX928752 KX348146 KU318419 KT982618 KP900015

MF582638 MF168404 LT838197 KY399975 KX960109 KX397572 KU318421 KT989376 KP987218

MF679143 MF168405 MF042350 KY435936 KX960110 KX447767 KU647721 KT989598 KR059864

MF679147 MF168406 MF042351 KY463220 KY020154 KX470734 KU665641 KU051707 KR091915

MG049738 MF178139 MF042352 KY798505 KY041843 KX507346 KU665642 KU051708 KR351290

MG053313 MF344561 MF042353 KY798506 KY062156 KX674681 KU726588 KU051709 KR559888

MG271839 MF344562 MF042354 KY798507 KY093013 KX683284 KU761328 KU167608 KR559889

MG516907 MG516908 MG516909 MG516910 MG557998 MG557999 AM778842 CP011370 KC189475

KC543497 KC609322 KC609323 KP873172 KP975076 KU578314 KX169264 KX711879 KX889311

KY296095 KY494864 KY630469 MF168945 MF344578

Accession #

100

APPENDIX D

TABLE 5: Percent of plasmids belonging to each incompatibility group.

Percent of plasmids Inc Group Percent of plasmids Inc Group

0.22% IncA/C 13.68% IncN

11.88% IncA/C2 0.67% IncN2

0.22% IncB/O/K/Z 0.67% IncN3

0.67% Col 0.22% IncP1

1.35% Col440I 0.90% IncP6

1.79% ColRNAI 1.35% IncQ1

4.71% IncFIA 0.22% IncQ2

12.78% IncFIB 8.97% IncR

19.73% IncFII 2.24% repA

2.24% IncHI1B 1.79% IncU

0.45% IncHI2 13.23% IncX3

0.45% IncHI2A 0.22% IncX4

0.22% IncI1 0.90% IncX5

0.90% IncI2 0.67% IncX6

2.69% IncL/M 0.90% IncY

 7.62% Unclassified

(Note: Total is greater than 100% because some plasmids have multiple incompatibility

groups)

101

APPENDIX E

TABLE 6: Relative abundance of incompatibility groups among carbapenemase-carrying

plasmids.

Supplementary Table 4: Relative abundance of incompatibility groups among carbapenemase-carrying plasmids.

Carbapenemase

Family

Incompatibility Groups (Percent of plasmids)

IncA/C IncA/C2 IncB/O/K/Z Col Col440I ColRNAI IncFIA IncFIB IncFII IncHI1B IncHI2

KPC 0.0% 4.0% 0.0% 0.0% 2.5% 4.0% 5.6% 18.2% 20.2% 0.0% 0.0%

NDM 0.0% 17.9% 0.6% 0.0% 0.0% 0.0% 6.0% 10.7% 28.0% 6.0% 0.0%

IMP 0.0% 22.4% 0.0% 0.0% 0.0% 0.0% 0.0% 2.0% 2.0% 0.0% 4.1%

VIM 3.2% 16.1% 0.0% 9.7% 3.2% 0.0% 0.0% 6.5% 3.2% 0.0% 0.0%

IncHI2A IncI1 IncI2 IncL/M IncN IncN2 IncN3 IncP1 IncP6 IncQ1 IncQ2

KPC 0.0% 0.0% 2.0% 2.5% 17.7% 0.0% 1.0% 0.5% 1.5% 1.5% 0.5%

NDM 0.0% 0.0% 0.0% 1.2% 3.0% 1.8% 0.0% 0.0% 0.0% 1.8% 0.0%

IMP 4.1% 2.0% 0.0% 10.2% 34.7% 0.0% 2.0% 0.0% 0.0% 0.0% 0.0%

VIM 0.0% 0.0% 0.0% 0.0% 12.9% 0.0% 0.0% 0.0% 3.2% 0.0% 0.0%

IncR repA IncU IncX3 IncX4 IncX5 IncX6 IncY NA

KPC 13.6% 5.1% 2.5% 5.6% 0.0% 1.5% 1.5% 1.5% 5.6%

NDM 4.8% 0.0% 0.0% 29.2% 0.6% 0.0% 0.0% 0.6% 2.4%

IMP 2.0% 0.0% 6.1% 0.0% 0.0% 2.0% 0.0% 2.0% 16.3%

VIM 12.9% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 35.5%

Note: Totals are greater than 100% because some plasmids carry more than one replicon type.

