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ABSTRACT 

The Diversity Found Among Carbapenem-Resistant Bacteria 
 

Galen Edward Card 
Department of Microbiology and Molecular Biology, BYU 

Master of Science 
 

This work will look at two factors that add to the diversity of carbapenem resistant 
bacteria. First, it focuses on the diversity of carbapenemase resistance plasmids. 446 plasmids 
were characterized by size, gene content and replicon groups. We identified that on average, over 
30% of the encoded proteins on each plasmid have an unknown function. Plasmid sizes ranged 
from 1.6kb to 500kb, with an average of around 100kb and median of 80kb. Additionally, six 
replicon groups account for 80% of all the carbapenemase resistance plasmids. We also highlight 
the lack of data available for carbapenemase carrying plasmids from bacterial genera other than 
Escherichia and Klebsiella, and plasmids that carry the New Delhi metallo-β- lactamase or the 
Verona-integron encoded metallo-β-lactamase. 

 
Second, we characterized the β-lactamase diversity of a single carbapenemase resistant 

Klebsiella pneumoniae. This isolate encodes six distinct β-lactamases, all of which are 
functional, and three of which are redundant. Additionally, we determined that the CTX-M-15 
cephalosporinase imparts a greater fitness when grown in aztreonam (a monobactam) than 
ceftazidime (a cephalosporin). Finally, we show that individually, these β-lactamases do not 
account for the elevated levels of resistance seen in the parent strain, indicating that the passive 
resistance mechanisms (i.e. efflux pumps, altered membrane porins) may play a larger role than 
originally thought. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Keywords: Antimicrobial resistance, β-lactamase, carbapenem resistant Enterobacteriaceae, 
Klebsiella pneumoniae, Extended-spectrum β-lactamase, ESBL, plasmid, horizontal gene 
transfer  
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INTRODUCTION 

The Rise of Antimicrobial Resistance 

Since the dawn of the antimicrobial era in 1937 with the introduction of sulfonamides, 

and the subsequent resistance of microbes arising in 1942, we have been in an arms race against 

rapidly evolving bacteria (1). Like clockwork, with each implementation of a new antimicrobial, 

resistance to that antimicrobial has appeared shortly thereafter (2). During the past several 

decades we have seen the rapid emergence of multi-drug resistant (MDR) and pan-resistant 

bacteria (3). With limited treatment options for these MDR organisms, and no treatments for 

pan-resistant organisms, we are facing what is being called the post-antimicrobial era, a time in 

which a seemingly routine infection presents the threat of death. Indeed, this threat is real with 

fatality rates of certain MDR bacteria reaching 50% (4). Many factors play a part in the rise and 

dissemination of antimicrobial resistance. The most important are the use of antimicrobials in 

agriculture, the clinical misuse of antimicrobials, and the facile spread of resistance within a 

bacterial population.  

The use of antimicrobials in agriculture – What started as a prophylactic measure to 

prevent loss of livestock and enhance weight gain of food animals has led to a burgeoning 

healthcare crisis (5). Furthermore, it has been predicted that antibiotic use in agriculture will 

increase by 67% from 2010 through 2030, despite the restrictions that have been placed on their 

use in many countries (6). When antimicrobials are mixed in livestock feed, they quickly become 

diluted as rain and runoff mixes with the feed. The diluted antimicrobial then reaches a sub-

inhibitory concentration that doesn’t kill some bacteria. Instead, it creates a selective pressure 

that kills a majority, allowing the few bacteria that can cope with the diluted antimicrobials 

propagate (7-10). This leads to rapid mutation and evolution as the bacteria improve their 



 

2 
 

resistance mechanisms to the antimicrobials. This then contributes to the human healthcare crisis 

as the zoonoses found on farms enter the human population through contaminated food products 

(11-13). Studies have shown that many species within the Enterobacteriaceae family that are 

found on farms have also been found on hospital surfaces and isolated from infected patients 

(14-17), giving credence to the threat posed to human health from the use of antimicrobials in 

agriculture.  

The clinical misuse of antimicrobials – The misuse of antimicrobials in a clinical setting 

has two parts: the prescription of antimicrobials for a non-susceptible infection and prescribing a 

prolonged antimicrobial regimen (2, 18-20). Since antibiotics have no effect on viral infections, 

using them to treat viral infections only provides an opportunity to select for resistant isolates 

and should not be done. Second, the World Health Organization has shown through current 

research that prolonged courses of antimicrobials may increase the rates of antimicrobial 

resistance (2, 21). This persistent exposure to antimicrobials provides an environment wherein 

the bacteria have time to mutate and develop resistance to the antimicrobial. Proper antimicrobial 

stewardship in the healthcare setting is essential if we are to slow the spread of resistance. 

Spread of antimicrobial resistance within a bacterial population – The third, and perhaps 

most important, factor that contributes to the rise and dissemination of antimicrobial resistance is 

the facile transfer of antimicrobial resistance genes within a bacterial community. Many of the 

antimicrobial resistance genes are found within mobile genetic elements such as plasmids and 

transposons. Transposons, in their simplest form, are stretches of DNA that encode machinery 

that can replicate, excise, and integrate these regions into other DNA sequences (22). Throughout 

their “lifespan”, transposons can acquire genes from their host chromosome and transfer them to 

plasmids (2, 18, 23-25). These genes can then be passed within a bacterial community as the 
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plasmids are shared. The opposite can also occur. Resistance genes can be transferred from a 

plasmid to the host’s chromosome. This is a permanent event. Once the resistance gene has 

entered the chromosome, there is no straightforward way to eliminate the gene. On the other 

hand, plasmids are more transient, and there are methods that can ‘cure’ bacterial strains of 

plasmids (26-28). Figure 1 shows a possibility of how a transposon may acquire and transfer 

resistance genes as it inserts and removes itself from the area surrounding the gene.   

As mentioned, transposons can, and often do, integrate into plasmids. A plasmid is a circular 

piece of extra-chromosomal DNA that is maintained and replicated along with the chromosome. 

Ranging in size from less than 1kb to well over 200kb, they have the capability of carrying 

numerous genes. These genes can fall into several categories ranging from basic housekeeping or 

metabolism genes, to critical virulence genes, like the toxins responsible for the lethality of 

Bacillus anthracis. One unique feature of some plasmids is that they also carry a cluster of tra 

genes, or transfer genes. These genes provide a means for the plasmid to pass promiscuously 

between strains of bacteria via horizontal transfer (2, 24). Plasmids can also carry genes that 

cause the host bacterium to die if it does not retain the plasmid (29-32). These ‘plasmid addiction 

systems’ function using a toxin/antitoxin strategy. Encoded on the plasmid is a toxin, and its 

corresponding antitoxin. Of these two protein products, the toxin component is more stable. If 

the plasmid is lost from the host strain, the levels of antitoxin within the cytoplasm will decrease 

as it degrades quicker than the toxin. This in turn leaves the toxin free to exert its lethal effects 

within the cell. All these mechanisms contribute to the facile spread and maintenance of 

antimicrobial resistance among bacterial populations.  
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FIGURE 1: Acquisition of antibiotic resistance gene within a transposable element.  
1) Wild type DNA receives transposon. 2) A transposition event occurs, leaving a scar upstream 
of an antibiotic resistance gene as the transposon jumps downstream. 3) A second transposition 
event leads to two possible scenarios where the antibiotic resistance gene is transferred to 
another mobile genetic element such as a plasmid. Other recombination events are possible; 
however, they do not transfer the antibiotic resistance to the new DNA. 
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β-lactams and Their Hydrolases 

The most widely known class of antibiotics and one for which resistance has become a 

grave issue due to the reasons mentioned, are the β-lactams. So named due to the presence of a 

β-lactam ring as the central chemical backbone, these antibiotics have a four-membered ring, as 

depicted in Figure 2. Table 1 lists the four classes of β-lactams and provides examples of each. 

The first β-lactam antibiotic is also the original antibiotic discovered, penicillin. Penicillin and its 

derivatives, along with all β-lactams employ the same mode of action to kill bacteria. Known as 

cell wall inhibitors, β-lactams bind to and inactivate the penicillin-binding protein. This protein, 

so named for penicillin’s action against it, is responsible for covalently cross-linking 

peptidoglycan during bacterial cell wall synthesis. Without cross-linked peptidoglycan, cell 

morphology becomes more elongated, cell structure is fragile, and bacterial lysis occurs in most 

environments as water rushes into the cell to balance osmolarity. However, as with all 

antibiotics, bacterial resistance to β-lactams quickly arose after their discovery.  

This resistance is mediated by a β-lactam specific hydrolase, or a β-lactamase, of which 

there are several types and various classification schemes. The simplest classification was 

implemented by Ambler in 1980, in which β-lactamases were grouped based on protein sequence 

(33). His scheme divides the β-lactamases into four classes, Ambler Classes A through D. 

Classes A, C, and D are serine-mediated β-lactamases (34). The class B β-lactamases are 

metallo-β-lactamases (MBLs) and require a zinc ion to assist in the hydrolysis reaction (35).  

Figure 3 (adapted from original (36)) depicts how a serine β-lactamase catalyzes the 

hydrolysis of a β-lactam. First, a serine residue of the β-lactamase will attack the carbonyl, 

pushing electrons of the double bond onto the oxygen (Step 1). This leaves a highly unstable  
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TABLE 1: The four classes of β-lactam antibiotics and examples of each. 

β-lactam Antimicrobials 

Penicillins 

Penicillin Penicillin G 
Penicillin V 

Aminopenicillin 
Ampicillin 
Amoxicillin 

Carboxypenicillin 
Carbenicillin 
Ticarcillin 

Penicillinase-
resistant penicillin 

Methicillin 
Nafcillin 
Oxacillin 
Cloxacillin 

Monobactams Aztreonam 

Cephalosporins 

1st Generation 
Cephalothin 
Cephalexin 
Cefazolin 

2nd Generation 

Cefamandole 
Cefaclor 
Cefuroxime 
Cefoxitin 
Cefotetan 

3rd Generation 

Ceftriaxone 
Ceftazidime 
Cefotaxime 
Ceftozominem 
Ceftibuten 

4th Generation Cefepime 
Cefpirome 

Carbapenems 

Imipenem 
Doripenem 
Ertapenem 
Meropenem 
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FIGURE 2: The four classes of β-lactam antibiotics.  
The core β-lactam is highlighted in red. Each derivative within each class will deviate in the R 
groups. When hydrolyzed, the bond between the nitrogen and the carbonyl carbon is cleaved. A 
few examples are given. 
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negatively charged oxygen. To reduce this strain, the electrons collapse back down, and orbital 

resonance dissipates the energy across the molecule, opening the β-lactam ring in the process 

(Step 2). Then a two-step proton transfer from water to the serine residue of the β-lactamase 

resolves the hydrolysis reaction (Steps 3-5).  

The most commonly encountered β-lactamases are the class A β-lactamases TEM (named 

for the patient in which it was first identified, Temoniera) and SHV (sulfhydryl variable) types, 

with 90% of the ampicillin resistance encountered in E. coli mediated by TEM-1 (18). And due 

to their widespread prevalence, β-lactamase inhibitors have been developed. These inhibitors do 

not affect the activity of penicillin binding protein, and administration of these in conjunction 

with a β-lactam can kill the bacteria. However, these inhibitors are only effective against the 

serine mediated β-lactamases, exhibiting no effect on the class B MBLs due to their use of zinc 

ions in the hydrolysis reaction (37, 38). 

Extended-Spectrum β-lactamases – One cause of multi-drug resistant bacteria is due to 

the emergence of extended-spectrum β-lactamases (ESBLs). Many of these ESBLs are from the 

Ambler Class A and are derivatives of TEM and SHV type β-lactamases (2, 33). More 

specifically, ESBLs are classified as oxyimino-cephalosporinases (2, 23), and are able to 

hydrolyze penicillin as well as cephalosporins such as ceftazidime and cefepime (Table 1). Many 

of these ESBLs have arisen due to only a few point mutations in either TEM or SHV β-

lactamases (2, 39, 40). These point mutations alter the active site of the β-lactamase enough to 

accept a diverse range of β-lactams. However, they have also been shown to increase their 

susceptibility to β-lactamase inhibitors such as clavulanate; but of course, additional mutations 

can make them resistant (2, 38, 41). Figure 4 shows an example of the mutations that lead from 

TEM-1 to several ESBL TEM variants (2).  
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FIGURE 3: β-lactamase mediated hydrolysis of a cephalosporin.  
A serine residue of the β-lactamase will attack the carbonyl, pushing electrons of the double 
bond onto the oxygen (Step 1). This leaves a highly unstable negatively charged oxygen. To 
reduce this strain, the electrons collapse back down, and orbital resonance dissipates the energy 
across the molecule, opening the β-lactam ring in the process (Step 2). Then, a two-step proton 
transfer from water to the serine residue of the β-lactamase resolves the hydrolysis reaction 
(Steps 3-5). [36] (Adapted from original.) 
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FIGURE 4: ESBL variants of TEM-1.  
The common mutations among ESBL variants of TEM-1 are listed. The amino acid numbering is 
according the conventions set forth by Ambler. *TEM-2 is not an ESBL, but several ESBLs are 
derivates of TEM-2. **TEM-50 and TEM-68 are resistant to β-lactamase inhibitors. [2]  
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Carbapenems and Their Hydrolases 

In another effort to avoid the havoc wrought by β-lactamases on the efficacy of these 

antibiotics, an additional class of β-lactams (carbapenems) was discovered. Because resistance to 

carbapenems is very infrequent, they are used as a last resort for treating infections to avoid the 

development of resistance. However, resistance to carbapenems developed anyway. Currently 

there are about nine diverse types of carbapenemases falling into Ambler Classes A, B, and D 

(42, 43). Each of those nine types have several variations. We will focus on four clinically 

relevant types found in Enterobacteriaceae, the Class A serine-mediated Klebsiella pneumoniae 

carbapenemase (KPC), and the three Class B metallo-β-lactamases (MBL): The New Delhi MBL 

(NDM), the Verona integron-encoded MBL (VIM), and the Imipenem resistant Pseudomonas-

type MBL (IMP).  

Klebsiella pneumoniae carbapenemase – First identified in 2001 (44), KPC was not the 

first carbapenemase, as several MBLs that could hydrolyze carbapenem had already been 

identified in Japan in the 1990’s (45). This initial variant (KPC-1) provided resistance to many of 

the β-lactams, including all the cephalosporins and aztreonam, and was also resistant to the β-

lactamase inhibitors clavulanic acid and tazobactam (44). A recent review indicates that there are 

currently 12 reported variants of the KPC enzyme (46). While KPC may not be the first 

carbapenemase identified, it is the most common in the United States. As of February 27, 2018 

the Centers for Disease Control and Prevention (CDC) report that KPC positive infections have 

been reported from all 50 states and the District of Columbia (47). KPC enzymes have also been 

reported from many other nations and in numerous gram-negative species, including 

Acinetobacter baumanii, Pseudomonas aeruginosa, and nearly all the Enterobacteriaceae (48-

50).  



 

12 
 

New-Delhi metallo-β-lactamase – Originally isolated from India in 2008, there are 

currently more than ten reported variants of NDM (51). It is present in 34 states (47) and 

multiple countries including the United Kingdom, Pakistan, India, Sweden and others (50). The 

NDM carbapenemases have shown greater affinities for the penicillins, cephalosporins, and a 

few of the carbapenems than the VIM and IMP carbapenemases (43). Additionally, a minimum 

inhibitory concentration assay when NDM is cloned into susceptible strains show it conferring 

high levels of resistance to penicillins (>256 μg/mL), cephalosporins (>256 μg/mL), the 

monobactam aztreonam (>24 μg/mL), and all of the carbapenems (>16 μg/mL) (43), but other 

reports indicate that NDM cannot hydrolyze aztreonam and, as a MBL, it is resistant to β-

lactamase inhibitors (52). 

Verona integron-encoded metallo-β-lactamase – VIM has 14 reported variants with 

amino acid content varying up to 10% (51). VIM originated from Pseudomonas aeruginosa in 

the Mediterranean in 1997, but quickly spread into Enterobacteriaceae and proceeded to spread 

globally. Reports indicate that VIM can hydrolyze all β-lactams except monobactams and, as an 

MBL, it is resistant to β-lactamase inhibitors like clavulanate as tazobactam (53). Like the other 

carbapenemases, plasmids are the primary mechanism for horizontal gene transfer of this 

carbapenemase. According to the CDC, only 11 states have reported VIM positive infections 

(47). 

Imipenem resistant Pseudomonas metallo-β-lactamase – IMP shares many of the same 

characteristics as VIM, but the amino acid content between the two diverges by 70% (51). IMP 

also represents the most diverse type of carbapenemase with 18 variants reported (51). Isolated 

in 1991 in Japan from Pseudomonas, it is the earliest carbapenemase discovered of the four, and 

is resistant to the inhibitor clavulanic acid (54). Currently, IMP has been found in many of the 
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enteric organisms, including Serratia, Providencia, and Klebsiella. As of February 2018, 13 

states have reported IMP positive infections (47). As with many of the other carbapenemases, 

IMP has the ability to hydrolyze many of the β-lactams, but it cannot hydrolyze the 

monobactams (55). 

Summary 

While it is evident that much has been reported on the carbapenemases themselves, there 

is a distinct lack of published papers characterizing the diversity of plasmids that carry one of 

these four carbapenemases. Additionally, many of the reviews cited here mention that these 

carbapenemase-resistance plasmids carry multiple β-lactamases, but the relationship and 

interplay between the β-lactamases on a single plasmid is not well understood. The following 

two chapters will clarify these two points. 
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CHAPTER 1 

Characterization of Carbapenemase-Resistance Plasmids 

Galen E. Card, Brandon D. Pickett, Perry G. Ridge, Richard A. Robison 

ABSTRACT 

Carbapenem-resistant bacteria have quickly become a critical concern in nosocomial 

infections. In treating these infections, a rapid diagnosis is crucial. Current practices may take up 

to 76 hours, by which time the infection may become systemic, and the mortality rate is near 

50%. To aid in carbapenemase understanding and detection, this report characterizes the gene 

content and replicon types of 446 carbapenemase-carrying plasmids available in GenBank and 

identifies the six most prevalent replicon types among these plasmids. The importance of this 

work is twofold: First, there is no published work that characterizes the plasmids that carry some 

of the most threatening antibiotic resistance genes, the carbapenemases. Having this information 

available can aid in knowing where efforts need to be placed to complete our understanding of 

these plasmids. Second, it highlights challenges that must be overcome if we are to adequately 

diagnose and restrict the spread of these plasmids. 

Key words: Plasmid, Antimicrobial resistance, Carbapenemase, Enterobacteriaceae 

BACKGROUND 

Nosocomial infections have quickly become a significant cause of mortality. In 2002, the 

US Centers for Disease Control and Prevention estimated that the national mortality rate due to 

hospital acquired infections was 5.8% (56). In 2011, that rate increased to 10.4% (57). While 

these same reports show that the chance of acquiring an infection at the hospital has decreased, 

the infections are becoming more lethal.  
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One significant reason for this increase in mortality is the acquisition of antibiotic 

resistance in bacterial populations (25). Bacterial strains such as the carbapenem resistant 

Enterobacteriaceae (CREs), and multi-drug resistant Pseudomonas aeruginosa present 

diagnostic challenges which in turn lead to poor prognoses. Treatment of these bacterial 

infections usually begins with the administration of standard antibiotic regimens. The 

ineffectiveness of the initial treatment is usually apparent within 24-48 hours. At this time, the 

physician needs to reevaluate, order additional antibiotic susceptibility tests, and administer a 

more advanced antibiotic regimen. This new treatment may include carbapenem antibiotics. For 

resistant Enterobacteriaceae and Pseudomonas, this is an additional, ineffective 24-48-hour 

period before it is apparent that the patient’s condition is not improving. At this time, about 76 

hours after initial diagnosis, the infection may have become systemic. Once a CRE infection has 

become systemic, the mortality rate is near 50% (58). 

Antibacterial resistance is usually conferred to these organisms through mobile genetic 

elements, predominately extra-chromosomal DNA called plasmids (25). Plasmids often carry the 

molecular machinery to replicate themselves. This machinery allows for the transfer of the 

plasmid between different bacterial strains, and sometimes between any gram-negative bacteria 

(24). Furthermore, the antibiotic resistance genes on the plasmid can be located within a 

transposable element. This transposable element has the potential to replicate and integrate itself 

into new DNA sites, increasing the rate of spread (59). Additionally, many carbapenemase-

carrying plasmids are large; therefore, they often carry a toxin/antitoxin plasmid addiction 

system to prevent the bacterium from losing the plasmid (31). 

To assist in the identification and treatment of drug resistant infections, a better 

understanding of these carbapenemase carrying plasmids is needed. This brief report is the first 
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large-scale attempt to characterize the diversity of plasmids carrying carbapenemases from the 

Klebsiella pneumoniae-producing carbapenemase (KPC), the New-Delhi metallo-β-lactamase 

(NDM), the Verona-integron encoded metallo-β-lactamase (VIM), and the IMP-type metallo-β-

lactamase (IMP) families in seven clinically-relevant gram-negative bacteria (Enterobacter 

aerogenes, Enterobacter cloacae, Escherichia coli, Klebsiella pneumoniae, Pseudomonas 

aeruginosa, Providencia stuartii, and Serratia marcescens). 

METHODS 

Sequence acquisition  

532 complete plasmid sequences were obtained from GenBank by a discontiguous 

megablast nucleotide search (60) of four representative carbapenemase genes (IMP, KPC, NDM, 

VIM, Supplementary File 1) to allow for variations within the carbapenemase family. We 

employed the same Entrez strategy to filter for complete plasmids as used by Orlek et al. (61):  

“biomol_genomic[PROP] AND plasmid[filter] NOT complete cds[Title] NOT 

gene[Title] NOT genes[Title] NOT contig[Title] NOT scaffold[Title] NOT whole 

genome map[Title] NOT partial sequence[Title] NOT partial plasmid[Title] NOT 

locus[Title] NOT region[Title] NOT fragment[Title] NOT integron[Title] NOT 

transposon[Title] NOT insertion sequence[Title] NOT insertion element[Title] 

NOT phage[Title] NOT operon[Title]” 

This blast search was done separately for the seven organisms of interest: Enterobacter 

aerogenes, Enterobacter cloacae, Escherichia coli, Klebsiella pneumoniae, Pseudomonas 

aeruginosa, Providencia stuartii, and Serratia marcescens. GenBank files were downloaded for 

each blast alignment that scored >80% identity and query coverage. These sequences were 

retrieved on 5 March 2018. 
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Plasmid gene composition 

A list of key terms was derived by a manual survey of 10% of the acquired GenBank 

files, with cross reference to QuickGO, the European Bioinformatics Institute’s Gene Ontology 

reference database (62), to classify gene products into one of the following categories: (a) 

Antimicrobial resistance, with β-lactamases as a subset, (b) Plasmid transfer genes, (c) 

Toxin/antitoxin systems, (d) DNA maintenance, modifying, and repair proteins, (e) Mobile 

genetic elements, (f) Hypothetical genes, and (g) other. See Appendix A for the list of key terms. 

Incompatibility group/Replicon typing and plasmid characterization 

Plasmid incompatibility groups were determined by nucleotide BLAST (60, 63) against a 

local download of the PlasmidFinder v1.3 Enterobacteriaceae database (64) downloaded on 1 

March 2018. The incompatibility groups were assigned when matches met the following criteria: 

(a) >=80% identity, (b) >=60% subject coverage, and (c) within 1% of the percent identity of the 

highest match. Accordingly, more than one incompatibility group could be reported for any 

given plasmid. Further characterization was accomplished as follows: (a) extracting the CDS 

regions for each plasmid, (b) searching these CDS regions for key terms using regular 

expressions, and (c) combining the results for plasmid groups of interest (e.g., those that belong 

to Enterobacteriaceae). Please see Appendix B for a more detailed description. This 

characterization of each plasmid and of groups of plasmids was accomplished using custom 

scripts, made freely available at https://github.com/ridgelab/plasmidCharacterization. 

Statistical analyses 

Since plasmid length distributions are not normal (left-skewed), all statistical analyses 

were performed with the Mann-Whitney U-test or the Kruskal-Wallis ranked ANOVA where 
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appropriate, for non-parametric distributions. In an effort to be conservative, statistical 

significance was determined if P<0.0001. 

RESULTS 

Plasmid gene composition 

Due to the inherent inconsistencies of GenBank record annotations, our search method 

required discarding 86/532 accessions, leaving a total of 446 accessions in this analysis 

(accession numbers available in Appendix C). The criteria for keeping an accession in the 

analysis was if at least one and no more than six carbapenemase genes were identified on the 

plasmid. Of those 446 plasmids, 198 carry KPC, 168 carry NDM, 49 carry IMP, and 31 carry 

VIM. When divided by species, 7 belong to E. aerogenes, 33 to E. cloacae, 142 to E. coli, 235 to 

K. pneumoniae, 18 to P. aeruginosa, 3 to P. stuartii, and 8 to S. marcescens. The mean size of all 

carbapenemase-carrying plasmids was 104,222 bp, with a median length of 87,663 bp. The 

largest plasmid was 500,840 bp and the smallest, 1,635 bp. The average percent gene content of 

all plasmids was as follows: Antimicrobial resistance genes, 8.0%; Plasmid transfer genes, 

15.8%; DNA modification genes, 14.7%; Mobile genetic elements, 9.3%; Hypothetical genes, 

33.2%; Other/Metabolic genes, 18.9% (Figure 4A). The plasmids carried, on average, ~2 β-

lactamases, with 22.6% of the plasmids carrying three or more, and the most β-lactamases on a 

single plasmid being six. The carbapenemase copy number of these plasmids ranged from 1-3, 

with 97.98% of the plasmids harboring only one carbapenemase. 

When comparing certain plasmid features such as the presence or absence of plasmid 

addiction systems (236/446 or 52.9% of plasmids contain one), polymerase genes, or the family 

of carbapenemase on the plasmid to plasmid length, the average length of plasmids that carry 

addiction systems and polymerases are significantly larger than those that do not (Mann-Whitney  
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FIGURE 5: Characteristics of carbapenemase-encoding plasmids.   
A) Mean percent gene content of all plasmids. B) Relationship between characteristics of interest 
and plasmid length. C) Relationship between species and plasmid length. D) Relationship 
between incompatibility group and plasmid length, Significance is determined against the 
average size of all plasmids. B-C) Mann-Whitney U-test, D) Kruskal-Wallis ranked ANOVA. 
**** P<0.0001. All error bars indicate the 95% CI. 
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U-test, P<0.0001, Figure 4B) and the average length of plasmids that carry KPC are 

smaller than those that carry IMP (Kruskal-Wallis ranked ANOVA, P<0.05, Figure 4B). 

However, removing an unusually large IMP plasmid (>500 kb) from this dataset eliminated this 

significance. When observing average plasmid length by species, the only near-significant 

difference was observed between E. coli and K. pneumoniae, with the latter being larger 

(P=0.0018, Figure 4C). It is important to note that these two species also represent most of the 

plasmids analyzed (377/446 or 84.5%).  

Plasmid Incompatibility group/Replicon typing 

No incompatibility group presented itself as the most abundant; however, the following 

six groups constitute 80.27% of the plasmids: IncA/C (53/446 or 11.88%), IncFIB (57/446 or 

12.78%), IncFII (88/446 or 19.73%), IncN (61/446 or 13.68%), IncR (40/446 or 8.97%), and 

IncX3 (59/446 or 13.23%) (see Appendix D). Notably, 7.62% (34/446) of the plasmids could not 

be accurately typed using this method. 58 plasmids carried more than one replicon, and these 

were significantly larger than those that carried a single replicon (Mann-Whitney U-test 

P<0.0001, data not shown). Additionally, the following incompatibility groups were found to 

have an average length statistically different (Kruskal-Wallis ranked ANOVA, P<0.0001) than 

the average of all plasmids: IncA/C2, IncFIB, IncHI1B, and IncX3 (Figure 4D). Figure 5 shows 

the relative abundance of each incompatibility group among plasmids that carry the same family 

of carbapenemase (full dataset available, Appendix E). 

DISCUSSION 

One of the most notable findings of this study was the amount of hypothetical and 

uncharacterized genes found on these plasmids. It is possible that many of these genes may be 

phage derived. This is of great concern when considering phage therapy as an alternative to  
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FIGURE 6: Relative abundance of incompatibility groups among plasmids.  
Predominant incompatibility groups from each carbapenemase family: KPC, IncFIB 18.2%, 
IncFII 20.2%, IncN 17.7%, and IncR 13.6%; NDM, IncA/C2 17.9%, IncFIB 10.7%, IncFII 
28.0%, and IncX3 29.2%; IMP, IncA/C2 22.4%, IncL/M 10.2%, IncN 34.7%, and NA 16.3%; 
VIM, IncA/C2 16.1%, IncN 12.9%, IncR 12.9%, and NA 35.5%.  
Note: Percent totals are larger than 100% because some plasmids have multiple replicon types. 
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antibiotics. With potentially large regions of homology to phage genomes, a phage may 

incorporate into these plasmids through homologous recombination. Then, as the recombinant 

phage genome is packaged into the progeny phage, it may be possible that carbapenemases could 

be included, resulting in a replication-deficient phage vector capable of transferring a 

carbapenemase to a new bacterium through transduction. Before phage therapy of these 

organisms is seriously pursued, this concept should be investigated so that another mechanism of 

resistance transfer is not potentiated, as it has been shown for phage and other virulence genes 

(65). 

Additionally, for non-amplification, DNA-based identification of carbapenemase 

production, it is important to realize that the plasmids of interest are quite large. With their 

median length over 80 kb, plasmid isolation becomes difficult if necessary for the application, 

and many of the replicon types identified are for low-copy number plasmids. This also 

compounds the difficulties when detecting carbapenemase gene presence from a whole-blood 

specimen, where concentrations are around 10 CFU/mL. This results in approximately 10 copies 

of an ~800 bp gene that needs to be identified amongst the millions of base pairs in a milliliter of 

blood.  

Finally, this report has identified a few potential targets to slow the spread of 

carbapenemase plasmids. First, the antitoxin of the plasmid addiction system could be targeted 

(31). Doing so could prevent its binding with the toxin, resulting in the death of the host 

harboring the plasmid. Second, 90.4% (403/446) of the plasmids carry transfer genes to pass the 

plasmid between bacteria. Preventing pilus formation could dramatically reduce the spread of 

these plasmids. This method is currently being pursued by several groups and include strategies 

such as bacteriophage, colloidal clays, and antibodies (66). Finally, many of the plasmids carry a 
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plasmid partitioning system, responsible for ensuring that each daughter receives a copy of the 

plasmid. Targeting the motor or the partition-site binding protein of these systems, in 

conjunction with the toxin/antitoxin system, could dramatically reduce the spread and persistence 

of these plasmids in the hospital. These treatments could be used in a sterilization bath for 

medical equipment prior to traditional sterilization techniques.  

In conclusion, there is an abundance of data for the commonly encountered KPC and 

NDM carbapenemases from K. pneumoniae and E. coli, and several non-traditional avenues that 

may be pursued to help stop the spread of these resistance plasmids. However, this report is 

lacking data for many of the other species, and for the VIM and IMP carbapenemases. Therefore, 

a greater surveillance of the other species and carbapenemases is needed. P. aeruginosa is a 

bacterium where much more data is needed to accurately characterize the diversity of 

carbapenemase-carrying plasmids in this highly significant pathogen.  
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CHAPTER 2 

β-lactamase Diversity of a Single, Carbapenem- 

Resistant Enterobacteriaceae Isolate 

 
Galen E. Card, Joel S. Griffitts Ph.D., Joshua D. Urquiaga, Richard A. Robison Ph.D. 

 
ABSTRACT 

Antibiotic resistance is quickly becoming an urgent problem in health care. One class of 

antibiotics, the -lactams, has become severely compromised by emerging resistance. Resistance 

to last-resort β-lactams (the carbapenems) is quickly spreading across the globe. We investigated 

a carbapenem-resistant isolate of Klebsiella pneumoniae possessing six β-lactamase genes: 

CMY-6, CTX-M-15, NDM-4, OXA-1, SHV-11, and TEM-1. Each of these genes was 

functionally characterized in Escherichia coli using 5 β-lactam antibiotics (ampicillin, 

carbenicillin, ceftazidime, aztreonam, and imipenem). These tests revealed distinct as well as 

overlapping functions. Most notably, we observed that the carbapenemase NDM-4 provides a 

greater fitness advantage when grown in a cephalosporin than the cephalosporinase CTX-M-15. 

Also, we provide evidence that a sizable portion of the resistance that this strain of Klebsiella 

exhibits against aztreonam and imipenem is not enzyme mediated. 

INTRODUCTION 

To date, there are about 20 different derivates of β-lactam antibiotics approved for 

therapeutic use. Many of these antibiotics have been put on the World Health Organization’s 

‘WATCH GROUP’, due to the higher potential for resistance among bacterial populations [1]. β-

lactam antibiotics fall into four broad classes; penicillins, cephalosporins, monobactams, and 

carbapenems, each class representing several clinically important structural derivatives (Fig. 1). 

With such a wide variety of β-lactams available, most infections can be treated effectively with 
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these antibiotics. However, the mortality rate from nosocomial infections has been on the rise [2, 

3] due to the increased incidence of multi-drug resistant infections [4, 5].  

Many genera of the Enterobacteriaceae family have recently joined this class of multi-

drug resistant bacteria [6, 7] as they have acquired genes encoding extended-spectrum β-

lactamases (ESBL) and carbapenemases (carbapenem resistant Enterobacteriaceae, CRE). Septic 

infections with ESBL or CRE strains of Klebsiella pneumoniae have a mortality rate of near 50% 

[5].  

We have in our collection various CRE isolates possessing 1-6 β-lactamase (bla) genes. 

In this work, we characterize one of these isolates (Klebsiella pneumoniae strain 1300761), a 

CRE isolate from which we have identified six distinct bla genes: CMY-6, CTX-M-15, NDM-4, 

OXA-1, SHV-11 and TEM-1. Of these, five belong to the Ambler class A or C, designated as 

serine mediated hydrolases, with the exception being NDM, which belongs to class B, the 

metallo-β-lactamases which require zinc ions in the active site to catalyze the reaction [8]. Three 

of them are recognized as ESBLs (CMY-6, CTX-M-15, and NDM-4,) and three are narrow-

spectrum β-lactamases (OXA-1, SHV-11, and TEM-1). While hydrolytic activity of these bla 

genes is well documented through MICs, the in vivo fitness advantage provided by them by 

analyzing growth kinetics is not. In this study, we use a standardized susceptible E. coli strain to 

test resistance conferred by each of these bla genes, in response to challenge by five different β-

lactam antibiotics. Our observations shed light on the relative contributions of each gene and 

contribute to our understanding of how multi-gene β-lactamase arsenals may function along with 

alternative resistance mechanisms to provide strong β-lactam resistance in CRE strains. 

ΜΕTHODS 

Genome sequencing, assembly, and annotation 
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Genome sequencing and read processing 

A carbapenem resistant Klebsiella pneumoniae isolate was obtained from the Centers for 

Disease Control and Prevention (K. pneumoniae 1300761) and DNA was extracted following the 

recommended protocol for the MagNA Pure LC system (Roche Life Sciences). DNA was 

quantified by fluorometry and 2μg was submitted to the BYU DNA Sequencing Center for 

250bp paired end reads on an Illumina HiSeq 2500. Low complexity reads were filtered using 

PRINSEQ version 0.20.4 [9] and adapter sequence removal and quality trimming was 

accomplished using Trim Galore! version 0.4.3 with a phred score cutoff of 28. An additional 

10bp were trimmed from the 5’ end of each read. All reads shorter than 150 bp were then 

discarded and if their paired read was longer than 150 bp and passed the other quality checks, 

they were retained as a singleton for use in assembly. Read quality statistics were then assessed 

using FastQC version 0.11.4 [10]. 

Genome assembly and annotation 

The reads were assembled using the St. Petersburg Assembler (SPAdes) version 3.10.1 

[11]. K-mer values of 21, 33, 55, 77, 99, 129 were used for the assembly iterations. Assembly 

statistics were compiled using QUAST version 4.0 [12]. Gene annotation was undertaken using 

Prokka version 1.12 [13]. 

β-lactamase cloning 

TABLE 2 contains primer pairs used to introduce restriction sites, a synthetic ribosome 

binding site, and amplify the corresponding β-lactamases from K. pneumoniae 1300761. Each 

bla gene was individually cloned into pJG780 with XbaI/SalI restriction sites (plasmid sequence 

available in supplemental file 1) and transformed into NEB5-alpha (New England BioLabs), a 

DH5-alpha derivative, following the manufacturer’s provided protocol with a recovery 
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incubation of 90 minutes. The β-lactamase expression is under the control of a rhamnose-

inducible promoter. Each clone was then sequence verified using the following plasmid specific 

sequencing primer: CTGTCAGTAACGAGAAGGTCG. The resulting strains were named using 

the following convention: Host vector_bla (i.e. E. coli pJG780_CMY-6) and are referred to by 

the β-lactamase they produce (E. coli pJG780_CMY-6 is referred to as CMY-6) 

Growth curve analysis 

A single colony of the β-lactamase clones were grown in 5 ml of LB containing 30 

μg/mL of kanamycin to ensure plasmid retention for 12-18 hours. Then, 100 μL was inoculated 

in a 5 mL 1-hour subculture containing 30 μg/mL kanamycin and 0.3% rhamnose to induce β-

lactamase expression. Microtiter plates (96-well) were loaded with 190 μL of the selective media 

(30 μg/mL kanamycin, 0.3% rhamnose, appropriate β-lactamase) and inoculated with 10 μL of 

the 1-hour subculture. Preliminary results (data not shown) indicated that the β-lactamase clone 

growth curves should be performed at the following concentrations: ampicillin (16 μg/mL), 

carbenicillin (16 μg/mL), ceftazidime (8 μg/mL), aztreonam (8 μg/mL), and imipenem (2 

μg/mL). These concentrations are half of the concentration used to determine antibiotic 

resistance by the Clinical Laboratory Standards Institute (74). This is relevant since 

approximately 80 μL of media was lost to evaporation over the course of the growth curve. The 

plates were then incubated in a BioTek Synergy HT Microplate Reader at 37 ℃. OD600 readings 

were taken after a brief shaking every 30 minutes over a 10.5-hour growth period. The growth 

curves were also performed on the parent strain (K. pneumoniae 1300761) in LB with the 

previously indicated antibiotics. Each growth curve was measured in duplicate, and the 

experiment was repeated three times. 
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TABLE 2: PCR primers for the cloning of β-lactamase genes found in Klebsiella pneumoniae 
1300761. 
bla gene Forward Primer Reverse Primer 

CMY-6 cagctctagaggagGATTTCATGATGA

AAAAATCGTTATGCTGC 

cagcgtcgacGCCTCATCGTCAGTT

ATTGCAGC 

CTX-M-15 cagctctagaggaggAATCCCATGGTT

AAAAAATCACTGC 

cagcgtcgaCGCTATTACAAACCGT

CGGTG 

NDM-4 cagctctagaggaggAACTTGATGGAA

TTGCCCAATATTATG 

cagcgtcgacGTCAGCCATGGCTCA

GCGC 

OXA-1 cagctctagaggaggCTTATTATGAAA

AACACAATACATATCAACTTCGC 

cagcgtcgacGGGTTGGGCGATTTT

GCCATTAG 

SHV-11 cagctctagaggagGTGGTTATGCGTT

ATATTCGCCTGTGT 

cagcgtcgacGGGTTAGCGTTGCCA

G 

TEM-1 cagctctagaggaggAAGAGTATGAGT

ATTCAACATTTTCGTGTC 

cagcgtcgacTTGGTCTGACAGTTA

CCAATGCTTAATC 

Restriction site Ribosome binding site 
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Statistical analysis 

A two-way ANOVA in conjunction with Fisher’s Least Significant Difference test was 

used to compare all time points against the control. Significance was determined if P<0.05. 

When a β-lactamase clone reached absorbance levels significantly different than the control 

before another in the same antibiotic, it was determined that the clone that reached significant 

absorbance levels first is more efficient at hydrolyzing that β-lactam. When comparing growth 

curves of a single β-lactamase in different growth conditions, if the growth curve in one 

antibiotic reached significant absorbance levels at an earlier time point than another, it was 

determined that that β-lactamase was more efficient at hydrolyzing the β-lactam that allowed 

quicker growth. 

RESULTS 

Klebsiella pneumoniae 1300761 possesses six β-lactamase-encoding genes 

Illumina sequencing produced 3,653,470 paired reads, and read processing reduced that 

number to 3,370,288 with 80,534 retained as singletons, for approximately 150X coverage of the 

genome. The average quality score of all reads is greater than 37, with an average length of 215. 

Assembly generated 196 contigs larger than 1,000 bp, with an N50 of 238,732 and N75 of 

112,412. The genome length is 5,972,622 bp. Annotation predicted 5,733 genes. Notably, 6 

distinct bla genes were detected (Supplemental File 2) and confirmed by BLAST search [15] as 

the following; blaCMY-6, blaCTX-M-15, blaNDM-4, blaOXA-1, blaSHV-11, and blaTEM-1. These bla genes 

were then cloned into NEB5-α for further characterization. 

Resistance profiles of β-lactamase clones 

The control group in these Figs 2A-F is the pJG780 empty vector. When grown in 

nutrient rich, non-selective LB, the only significant results were CTX-M-15, NDM-4 and OXA-
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1; which had a significantly lower carrying capacity at 630 minutes (Fig 2A). When growth 

occurred in LB ampicillin, all β-lactamases except CMY-6 reached growth levels significantly 

different than the control by 300 minutes and by 630 minutes, CMY-6 also reached significant 

levels (Fig 2B). In LB carbenicillin, all β-lactamases were at significant levels by 300 minutes, 

and CMY-6 after 630 minutes (Fig 2C). In LB ceftazidime, NDM growth was evident by 300 

minutes and CTX-M-15 by 630 minutes (Fig 2D). CTX-M-15 was the only β-lactamase that 

hydrolyzed aztreonam, and significant levels were reached by 630 minutes (Fig 2E). NDM-4 was 

the only β-lactamase that hydrolyzed imipenem, with growth observed by 300 minutes, but not 

reaching significant levels until 630 minutes (Fig 2F). Complete growth curves are reported in 

Fig S1, raw data in Table S1. 

β-lactam preferences for a single β-lactamase 

In these comparisons, the growth curve for pJG780 grown in ampicillin was used as a 

negative control (Figs 3A-G). As expected, pJG780 only grew in LB, and attained growth levels 

significantly different from the negative control by 300 minutes (Fig 3A). CMY-6 was able to 

grow in ampicillin, and carbenicillin, however, this clone grew slowly in ampicillin, reaching 

growth levels different than the control by 630 minutes (Fig 3B). CTX-M-15 grew in all 

antibiotics except imipenem and growth was observed in ceftazidime by 630 minutes, but not yet 

above background levels. By 300 minutes growth was evident in ampicillin and carbenicillin and 

by 630 minutes for aztreonam (Fig 3C). NDM-4 grew in all antibiotics, except aztreonam. 

Ampicillin, carbenicillin and ceftazidime reached significance by 300 minutes and imipenem by 

630 minutes. (Fig 3D). OXA-1, SHV-11, and TEM-1 only grew in ampicillin and carbenicillin, 

reaching significant levels in each case by 300 minutes (Fig 3E-H). Complete growth curves can 

be found in Fig S2, raw data in Table S1. 



 

31 
 

 
FIGURE 7: Growth curves grouped by growth conditions.  
A) Nonrestrictive LB broth. B) Ampicillin. C) Carbenicillin. D) Ceftazidime. E) Aztreonam. F) 
Imipenem. *P<0.05 **P<0.01, ***P<0.001, ****P<0.0001. 
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FIGURE 8: Growth curves of the β-lactamase clones.  
The clones were grown for 630 minutes, and the OD600 was measured every 30 minutes. A) The 
pJG780 empty vector control strain. B) The CMY-6 clone. C) The CTX-M-15 clone. D) The 
NDM-4 clone. E) The OXA-1 clone. F) The SHV-11 clone. G) The TEM-1 clone. H) The parent 
strain K. pneumoniae 1300761. *P<0.05 **P<0.01, ***P<0.001, ****P<0.0001. 
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Growth of the parent strain K. pneumoniae 1300761 is not inhibited by any β-lactam 

tested 

The two-way ANOVA indicated that antibiotic has no significant impact on growth, even 

though individual time points may have randomly showed significance from the LB control (i.e. 

imipenem at 630 minutes) (Fig 3H). Additionally, the lack of a significant lag phase when this 

isolate was introduced to antibiotic-containing media, indicated that these genes are 

constitutively expressed in K. pneumoniae 1300761. 

DISCUSSION 

The antibiotic crisis is reaching a crescendo as nosocomial bacteria acquire resistance to 

the common, and last resort, antibiotics. Furthermore, it appears that individually, these bla 

genes may not pose a large threat, as the fitness provided is relatively weak (i.e. imipenem, 

ceftazidime, aztreonam). But there appears to be a synergistic effect as they are combined, and 

that the additional resistance factors Klebsiella possesses (truncated porins, multi-drug efflux 

pumps) aid greatly in its resistance. At the concentrations assayed, it seems that NDM-4 is 

superior to CTX-M-15 as a cephalosporinase. Interestingly, it also appears that the 

cephalosporinase CTX-M-15 provides a greater fitness advantage to aztreonam (a monobactam) 

than ceftazidime (a cephalosporin). Finally, CMY-6 provides a better degree of fitness when 

grown in ampicillin then carbenicillin. Tblahis result is interesting, and several blaCMY genes 

have been shown to hydrolyze cephalosporins at aztreonam at high concentrations (76, 77). 

Another path that could shed greater light on fitness provided by these various β-lactamases 

would be to perform competition assays between them in the various antibiotics. Additionally, 

this strategy could also help characterize the differences between the various carbapenemases.  
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In conclusion, this study helps us understand that these organisms may acquire redundant 

genes for the synergism acquired. This synergism provides the parent strain enhanced fitness in 

antibiotics such as aztreonam and imipenem, where only one of the antibiotics hydrolyzes it, but 

the parent strain grows normally. Additionally, this disparity in growth curve statistics may also 

indicate that the passive resistance mechanisms (i.e. efflux pumps, altered porins) play a more 

substantial role in resistance than previously thought, and they should receive more concentrated 

attention. 
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SUMMARY 

 This thesis provides only a starting point for further investigation. Much is still needed to 

fully characterize these plasmids, and a greater surveillance of carbapenem-resistance plasmids is 

needed to create a more comprehensive picture. Furthermore, several points are identified in 

chapter 1 that can be exploited by small molecule inhibition to limit or eliminate the spread of 

these plasmids. Additionally, there is a wealth of data available for the Escherichia coli and 

Klebsiella pneumoniae carbapenem resistant isolates. This data could be mined for numerous 

points of interest and conclusions made. 

 Second, the assay set up in chapter two could be used to assess the level of fitness 

provided by the various carbapenemases. Additionally, as mention in chapter 2, competition 

assays between these strains would also help determine if a fitness advantage is provided by the 

β-lactamase activity, or if metabolic costs of producing the β-lactamase are a detriment to fitness.  
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APPENDIX A 

TABLE 3: Key Words used to characterize CR-plasmid gene content. 

Categories Key Word Python Regular Expression 
A

n
ti

m
ic

ro
b

ia
l R

es
is

ta
n

ce
 

aac aac 

aad aad 

aminoglyco* aminoglyco[^\s] 

aph aph 

arr- arr- 

arsa ars[a-dhr] 

arsb " 

arsc " 

arsd " 

arsh " 

arsr " 

arsen* arsen[^\s] 

bleomycin bleomycin 

catr catr 

chloramphenicol chloramphenicol 

cmea cme[abc] 

cmeb " 

cmec " 
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copper copper 

dfra (?:[^a-z]|^)dfra(?:$|[^a-z]) 

efflux pump efflux pump 

flor flor 

fluoroquino* fluoroquino[^\s] 

folp (?:[^a-z]|^)folp(?:$|[^a-z]) 

macrolide macrolide 

mercur* mercur[^\s] 

mph mph 

multidrug multidrug 

ncra (?:[^a-z]|^)ncr[a-c,y](?:$|[^a-z]) 

ncrb " 

ncrc " 

ncry " 

nickel resistant 
(?:sulfonamide|trimethoprim|nickel)[ 

-]resistant 

nirb (?:[^a-z]|^)nirb(?:$|[^a-z]) 

sulfonamide resistant " 

trimethoprim resistant " 

pcoa pco[a-ers] 

pcob " 
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pcoc " 

pcod " 

pcoe " 

pcor " 

pcos " 

qace qace 

resistance resistance 

rifampin rifamp(?:in|icin) 

sila sil[abcefprs] 

silb " 

silc " 

sile " 

silf " 

silp " 

silr " 

sils " 

silver silver 

streptomycin streptomycin 

sul (?:[^a-z]|^)sul[12](?:$|[^a-z]) 

teller* teller[^\s] 
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tera ter[abcfw-z](?:$|[^a-z]) 

terb " 

terc " 

terf " 

terw " 

terx " 

tery " 

terz " 

tetr tetr(?:$|[^a]|acycline) 

A
n

ti
m

ic
ro

b
ia

l R
es

is
ta

n
ce

,B
et

a-
la

ct
am

as
e 

ampr (?:^|[^p])ampr 

beta lactam* beta[ -]lactam[^\s] 

beta-lactam* " 

bla (?:^|[^p])bla 

cephalosporin* cephalosporin[^\s] 

cmy- (?:^|[^p])cmy- 

ctx- (?:^|[^p])ctx- 

dha- (?:^|[^p])dha- 

oxa- (?:^|[^p])oxa- 

oxacillin* oxacillin[^\s] 

penicillin* penicillin[^\s] 
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sfo- (?:^|[^p])sfo- 

shv- (?:^|[^p])shv- 

tem- (?:^|[^p])tem- 

A
n

ti
m

ic
ro

b
ia

l R
es

is
ta

n
ce

, B
et

a-
la

ct
am

as
e,

 B
et

a-
la

ct
am

as
e 

Sp
ec

ia
l 

carbapenem* carbapenem[^\s] 

imp not (impa or impb or impc) (?:^|[^b-z])imp(?:$|[^abc]) 

kpc (?:^|[^b-z])kpc 

ndm (?:^|[^b-z])ndm 

vim (?:^|[^b-z])vim 

P
la

sm
id

 T
ra

n
sf

er
 

conjuga* conjuga[^\s] 

fertility inhibition fertility inhibition 

fino fino 

icm* icm[^\s] 

moba mob[a-e] 

mobb " 

mobc " 

mobd " 

mobe " 

pili* pili[^\s] 

pilus pilus 

pilx pilx 
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secretion system secretion system 

tivb* tivb[^\s] 

traa tra[a-rtuwxy](?:$|[^a-z]) 

trab " 

trac " 

trad " 

trae " 

traf " 

trag " 

trah " 

trai " 

traj " 

trak " 

tral " 

tram " 

tran " 

trao " 

trap " 

traq " 

trar " 
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trat " 

trau " 

traw " 

trax " 

tray " 

trba trb[a-gilm] 

trbb " 

trbc " 

trbe " 

trbf " 

trbg " 

trbi " 

trbl " 

trbm " 

type iv type[ -]iv 

type-iv " 

vir* not virulence vir[^ugo\s] 

To
xi

n
/A

n
ti

to
xi

n
 

Sy
st

em
 

abrb abrb 

cbta cbta 

ccda ccd[ab] 
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ccdb " 

hica hica 

higa hig[ab] 

higb " 

hokg hokg 

pard par[de] 

pare " 

pemi pem[ik] 

pemk " 

relb rel[be] 

rele " 

stbd stb[de] 

stbe " 

toxi* (?:^|[^a-z]|anti)toxi[^\s] 

yafo yafo 

D
N

A
 

M
ai

n
te

n
an

ce
/M

o
d

if
ic

at
io

n
 

chromosome chromosome 

dna dna 

eex eex 

entry exclusion entry exclusion 

exca exca 



 

54 
 

helicase helicase 

integrase integrase 

kfra kfra 

kora kor[ab] 

korb " 

methylase methylase 

nucleoti* nucleoti[^\s] 

para par[ab] 

parb " 

plasmid plasmid 

recombinase (not serine or tyrosine 
recombinase) 

(?<!ser_|ine )recombinase 

relaxase relaxase 

repa repa 

replication replication 

replication protein replication protein 

ruma ruma 

single-strand binding protein single-strand binding protein 

ssb ssb 

topb topb 

topoisomerase topoisomerase 
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trfa trfa 

uvr* uvr[^\s] 

vagc vag[cd] 

vagd " 

D
N

A
 

M
ai

n
te

n
an

ce
/M

o
d

if
ic

at
io

n
, 

D
N

A
 

M
ai

n
te

n
an

ce
/M

o
d

if
ic

at
io

n
 

Sp
ec

ia
l 

muca muc[ab] 

mucb " 

polymerase polymerase 

umuc umu[cd] 

umud " 

M
o

b
ile

 G
en

et
ic

 E
le

m
en

ts
 

ista ist[ab](?:$|[^a-z0-9]) 

istb " 

resolvase resolvase 

reverse transcriptase reverse transcriptase 

tnp tnp 

transpos* transpos[^\s] 

urf2 urf2 

H
yp

o
th

et
ic

al
 G

en
es

 domain containing domain[ -]containing 

domain-containing " 

hypothetical hypothetical 

uncharacterized protein uncharacterized protein 
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unknown function unknown function 

Ig
n

o
re

d
 

disrupted disrupted 

imperfect imperfect 

interrupted interrupted 

intron intron 

is(?:[a-z]{2}|)[0-9]{2,4} is(?:[a-z]{2}|)[0-9]{2,4} 

kl.pn.i3 kl\.pn\.i3 

morpho morpho 

ncrna ncrna 

non functional non[ -]?functional 

non-functional " 

partial partial 

patho patho 

repeat region repeat region 

se.ma.* se\.ma\.[\s] 

truncated truncated 
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APPENDIX B 

Supplementary Bioinformatics Methods 

This is a more detailed explanation of the bioinformatics methods required for 

incompatibility group/replicon typing and plasmid characterization. This will describe a step-by-

step walkthrough of the process. Please note that most of these steps will be simple data 

formatting. Also note that it would have been easier in some cases to combine multiple steps into 

one. The choice to separate each piece of the process was for clarity and to enable another to 

modify this process for their own purposes. For our work, all steps could be run interactively; 

i.e., not requiring a high-performance computing (HPC) architecture. Our work was completed 

on a machine running Red Hat Enterprise Linux. 

Summary 

This process begins with one fasta file and multiple GenBank files. The formats for these 

files are described in steps 0 and 2, respectively. The fasta file contains the incompatibility group 

sequences. In our work, this was a download of the PlasmidFinder v1.3 Enterobacteriaceae 

database (64). The GenBank files contain one or more GenBank records in them, where each 

record could itself be considered a GenBank file for a single accession number. Thus, these 

GenBank files are concatenations of multiple GenBank records. Effectively, this is how we 

grouped accessions of interest. The same accession may appear in multiple groupings. Note, if 

you attempt to re-use our process with your own data and have GenBank files as a single file per 

accession, combining them into groups will feel unnecessary. We began this way because that is 

what we had to start with. 

The results of the entire process are CSV files with information about each plasmid in a 

group and a text file with summary statistics about each group. The file contains basic 
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information (e.g., plasmid length), the incompatibility group(s) the plasmid best aligns to, and 

some gene/function annotation based on key term searches of the GenBank file's CDS regions. 

To accomplish this, each (input) group GenBank file is split into a single GenBank file per 

accession and the sequences are extracted as fasta files. The sequence lengths are recorded and 

these sequences are individually aligned (using the NCBI BLAST+ Suite (60, 63)) to the 

incompatibility group sequences. After filtering out the "best" alignments, the incompatibility 

group is determined and saved for later assimilation into the final outputs. The CDS regions are 

extracted from the GenBank files and searched for key terms using regular expressions. Each key 

term belongs to one or more categories. Matches in each category are counted and summarized 

in the final output. For more details on this searching strategy, please see step #11. The key terms 

are listed with their Python regular expression in Appendix A. 

This summary concludes with an outline of the steps. Each step will be detailed, followed by 

the references. The code in the detailed steps has, in many cases, been simplified. In other cases, 

the code is several pages long and would be difficult to copy and paste effectively. Especially the 

with Python code, readability suffers as lines wrap because a standard page is not wide enough to 

contain some code statements on a single line. Accordingly, we encourage you to visit the online 

repository for the code: https://github.com/ridgelab/plasmidCharacterization. 

Outline of Steps 

Step 0. Format Incompatibility Groups Fasta File 

Step 1. Create Incompatibility Groups BLAST database 

Step 2. Split Multi-Accession GenBank Files 

Step 3. Extract ORIGIN Sequence from GB to Fasta 

Step 4. Extract Group Lists 

https://github.com/ridgelab/plasmidCharacterization
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Step 5. Blast Incompatibility Groups 

Step 6. Subset BLAST Results by Coverage Cutoff of 60% 

Step 7. Add Incompatibility Group Family as Column to BLAST Results 

Step 8. Filter Best Matches in BLAST Results 

Step 9. Extract Incompatibility Families 

Step 10. Extract Plasmid Search Regions 

Step 11. Identify Plasmid Matches 

Step 12. Generate Plasmid CSVs 

Step 13. Create CSVs from Plasmid CSVs 

Step 14. Create Group Matches from Plasmid Matches 

Step 15. Calculate Group Statistics from Group CSV 

 

Step 0. Format Incompatibility Groups Fasta File 

Input: Fasta file with incompatibility group sequences. Each sequence may be on one or 

more lines. The headers might start with “Inc”. 

Output: Same fasta file as the input, but sequences occur on only one line. Headers without 

“Inc” now have “Inc” prepended. 

Code: 
 

Bash Command 
 

awk -f formatIncGroupFasta.awk \ 

  original_incomp-grp.fasta \ 

  > incomp-grp.fasta 

 
 AWK Script (formatIncGroupFasta.awk) 

 
#! /bin/awk -f 

 

{ 

 if ( $0 ~ /^>.+$/ ) { 
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  if ( NR != 1 ) { 

   printf "\n"; 

  } 

 

  if ( $0 ~ /^>Inc.+$/ ) { 

   print $0; 

  } 

  else { 

   printf "%s%s\n", ">Inc", substr($0, 2); 

  } 

 } 

 else { 

  printf "%s", $0; 

 } 

} 

 

END { 

 printf "\n"; 

} 

 
Step 1. Create Incompatibility Groups BLAST database 
 

Input: Fasta file with incompatibility group sequences. Each sequence is on only one line. 

The headers start with “>Inc”. 

 
Output: BLAST database of the incompatibility group sequences. 

 
Code: 

 
Bash Command 

 
makeblastdb \ 

  -dbtype nucl \ 

  -in  incompatibility.fasta \ 

  -input_type fasta \ 

  -title incompatibility \ 

  -parse_seqids \ 

  -hash_index \ 

  -out incompatibility \ 

  -max_file_sz 2GB \ 

  -logfile makeBlastDB.log 

 
BLAST Software 

 
NCBI (United States National Center for Biotechnology Information) BLAST+ Suite version 

2.4.0 (60, 63). 
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Step 2. Split Multi-Accession GenBank Files 
 

Input: 1+ GenBank files, each with 1+ records. Each record is itself a GenBank file for a 

single Accession. Thus, the multi-accession GenBank files are simply concatenations of 

multiple single-accession GenBank files. Assume that these GenBank files are in a directory 

called original_gb. 

 
Output: One GenBank file for each accession. If the same accession exists in more than one 

multi-accession file, assume they are the same and overwrite it. Assume that the output 

GenBank files will be in a directory called plasmid_gb. 

 
Code: 

 
Bash Command 

 
cd plasmid_gb 

 

while read ifn 

do 

  awk -f splitMultiGB.awk "${ifn}" 

 

done < <(ls -1 original_gb/*.gb) 

 
 AWK Script (splitMultiGB.awk) 

 
#! /bin/awk -f 

 

BEGIN { 

FS="[ ]+"; 

 accession=""; 

 ofn=""; 

} 

 

{ 

 if ($0 == "//" || $0 == "") 

 { 

  accession = ""; 

  ofn = ""; 

 } 

 else if ($1 == "LOCUS") 

 { 

  accession = $2; 

  ofn = accession ".gb"; 

  print $0 > ofn; 
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 } 

 else 

 { 

  print $0 >> ofn; 

 } 

} 

 

END { 

 print "done splitting " FILENAME " by accession"; 

} 

 

Step 3. Extract ORIGIN Sequence from GB to Fasta 

 
Input: One GenBank file with a single accession in it. Assume it is in the directory 

plasmid_gb and it is named after the pattern ${ACCESSION}.gb. 

 
Output: One Fasta file with the sequence from the ORIGIN section of the GenBank file. The 

Fasta file has sequences that are each on only one line. It will be in the directory 

plasmid_fasta.  

 
Code: 

 
Bash Command 

 
while read ifn 

do 

  ACCESSION=`basename "${ifn}" ".gb"` 

 

  awk -f extractOriginSeqFromGBtoFasta.awk \ 

   "plasmid_gb/${ACCESSION}.gb" \ 

   > "plasmid_fasta/${ACCESSION}.fasta" 

 

done < <(ls -1 plasmid_gb/*.gb) 

 
 AWK Script (extractOriginSeqFromGBtoFasta.awk) 

 
#! /bin/awk -f 

 

BEGIN { 

FS = "[ ]+"; 

 origin_found = 0; # false 

} 

 

{ 
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 if (origin_found) 

 { 

  sub(/ *[0-9]+ /, "", $0); 

  gsub(/ +/, "", $0); 

  printf toupper($0); 

 } 

 else if ($1 == "ORIGIN") 

 { 

  origin_found = 1; # true 

 

  print ">" gensub(/^(.+)\.gb$/, "\\1", "-1", gensub(/^.*\//, 

"", "-1", FILENAME)); 

 } 

} 

 

END { 

 printf "\n"; 

 print "done extracting ORIGIN seq from " FILENAME " to fasta" > 

"/dev/stderr"; 

} 

 
 

Step 4. Extract Group Lists 

Input: One GenBank file with a multiple accessions in it. Assume it is in the directory 

original_gb and it is named after the pattern ${GROUP}.gb. 

 
Output: Multiple text files, each with the extension ".list". Each file is a line separated list of 

accession numbers that make up the group. The files will be in a directory called groups 

with the name ${GROUP}.list. 

 
Code: 

 
Bash Command 

 
while read ifn 

do 

  awk -f extractGroupLists.awk \ 

   "${ifn}" 

 

done < <(ls -1 original_gb/*.gb) 

 
AWK Script (extractGroupLists.awk) 

 
#! /bin/awk -f 

 

BEGIN { 
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FS="[ ]+"; 

 accession=""; 

 ofn=""; 

} 

 

{ 

 if (NR == 1) 

 { 

  ofn = gensub(/^(.+)\.gb$/, "\\1", "-1", gensub(/^.*\//, "", "-

1", FILENAME)) ".list"; 

 } 

 

 if ($1 == "LOCUS") 

 { 

  accession = $2; 

  print accession >> ofn; 

 } 

} 

 

END { 

 print "done extracting accessions from " FILENAME; 

} 

 
Step 5. Blast Incompatibility Groups 

Input: Fasta files. Each contains the sequence from a single accession. Assume they are in the 

directory plasmid_fasta and they are named after the pattern ${ACCESSION}.fasta. 

 
Input: The incompatibility groups BLAST database created in step #1. It is named 

incompatibility. 

 

Output: One tab-separated value file for each input file. Each file is a modified version of the 

BLAST output format 6. The format is specified as seen using the -outfmt option with blastn. 

The columns are as follows: qseqid, sseqid, pident, length, evalue, qframe, qlen, qstart, qend, 

sframe, slen, sstart, send, qseq, and sseq. The files will be in a directory called 

blast_results and named after the pattern ${ACCESSION}_fmt6c.tsv. Note that a match 

was not included in the output if the percent identity was <80%. 

 
Code: 
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Bash Command 

 
THREADS=8 

 

while read ifn 

do 

  ACCESSION=`basename "${ifn}" ".fasta"`   

 

  blastn \ 

   -query "${ifn}" \ 

   -strand both \ 

   -task blastn \ 

   -db icompatibility \ 

   -out blast_results/${ACCESSION}_fmt6c.tsv \ 

   -outfmt "6 qseqid sseqid pident length evalue qframe 

qlen qstart qend sframe slen sstart send qseq sseq" \ 

   -num_threads ${THREADS} \ 

   -perc_identity 80 

 

done < <(ls -1 plasmid_fasta/*.fasta) 

 
BLAST Software 

 
NCBI (United States National Center for Biotechnology Information) BLAST+ Suite version 

2.4.0 (60, 63). 

Step 6. Subset BLAST Results by Coverage Cutoff of 60% 

Input: Tab-separated value files. Each contains the results from blasting the sequence of a 

single accession against the incompatibility groups BLAST database. Assume they are in the 

directory blast_results and they are named after the pattern ${ACCESSION}_fmt6c.tsv. 

 
Output: One tab-separated value file for each input file. Each file is a copy of its respective 

input file except some results may be omitted if the coverage was less than 60%. The files 

will be in a directory called blast_results and named after the pattern 

${ACCESSION}_fmt6c_cov60.tsv. Note that a new column was inserted as column number 

14 (1-based indexing). The columns will now be as follows: qseqid, sseqid, pident, length, 

evalue, qframe, qlen, qstart, qend, sframe, slen, sstart, send, scov, qseq, and sseq. 
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Code: 
 

Bash Command 
 
while read ifn 

do 

  ACCESSION=`basename "${ifn}" "_fmt6c.tsv"`   

 

  awk -f subCovCutoff60.awk \ 

   "${ifn}" \ 

   > "blast_results/${ACCESSON}_fmt6c_cov60.tsv" 

 

done < <(ls -1 blast_results/*_fmt6c.tsv) 

 
AWK Script (subCovCutoff60.awk) 

 
#! /bin/awk -f 

 

BEGIN { 

 FS="\t"; 

 OFS="\t"; 

 ORS="\n"; 

 count=0; 

} 

 

{ 

 # 4 = length, 11 = slen, scov = length / slen 

 scov = $4 / $11; 

 if (scov >= 0.6) 

 { 

  count += 1 

 

  # keep 1-13, add new column, keep 14-15 (will become 15-16) 

  for (i = 1; i <= 13; i++) 

  { 

   printf "%s", $i OFS; 

  } 

 

  printf "%f", scov OFS; 

 

  for (i = 14; i <= NF; i++) 

  { 

   printf "%s", $i (i == NF ? ORS : OFS); 

  } 

 } 

} 

 

END { 

 print FILENAME ": " count > "/dev/stderr"; 

} 

 
Step 7. Add Incompatibility Group as Column to BLAST Results 

Input: Tab-separated value files. Each contains the results from blasting the sequence of a 
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single accession against the incompatibility groups BLAST database. It has an added column 

with the subject coverage and has only records with coverage >60%. Assume they are in the 

directory blast_results and they are named after the pattern 

${ACCESSION}_fmt6c_cov60.tsv. 

 
Output: One tab-separated value file for each input file. Each file is a copy of its respective 

input file except that an additional column is added. This column has the family or root of the 

incompatibility group from column #2 (sseqid). The files will be in a directory called 

blast_results and named after the pattern ${ACCESSION}_fmt6c_cov60_fam.tsv. Note 

that a new column was inserted as column number 3 (1-based indexing). The columns will 

now be as follows: qseqid, sseqid, fam, pident, length, evalue, qframe, qlen, qstart, qend, 

sframe, slen, sstart, send, scov, qseq, and sseq. 

 
Code: 

 
Bash Command 

 
while read ifn 

do 

  ACCESSION=`basename "${ifn}" "_fmt6c_cov60.tsv"`   

 

  awk -f addFamCol.awk \ 

   "${ifn}" \ 

   > "blast_results/${ACCESSON}_fmt6c_cov60_fam.tsv" 

 

done < <(ls -1 blast_results/*_fmt6c_cov60.tsv) 

 
AWK Script (addFamCol.awk) 

 
#! /bin/awk -f 

 

BEGIN { 

 FS="\t"; 

 OFS="\t"; 

 ORS="\n"; 

} 

 

{ 

 # 2 = subject_id, keep 1-2, add new column, keep 3-16 (will become 4-



 

68 
 

17) 

 for (i = 1; i <= 2; i++) 

 { 

  printf "%s", $i OFS; 

 } 

 

 printf "%s", gensub(/^([^(_]+).*$/, "\\1", "-1", $2) OFS; 

 

 for (i = 3; i <= NF; i++) 

 { 

  printf "%s", $i (i == NF ? ORS : OFS); 

 } 

} 

 

Step 8. Filter Best Matches in BLAST Results 

Input: Tab-separated value files. Each contains the results from blasting the sequence of a 

single accession against the incompatibility groups BLAST database. It has two added 

columns with the subject coverage (and has only records with coverage >60%) and family. 

Assume they are in the directory blast_results and are named after the pattern 

${ACCESSION}_fmt6c_cov60_fam.tsv. 

 
Output: One tab-separated value file for each input file. Each file is a copy of its respective 

input file except that some results are omitted. The “best” results are retained. “Best” is 

defined as the result(s) with the highest percent identity and those that have percent identities 

within only 1 percent of the highest one. The files will be in a directory called 

blast_results and named after the pattern ${ACCESSION}_fmt6c_cov60_fam_best.tsv. 

As in the input file, the columns will be as follows: qseqid, sseqid, fam, pident, length, 

evalue, qframe, qlen, qstart, qend, sframe, slen, sstart, send, scov, qseq, and sseq. 

 
Code: 

 
Bash Command 

 
while read ifn 

do 
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  ACCESSION=`basename "${ifn}" "_fmt6c_cov60_fam.tsv"`   

 

  python3 filterBestResults.py \ 

   "${ifn}" \ 

   > "blast_results/${ACCESSON}_fmt6c_cov60_fam_best.tsv" 

 

done < <(ls -1 blast_results/*_fmt6c_cov60_fam.tsv) 

 
Python Version 

 
Python 3.6.4 (https://www.python.org). 

 
Python Script (filterBestResults.py) 

 
def handleArgs(): 

 

 if len(sys.argv) != 3: 

  sys.stderr.write("\n\tERROR: You must provide 2 

arguments\n\t\t1- input blast results cov60 fam\n\t\t2- output blast 

results file\n\n") 

  sys.exit(1) 

 

 input_br = sys.argv[1] 

 output_br = sys.argv[2] 

 

 return input_br, output_br 

 

# ==== # 

# MAIN # 

# ==== # 

 

if __name__ == "__main__": 

 

 import sys 

 

 # handle args 

 ibrfn, obrfn= handleArgs() 

 

 # set some handy vars 

 records = [] # each line 

 per_ids = [] # percent identities (the 4th column) 

 

 with open(ibrfn, 'r') as ifd: 

  for line in ifd: 

   records.append(line) 

   per_ids.append(float(line.rstrip('\n').split('\t')[3])) 

 

 # figure out which ones to keep 

 keep = [] 

 

 max_per_id = max(per_ids) if len(records) > 0 else 0.0 

 

 for i,per_id in enumerate(per_ids): 

  if abs(max_per_id - per_id) <= 1.0: 

   keep.append(i) 
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 # write output 

 with open (obrfn, 'w') as ofd: 

  for i in keep: 

   ofd.write(records[i]) 

 

 # exit 

 sys.exit(0) 
 
 

Step 9. Extract Incompatibility Families 

Input: Tab-separated value files. Each contains the results from blasting the sequence of a 

single accession against the incompatibility groups BLAST database. It has two added 

columns with the subject coverage (and has only records with coverage >60%) and family. 

Only the “best” results remain. Assume they are in the directory blast_results and are 

named after the pattern ${ACCESSION}_fmt6c_cov60_fam_best.tsv. 

 
Output: One file for each input file. Each file is a line-delimited list of incompatibility group 

roots/families. The files will be in a directory called blast_results and named after the 

pattern ${ACCESSION}_families.list. 

 
Code: 

 
Bash Command 

 
while read ifn 

do 

  ACCESSION=`basename "${ifn}" 

"_fmt6c_cov60_fam_best.tsv"`   

 

  cut -f 3 "${ifn}" \ 

   | sort \ 

   | uniq \ 

   > blast_results/"${ACCESSON}_families.list" 

 

done < <(ls -1 blast_results/*_fmt6c_cov60_fam_best.tsv) 

 
Step 10. Extract Plasmid Search Regions 

Input: This Python program requires 3 inputs. 1- The accession number of the plasmid it will 
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extract the search regions from. 2- The directory where the output will be placed. 3- The 

directory where the GenBank file is located for that plasmid. We assume the GenBank file is 

named after the pattern ${ACCESSION}.gb. 

 
Output: One text file containing the lines from input GenBank file that will be searched using 

the key terms. We assume the output file will be named after the following pattern: 

${ACCESSION}_searchRegions.txt. For convenience, it will also generate a copy of the 

input GenBank file with shell color codes, marking the CDS regions in blue, the portions of 

the CDS regions that will be included in green, and the portion of the CDS regions that will 

not be searched in red. This file will have the same name as the .txt file, but will have the 

extension .gb instead of .txt. Note that intended search space is to consider each CDS 

region as a separate entity. However, only the following subsections of each CDS region are 

to be considered: \function, \gene, \note, and \product. 

 
Code: 

 
Bash Command 

 
while read ifn 

do 

  ACCESSION=`basename "${ifn}" ".gb"`   

 

  python3 extractPlasmidSearchRegions.py \ 

   "${ACCESSION}" \ 

   plasmid_searchRegions \ 

   plasmid_gb 

 

done < <(ls -1 plasmid_gb/*.gb) 

 
Python Version 

 
Python 3.6.4 (https://www.python.org). 
 
Python Script (extractPlasmidSearchRegions.py) 
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# ========= # 
# FUNCTIONS # 

# ========= # 

 

def handleArgs(): 

 import sys 

 

 if len(sys.argv) != 4: 

  sys.stderr.write("\n\tERROR: You must provide 3 

arguments\n\t\t1- plasmid accession\n\t\t2- output search regions 

dir\n\t\t3- input gb dir\n\n") 

  sys.exit(1) 

 

 plasmid_accession = sys.argv[1] 

 output_search_regions_dir = sys.argv[2].rstrip('/') 

 input_gb_dir = sys.argv[3].rstrip('/') 

 

 return plasmid_accession, output_search_regions_dir, input_gb_dir 

 

def parseGbFile(input_gb_fn, output_search_regions_fn, output_gb_fn): 

 

 with open (output_search_regions_fn, 'w') as osrd: 

  with open(output_gb_fn, 'w') as ogbd: 

   red = "\033[0;31m" 

   green = "\033[0;32m" 

   blue = "\033[0;34m" 

   no_color = "\033[0m" 

 

   with open(input_gb_fn, 'r') as ifd: 

    section_names = ( "assembly_gap", "CDS", 

"gene", "misc_difference", "misc_feature", "misc_recomb", 

"mobile_element", "ncRNA", "operon", "oriT", "primer_bind", 

"protein_bind", "regulatory", "repeat_region", "rep_origin", 

"sig_peptide", "source", "tRNA" ) 

    subsection_names_of_interest = ( "function", 

"gene", "note", "product" ) 

 

    # skip from LOCUS to FEATURES 

    line = ifd.readline() # grab the first line 

("LOCUS") 

    while line.rstrip('\n').lstrip(' ').split(' 

')[0] != "FEATURES": 

     ogbd.write(line) 

     line = ifd.readline() 

 

    # write then skip past FEATURES 

    ogbd.write(line) 

    line = ifd.readline() 

 

    # skip any lines necessary until CDS or ORIGIN 

is found 

    tag_word = line.rstrip('\n').lstrip(' 

').split(' ')[0] 

 

    while tag_word != "ORIGIN" and tag_word != 

"CDS": 
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     ogbd.write(line) 

     line = ifd.readline() 

     tag_word = line.rstrip('\n').lstrip(' 

').split(' ')[0] 

 

    # First time: found ORIGIN or CDS. If ORIGIN, 

we're done. If CDS, read through each CDS region, until ORIGIN. 

    # thereafter: found ORIGIN or CDS or other 

section name. If ORIGIN, we're done. If CDS, read through each CDS 

region, until ORIGIN. If section name, skip till ORIGIN or next CDS. 

    while tag_word != "ORIGIN": 

 

     # first time: this loop will be 

skipped. Thereafter, if a section name (other than CDS), skip to next 

CDS or ORIGIN. 

     while tag_word != "ORIGIN" and tag_word 

!= "CDS": 

      ogbd.write(line) 

      line = ifd.readline() 

      tag_word = 

line.rstrip('\n').lstrip(' ').split(' ')[0] 

 

     if tag_word == "CDS": 

       # write the CDS line 

      osrd.write(line) 

      ogbd.write(blue + line + 

no_color) 

     else: # if tag_word == "ORIGIN": 

      break 

 

     # skip past the CDS line (guaranteed to 

now have a CDS line) 

     line = ifd.readline() 

     tag_word = line.rstrip('\n').lstrip(' 

').split(' ')[0] 

 

     # read through important data and stop 

at end of CDS (marked by next CDS or ORIGIN or other section name) 

     # first time: guaranteed inside a CDS 

region. Note that a CDS line is NEVER *immediately* followed by another 

section name line (at least in our data). 

     # thereafter: It could be anything 

between the CDS and ORIGIN. 

      

     while tag_word != "ORIGIN" and tag_word 

not in section_names: 

      if line.rstrip('\n').lstrip(' 

')[0] == '/': # it is a CDS subsection headerline 

       subsection_name = 

line.strip().split('=')[0].lstrip('/').lower() 

       subsection = 

'='.join(line.strip().split('=')[1:]) 

       if subsection_name in 

subsection_names_of_interest: # the subsection is one we care to look 

in 

        osrd.write(line) 

        ogbd.write(green 
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+ line + no_color) 

 

        if subsection[0] 

== '"' and subsection[-1] != '"': # the subsection spans multiple lines 

 

         line = 

ifd.readline() 

         tag_word 

= line.rstrip('\n').lstrip(' ').split(' ')[0] 

         while 

line.rstrip('\n')[-1] != '"': # keep searching to find the end of the 

subsection of interest 

         

 osrd.write(line) 

         

 ogbd.write(green + line + no_color) 

         

 line = ifd.readline() 

         

 tag_word = line.rstrip('\n').lstrip(' ').split(' ')[0] 

        

 osrd.write(line) 

        

 ogbd.write(green + line + no_color) 

 

        line = 

ifd.readline() 

        tag_word = 

line.rstrip('\n').lstrip(' ').split(' ')[0] 

       else: # the subsection 

is not one we care to look in 

        #if 

len(subsection) < 1: 

        #

 print("subsection len == 0") 

        #

 print(line) 

        #

 print(subsection_name) 

        #

 print(subsection) 

        # simple version 

that works, but doesn't write it all in red 

       

 #ogbd.write(line) 

        #line = 

ifd.readline() 

        #tag_word = 

line.rstrip('\n').lstrip(' ').split(' ')[0] 

 

        # uneccesary 

version that actually makes it write it all in red 

        ogbd.write(red + 

line + no_color) 

        if 

len(subsection) and subsection[0] == '"' and subsection[-1] != '"': # 

the subsection spans multiple lines 
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         line = 

ifd.readline() 

         tag_word 

= line.rstrip('\n').lstrip(' ').split(' ')[0] 

         while 

line.rstrip('\n')[-1] != '"': # keep searching to find the end of the 

subsection of interest 

         

 ogbd.write(red + line + no_color) 

         

 line = ifd.readline() 

         

 tag_word = line.rstrip('\n').lstrip(' ').split(' ')[0] 

        

 ogbd.write(red + line + no_color) 

        line = 

ifd.readline() 

        tag_word = 

line.rstrip('\n').lstrip(' ').split(' ')[0] 

 

      else: # it is not a CDS 

subsection headerline 

       ogbd.write(line) 

       line = ifd.readline() 

       tag_word = 

line.rstrip('\n').lstrip(' ').split(' ')[0] 

 

    # NOTE: the remainder of the file contains the 

sequence data 

    ogbd.write(line) # write the ORIGIN 

    ogbd.write(ifd.read()) # write the rest of the 

file (i.e., the sequence data) 

 

# ==== # 

# MAIN # 

# ==== # 

 

if __name__ == "__main__": 

 

 import sys 

 

 # handle args 

 plasmid_accession, output_search_regions_dir, input_gb_dir = 

handleArgs() 

 

 # set some helpful vars 

 osrn = output_search_regions_dir + '/' + plasmid_accession + 

"_searchRegions.txt" 

 ogbn = output_search_regions_dir + '/' + plasmid_accession + 

"_searchRegions.gb" 

 igbn = input_gb_dir + '/' + plasmid_accession + ".gb" 

 

 #  get CDS info (Antimicrobial Resistance CDS (%) ... Total CDS) 

 parseGbFile(igbn, osrn, ogbn) 

 

 # exit 

 sys.exit(0) 
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Step 11. Identify Plasmid Matches 

Input: This Python program requires 3 inputs. 1- The accession number of the plasmid in 

which it will identify matches. 2- The directory where the input search regions file is located. 

3- The directory where the output matches will be placed. We assume the input search 

regions file is named after the pattern ${ACCESSION}_searchRegions.txt. 

 
Output: One tab-separated value file containing matches. We assume the output file will be 

named after the following pattern: ${ACCESSION}_matches.tsv. The columns of the file are 

as follows: 

 
1. Ignored (True/False) 

2. Categories (c1[,c2,…,cN]) 

3. Search Term 

4. CDS Region 

 
Column 1 is a simple flag denoting if the term was to be ignored. This could also be 

determined based on the second column, but it was convenient to have a simple flag as its 

own column. Column 2 contains the category (categories) that the search term belonged to. 

Column 3 contains the regular expression used. Column 4 contains the CDS region that was 

searched (all tabs and newlines were converted to \t (backslash and a t, not a tab) and \n 

(backslash and an n, not a newline) to not interfere with the tab-separated value file format 

and keep each record on a single line). 

 
Search Strategy: The search terms are each part of one or more categories. It can belong to 

multiple categories only if the categories are subsets of each other. Five principal categories 
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exist, two of which have subcategories. The category structure is as follows: 

 
 Antimicrobial Resistance 

o Beta-lactamase 

 Beta-lactamase Special 

 Toxin/Antitoxin System 

 DNA Maintenance/Modification 

o DNA Maintenance/Modification Special 

 Mobile Genetic Elements 

 Hypothetical Genes 

 
The strategy could be described as top-to-bottom, in-to-out; i.e., Antimicrobial Resistance is 

more important that Toxin/Antitoxin System and Beta-lactamase Special is more important 

than Beta-lactamase and Antimicrobial Resistance. The reason these are shown nested 

instead of simply above their parents is because a match for a Beta-lactamase Special search 

term will increment the count for not only itself, but also its parents. If no matches are found, 

the CDS region being searched is classified as "Other". Some CDS regions will never be 

searched for these terms if they first match a term in a special "Ignored" category. Provided a 

CDS region is not to be ignored, it will be searched with Beta-lactamase Special terms, then 

Beta-lactamase terms, then Antimicrobial Resistance Terms, then Toxin/Antitoxin System 

terms, and so-forth, until a match is found (thus halting the search on this CDS region) or no 

more search terms remain (it is assigned to the "Other" category). All CDS regions are 

converted to lowercase before being searched as described. See Supplementary Table 1 for a 

table of search terms. 
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Code: 

 
Bash Command 

 
while read ifn 

do 

  ACCESSION=`basename "${ifn}" "_searchRegions.txt"`   

 

  python3 identifyPlasmidMatches.py \ 

   "${ACCESSION}" \ 

   plasmid_searchRegions \ 

   plasmid_matches 

 

done < <(ls -1 plasmid_searchRegions/*_searchRegions.txt) 

 
Python Version 
 
Python 3.6.4 (https://www.python.org). 
 
Python Script (identifyPlasmidMatches.py) 

 
 
# ========= # 

# FUNCTIONS # 

# ========= # 

 

def handleArgs(): 

 import sys 

 

 if len(sys.argv) != 4: 

  sys.stderr.write("\n\tERROR: You must provide 3 

arguments\n\t\t1- plasmid accession\n\t\t2- input search regions  

dir\n\t\t3- output matches dir\n\n") 

  sys.exit(1) 

  

 plasmid_accession = sys.argv[1] 

 input_search_regions_dir = sys.argv[2].rstrip('/') 

 output_matches_dir = sys.argv[3].rstrip('/') 

 

 return plasmid_accession, input_search_regions_dir, output_matches_dir 

 

def writeLineToMatchesFile(matches_fd, ignored, categories, 

search_term, cds_search_region): 

 matches_fd.write(str(ignored)  + '\t' + ','.join(categories) + '\t' + 

search_term + '\t' + 

convertCDSsearchRegionToOneLineStr(cds_search_region) + '\n') 

 

def ignoreCDS(cds_search_region, matches_fd): 

 key_terms = [ r"truncated", r"interrupted", r"partial", r"disrupted",  

  r"intron", r"kl\.pn\.i3", r"se\.ma\.[\s]", r"morpho",  

  r"repeat region", r"patho", r"ncrna", r"imperfect", 

  r"non[ -]?functional", r"is(?:[a-z]{2}|)[0-9]{2,4}" ] 
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 return searchCdsRegionForKeyTerms(cds_search_region, key_terms, 

matches_fd, True, ["Ignored"]) 

 

def betaLactSpecialCopyNum(cds_search_region, matches_fd): 

 key_terms = [ r"(?:^|[^b-z])ndm", r"(?:^|[^b-z])imp(?:$|[^abc])", 

r"(?:^|[^b-z])vim", r"(?:^|[^b-z])kpc", r"carbapenem[^\s]" ]  

 

 return searchCdsRegionForKeyTerms(cds_search_region, key_terms, 

matches_fd, False, ["Antimicrobial Resistance", "Beta-lactamase", 

"Beta-lactamase Special"]) 

 

def betaLactSearch(cds_search_region, matches_fd): 

 if not betaLactSpecialCopyNum(cds_search_region, matches_fd): 

 

  key_terms = [ r"(?:^|[^p])bla", r"beta[ -]lactam[^\s]", 

r"(?:^|[^p])oxa-",  

   r"(?:^|[^p])dha-", r"(?:^|[^p])sfo-", r"(?:^|[^p])shv-

", r"(?:^|[^p])tem-",  

   r"(?:^|[^p])ctx-", r"(?:^|[^p])ampr", r"(?:^|[^p])cmy-

", r"oxacillin[^\s]",  

   r"penicillin[^\s]", r"cephalosporin[^\s]" ] 

 

  return searchCdsRegionForKeyTerms(cds_search_region, 

key_terms, matches_fd, False, ["Antimicrobial Resistance", "Beta-

lactamase"]) 

 else: 

  return True 

 

def antimicrobResistSearch(cds_search_region, matches_fd): 

 if not betaLactSearch(cds_search_region, matches_fd): 

 

  key_terms = [ r"aac", r"aad", r"aph", r"arr-",  

   r"resistance", r"aminoglyco[^\s]", r"streptomycin", 

r"chloramphenicol",  

   r"cme[abc]", r"catr", r"multidrug", r"efflux pump",  

   r"mercur[^\s]", r"teller[^\s]", r"arsen[^\s]", r"qace",  

   r"macrolide", r"mph", r"silver", r"copper",  

   r"flor", r"ter[abcfw-z](?:$|[^a-z])", 

r"fluoroquino[^\s]", r"bleomycin",  

   r"tetr(?:$|[^a]|acycline)", r"pco[a-ers]", r"ars[a-

dhr]", r"sil[abcefprs]",  

   r"(?:sulfonamide|trimethoprim|nickel)[ -]resistant", 

r"(?:[^a-z]|^)folp(?:$|[^a-z])",  

   r"(?:[^a-z]|^)sul[12](?:$|[^a-z])", r"(?:[^a-

z]|^)dfra(?:$|[^a-z])",  

   r"(?:[^a-z]|^)ncr[a-c,y](?:$|[^a-z])", r"(?:[^a-

z]|^)nirb(?:$|[^a-z])", r"rifamp(?:in|icin)" ] 

   

  return searchCdsRegionForKeyTerms(cds_search_region, 

key_terms, matches_fd, False, ["Antimicrobial Resistance"]) 

 else: 

  return True 

 

def plasmidTransferSearch(cds_search_region, matches_fd): 

 key_terms = [ r"conjuga[^\s]", r"pili[^\s]", r"pilus", r"type[ -]iv",  

  r"secretion system", r"fertility inhibition", r"tivb[^\s]", 

r"icm[^\s]",  
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  r"tra[a-rtuwxy](?:$|[^a-z])", r"trb[a-gilm]", r"mob[a-e]", 

r"fino",  

  r"vir[^ugo\s]", r"pilx" ] 

 

 return searchCdsRegionForKeyTerms(cds_search_region, key_terms, 

matches_fd, False, ["Plasmid Transfer"]) 

 

def toxinSearch(cds_search_region, matches_fd): 

 key_terms = [ r"(?:^|[^a-z]|anti)toxi[^\s]", r"stb[de]", r"hig[ab]", 

r"cbta",  

  r"rel[be]", r"hica", r"yafo", r"ccd[ab]",  

  r"abrb", r"par[de]", r"pem[ik]", r"hokg" ] 

 

 return searchCdsRegionForKeyTerms(cds_search_region, key_terms, 

matches_fd, False, ["Toxin System"]) 

 

def dnaMaintSpecialCopyNum(cds_search_region, matches_fd): 

 key_terms = [ r"muc[ab]", "umu[cd]", "polymerase" ] 

 

 return searchCdsRegionForKeyTerms(cds_search_region, key_terms, 

matches_fd, False, ["DNA Maintenance", "DNA Maintenance Special"]) 

 

def dnaMaintSearch(cds_search_region, matches_fd): 

 if not dnaMaintSpecialCopyNum(cds_search_region, matches_fd): 

 

  key_terms = [ r"methylase", r"single-strand binding protein", 

r"ssb", r"topb",  

   r"replication protein", r"kfra", r"kor[ab]", r"trfa",  

   r"helicase", r"dna", r"chromosome", r"entry exclusion",  

   r"eex", r"exca", r"nucleoti[^\s]", r"topoisomerase",  

   r"integrase", r"(?<!ser_|ine )recombinase", 

r"replication", r"nuclease",  

   r"relaxase", r"plasmid", r"ruma", r"repa",  

   r"uvr[^\s]", r"par[ab]", r"vag[cd]" ] 

 

  return searchCdsRegionForKeyTerms(cds_search_region, 

key_terms, matches_fd, False, ["DNA Maintenance"]) 

 else: 

  return True 

 

def mobileGeneticElementsSearch(cds_search_region, matches_fd): 

 key_terms = [ r"transpos[^\s]", r"reverse transcriptase", r"tnp",  

  r"ist[ab](?:$|[^a-z0-9])", r"resolvase", "urf2" ] 

 

 return searchCdsRegionForKeyTerms(cds_search_region, key_terms, 

matches_fd, False, ["Mobile Genetic Elements"]) 

 

def hypotheticalGenesSearch(cds_search_region, matches_fd): 

 key_terms = [ r"hypothetical", r"domain[ -]containing", 

r"uncharacterized protein", r"unknown function" ] 

 

 return searchCdsRegionForKeyTerms(cds_search_region, key_terms, 

matches_fd, False, ["Hypothetical Genes"]) 

 

def convertCDSsearchRegionToOneLineStr(cds_search_region): 

 return "\\n".join(list(map(lambda x: x.replace('\t', 

"\\t").replace('\n', ""), cds_search_region))) 
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def searchCDSRegion(cds_search_region, matches_fd): 

# make cds_search_region all lowercase 

 cds_search_region = list(map(lambda x: x.lower(), cds_search_region)) 

# make all the search regions lowercase 

  

 if not ignoreCDS(cds_search_region, matches_fd): 

  if not antimicrobResistSearch(cds_search_region, matches_fd): 

   if not plasmidTransferSearch(cds_search_region, 

matches_fd): 

    if not toxinSearch(cds_search_region, 

matches_fd): 

     if not 

dnaMaintSearch(cds_search_region, matches_fd): 

      if not 

mobileGeneticElementsSearch(cds_search_region, matches_fd): 

       if not 

hypotheticalGenesSearch(cds_search_region, matches_fd): 

       

 writeLineToMatchesFile(matches_fd, False, ["Other"], "NA", 

cds_search_region) 

 

def searchCdsRegionForKeyTerms(cds_search_region, key_terms, 

matches_fd, ignored, categories): 

 import re 

 

 for search_sub_region in cds_search_region: 

  for key_term in key_terms: 

   if re.search(key_term, search_sub_region) is not None: 

    writeLineToMatchesFile(matches_fd, ignored, 

categories, key_term, cds_search_region) 

    return True 

  

 return False 

 

 

def parseSearchRegionFile(input_sr_fn, matches_fn): 

 import re 

 

 with open(input_sr_fn, 'r') as ifd: 

  with open(matches_fn, 'w') as mfd: 

   mfd.write("Ignored (True/False)\tCategories 

(c1[,c2,...,cN])\tSearch Term\tCDS Region\n") 

 

   cds_search_region = [] 

 

   # All data is important. Read through all CDS regions 

separately and search through them. 

   # Each CDS region begins with CDS and ends with another 

CDS record or the end of file 

 

   # grab first line (always a CDS line) 

   line = ifd.readline() 

   tag_word = line.rstrip('\n').lstrip(' ').split(' ')[0] 

   cds_search_region.append(line) 

   

   # grab the next line 
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   line = ifd.readline() 

   tag_word = line.rstrip('\n').lstrip(' ').split(' ')[0] 

   while line != "": 

    while line != "" and tag_word != "CDS": 

     cds_search_region.append(line) 

     line = ifd.readline() 

     tag_word = line.rstrip('\n').lstrip(' 

').split(' ')[0] 

       

    # search the region 

    searchCDSRegion(cds_search_region, mfd) 

    cds_search_region = [] 

    

    # grab the next line 

    cds_search_region.append(line) 

    line = ifd.readline() 

    tag_word = line.rstrip('\n').lstrip(' 

').split(' ')[0] 

 

# ==== # 

# MAIN # 

# ==== # 

 

if __name__ == "__main__": 

 

 import sys 

  

 # handle args 

 plasmid_accession, input_search_regions_dir, output_matches_dir = 

handleArgs() 

 

 # set some helpful vars 

 isrn = input_search_regions_dir + '/' + plasmid_accession + 

"_searchRegions.txt" 

 mfn = output_matches_dir + '/' + plasmid_accession + "_matches.tsv" 

 

 # search the search regions file for matches 

 parseSearchRegionFile(isrn, mfn) 

  

 # exit 

 sys.exit(0) 

 
 

Step 12. Generate Plasmid CSVs 

Input: This Python program requires 5 inputs. 1- The accession number of the plasmid it will 

generate a CSV file for. 2- The directory where the output CSV file is to be placed. 3- The 

directory where the plasmid fasta file is located. We assume it is named after the pattern 

${ACCESSION}.fasta. 4- The directory where the input plasmid matches file is located. We 

assume it is named after the pattern ${ACCESSION}_matches.tsv. 5- The directory where 
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the input incompatibility groups (derived from the BLAST results) are located. We assume it 

is named after the pattern ${ACCESSION}_families.list. 

 
Output: One comma-separated value file. It will be placed in the directory specified in the 

input position 2. We assume the output file will be named after the following pattern: 

${ACCESSION}.csv. The columns of the file are as follows: 

 
"Accession #", "Plasmid Length", "Antimicrobial Resistance CDS", "Antimicrobial 

Resistance CDS %", "Beta-lactamase CDS", "Beta-lactamase CDS %", "Beta-lactamase 

Special (Carbapenem*,IMP,KPC,NDM,VIM) Copy #", "Beta-lactamase Special 

(Carbapenem*,IMP,KPC,NDM,VIM) Copy # % of Beta-lactamase", "Beta-lactamase 

Special (Carbapenem*,IMP,KPC,NDM,VIM) Absent (Yes/No)", "Plasmid Transfer 

CDS", "Plasmid Transfer CDS %", "Toxin/Antitoxin System CDS", "Toxin/Antitoxin 

System CDS %", "Toxin/Antitoxin System Present (Yes/No)", "DNA 

Maintenance/Modification CDS", "DNA Maintenance/Modification CDS %", "DNA 

Maintenance/Modification Special (mucA,mucB,polymerase,umuC,umuD) Copy #", 

"DNA Maintenance/Modification Special (mucA,mucB,polymerase,umuC,umuD) Copy 

# % of DNA Maintenance/Modification", "DNA Maintenance/Modification Special 

(mucA,mucB,polymerase,umuC,umuD) Copy # % of Total", "DNA 

Maintenance/Modification Special (mucA,mucB,polymerase,umuC,umuD) Present 

(Yes/No)", "Mobile Genetic Elements CDS", "Mobile Genetic Elements CDS %", 

"Hypothetical Genes CDS", "Hypothetical Genes CDS %", "Other CDS", "Other CDS 

%", "Total CDS", "Incompatibility Groups" 

 
Code: 
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Bash Command 

 
while read ifn 

do 

  ACCESSION=`basename "${ifn}" ".fasta"`   

 

  python3 generatePlasmidCSV.py \ 

   "${ACCESSION}" \ 

   plasmid_csv \ 

   plasmid_fasta \ 

   plasmid_matches \ 

   blast_results 

 

done < <(ls -1 plasmid_fasta/*.fasta) 

 
Python Version 
 
Python 3.6.4 (https://www.python.org). 
 
Python Script (generatePlasmidCSV.py) 
 

# ========= # 

# FUNCTIONS # 

# ========= # 

 

def handleArgs(): 

 import sys 

 

 if len(sys.argv) != 6: 

  sys.stderr.write("\n\tERROR: You must provide 5 

arguments\n\t\t1- plasmid accession\n\t\t2- output csv dir\n\t\t3- 

input fasta dir\n\t\t4- input matches dir\n\t\t5- input incompatibility 

groups blast output dir\n\n") 

  sys.exit(1) 

  

 plasmid_accession = sys.argv[1] 

 output_csv_dir = sys.argv[2].rstrip('/') 

 input_fasta_and_length_dir = sys.argv[3].rstrip('/') 

 input_matches_dir = sys.argv[4].rstrip('/') 

 input_incompatibility_groups_blast_output_dir = 

sys.argv[5].rstrip('/') 

 

 return plasmid_accession, output_csv_dir, input_fasta_and_length_dir, 

input_matches_dir, input_incompatibility_groups_blast_output_dir 

 

def CSVify(some_str): 

 return '"' + some_str + '"' 

 

def getPlasmidLength(input_length_fn): 

 with open(input_length_fn, 'r') as ifd: 

  return int(ifd.readline().rstrip('\n')) 

 

def getRegionCounts(categories): 

 cats = [ "Antimicrobial Resistance", "Beta-lactamase", "Beta-lactamase 
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Special",  

  "Plasmid Transfer", "Toxin System", "DNA Maintenance",  

  "DNA Maintenance Special", "Mobile Genetic Elements", 

"Hypothetical Genes", "Other" ] 

  

 counts = [0] * len(cats) 

 

 category_counts = {} 

 

 for category in sorted(categories): 

  if not category in category_counts: 

   category_counts[category] = 0 

  category_counts[category] += 1 

  

 for i,cat in enumerate(cats): 

  counts[i] = category_counts[cat] if cat in category_counts 

else 0 

 

 return counts 

 

 

def updateCDScounts(cds_counts, cds_region_counts): 

 for i,cds_region_count in enumerate(cds_region_counts): 

  cds_counts[i] += cds_region_count 

  

 return cds_counts 

 

def parseMatchesFile(matches_fn): 

 import re 

 

 with open(matches_fn, 'r') as ifd: 

  cds_counts = [0] * 10 # 10 CDS related columns in output 

 

  # skip past the TSV header line 

  ifd.readline() 

 

  # grab first data line 

  line = ifd.readline() 

  

  while line != "": 

   fields = line.rstrip('\n').split('\t') 

 

   ignore = True if fields[0] == "True" else False 

   categories = fields[1].split(',') 

   key_term = fields[2] 

   cds_search_region = fields[3] 

 

   if not ignore: 

    cds_counts = updateCDScounts(cds_counts, 

getRegionCounts(categories) ) 

   

   # grab the next line 

   line = ifd.readline() 

   tag_word = line.rstrip('\n').lstrip(' ').split(' ')[0] 

 

  return cds_counts 
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def getPercentOfTotal(count, total): 

 if total: 

  return count / total 

 else: 

  return "NA" 

 

def convertCdsInfoToOutputStr(antimicrob_resist_cds_count, 

beta_lact_cds_count, beta_lact_special_copy_num, 

plasmid_transfer_cds_count, \ 

  toxin_cds_count, dna_maint_cds_count, 

dna_maint_special_copy_num, mobile_genetic_elements_cds_count, \ 

  hypothetical_genes_cds_count, other_cds_count): 

  

 # initialize output list (will eventually become a giant string). Each 

item will need to be easily converted to a string using str. 

 output = [] 

 

 # find the total num of cds regions 

 total_cds_count = sum((antimicrob_resist_cds_count, 

plasmid_transfer_cds_count, toxin_cds_count, \ 

  dna_maint_cds_count, mobile_genetic_elements_cds_count, 

hypothetical_genes_cds_count, other_cds_count)) 

 

 # append columns to output 

 

 # antimicrob resist (w/ beta lact) 

 #  antimicrob resist 

 output.append(antimicrob_resist_cds_count) # count 

 output.append(getPercentOfTotal(antimicrob_resist_cds_count, 

total_cds_count)) # percent of total 

 #  beta lact 

 output.append(beta_lact_cds_count) # count 

 output.append(getPercentOfTotal(beta_lact_cds_count, total_cds_count)) 

# percent of total 

  #   special copy num 

 output.append(beta_lact_special_copy_num) # count 

 output.append(getPercentOfTotal(beta_lact_special_copy_num, 

beta_lact_cds_count)) # percent of beta lact 

 output.append(getPercentOfTotal(beta_lact_special_copy_num, 

total_cds_count)) # percent of total 

 output.append("No" if beta_lact_special_copy_num else "Yes") # absent 

(Yes/No) 

 

 # plasmid transfer 

 output.append(plasmid_transfer_cds_count) # count 

 output.append(getPercentOfTotal(plasmid_transfer_cds_count, 

total_cds_count)) # percent of total 

 

 # toxin system 

 output.append(toxin_cds_count) # count 

 output.append(getPercentOfTotal(toxin_cds_count, total_cds_count)) # 

percent of total 

 output.append("Yes" if toxin_cds_count else "No") # present (Yes/No) 

 

 # dna maint 

 output.append(dna_maint_cds_count) # count 

 output.append(getPercentOfTotal(dna_maint_cds_count, total_cds_count)) 
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# percent of total 

  #  special copy num 

 output.append(dna_maint_special_copy_num) # count 

 output.append(getPercentOfTotal(dna_maint_special_copy_num, 

dna_maint_cds_count)) # percent of dna maint 

 output.append(getPercentOfTotal(dna_maint_special_copy_num, 

total_cds_count)) # percent of total 

 output.append("Yes" if dna_maint_special_copy_num else "No") # present 

(Yes/No) 

 

 # mobile genetic elements 

 output.append(mobile_genetic_elements_cds_count) # count 

 output.append(getPercentOfTotal(mobile_genetic_elements_cds_count, 

total_cds_count)) # percent of total 

 

 # hypothetical genes 

 output.append(hypothetical_genes_cds_count) # count 

 output.append(getPercentOfTotal(hypothetical_genes_cds_count, 

total_cds_count)) # percent of total 

 

 # other (/unknown) 

 output.append(other_cds_count) # count 

 output.append(getPercentOfTotal(other_cds_count, total_cds_count)) # 

percent of total 

 

 # total 

 output.append(total_cds_count) # count 

 

 # convert all elements to str, join by ",", and add leading and 

trailing " 

 output = CSVify("\",\"".join(list(map(str, output)))) 

 

 # return 

 return output 

 

def getIncompatibilityGroups(input_incompatibility_groups_fn): 

 with open(input_incompatibility_groups_fn, 'r') as ifd: 

  return [line.rstrip('\n') for line in ifd] 

 

# ==== # 

# MAIN # 

# ==== # 

 

if __name__ == "__main__": 

 

 import sys 

  

 # handle args 

 plasmid_accession, output_csv_dir, input_fasta_and_length_dir, 

input_matches_dir, input_incompatibility_groups_blast_output_dir = 

handleArgs() 

 

 # set some helpful vars 

 ocn = output_csv_dir + '/' + plasmid_accession + ".csv" 

 ifn = input_fasta_and_length_dir + '/' + plasmid_accession + ".fasta" 

 iln = input_fasta_and_length_dir + '/' + plasmid_accession + ".length" 

 mfn = input_matches_dir + '/' + plasmid_accession + "_matches.tsv" 
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 iign = input_incompatibility_groups_blast_output_dir + '/' + 

plasmid_accession + "_families.list" 

 

 csv_header = [ "Accession #",  

  "Plasmid Length",  

  "Antimicrobial Resistance CDS", "Antimicrobial Resistance CDS 

%",  

  "Beta-lactamase CDS","Beta-lactamase CDS %", "Beta-lactamase 

Special (Carbapenem*,IMP,KPC,NDM,VIM) Copy #", "Beta-lactamase Special 

(Carbapenem*,IMP,KPC,NDM,VIM) Copy # % of Beta-lactamase", "Beta-

lactamase Special (Carbapenem*,IMP,KPC,NDM,VIM) Copy # % of Total", 

"Beta-lactamase Special (Carbapenem*,IMP,KPC,NDM,VIM) Absent (Yes/No)",  

  "Plasmid Transfer CDS", "Plasmid Transfer CDS %",  

  "Toxin/Antitoxin System CDS", "Toxin/Antitoxin System CDS %", 

"Toxin/Antitoxin System Present (Yes/No)",  

  "DNA Maintenance/Modification CDS", "DNA 

Maintenance/Modification CDS %", "DNA Maintenance/Modification Special 

(mucA,mucB,polymerase,umuC,umuD) Copy #", "DNA Maintenance/Modification 

Special (mucA,mucB,polymerase,umuC,umuD) Copy # % of DNA 

Maintenance/Modification", "DNA Maintenance/Modification Special 

(mucA,mucB,polymerase,umuC,umuD) Copy # % of Total", "DNA 

Maintenance/Modification Special (mucA,mucB,polymerase,umuC,umuD) 

Present (Yes/No)",  

  "Mobile Genetic Elements CDS", "Mobile Genetic Elements CDS 

%", 

  "Hypothetical Genes CDS", "Hypothetical Genes CDS %",  

  "Other CDS", "Other CDS %",  

  "Total CDS",  

  "Incompatibility Groups" ] 

 

 # get necessary information 

 # get CSV Header 

 csv_header_output_str = CSVify("\",\"".join(csv_header)) 

  

 # get plasmid accession # 

 plasmid_accession_output_str = CSVify(plasmid_accession) 

 

 # get plasmid length 

 plasmid_length = getPlasmidLength(iln) 

 plasmid_length_output_str = CSVify(str(plasmid_length)) 

 

 #  get CDS info (Antimicrobial Resistance CDS (%) ... Total CDS) 

 cds_info = parseMatchesFile(mfn) 

 cds_info_output_str = convertCdsInfoToOutputStr(*cds_info) 

  

 # get incompatibility groups 

 incompatibility_groups = getIncompatibilityGroups(iign) 

 incompatibility_groups_output_str = 

CSVify(','.join(incompatibility_groups)) if len(incompatibility_groups) 

> 0 else CSVify("NA") 

 

 # write output 

 with open (ocn, 'w') as ocd: 

  # csv header line 

  ocd.write(csv_header_output_str + '\n') # csv header 

 

  # csv data line 
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  ocd.write(plasmid_accession_output_str + ',') # accession # 

  ocd.write(plasmid_length_output_str + ',') # plasmid length 

  ocd.write(cds_info_output_str + ',') # CDS info (Antimicrobial 

Resistance CDS (%) ... Total CDS) 

  ocd.write(incompatibility_groups_output_str + '\n') # 

incompatibility groups 

 

 # exit 

 sys.exit(0) 

 
Step 13. Create CSVs from Plasmid CSVs 

Input: The inputs required are the group list files that contain the plasmids in each group (see 

step #4) and the individual plasmid CSVs (see step #12). The group list files are assumed to 

be in the directory groups and named after the pattern ${GROUP}.list. The plasmid CSVs 

are assumed to be in the plasmid_csv directory and named after the pattern 

${ACCESSION}.csv. 

 

Output: One comma-separated value file containing the same header line as all the plasmid 

CSVs and a concatenation of the non-header lines from the plasmid CSVs. We assume the 

output file will be in the directory group_csv and will be named after the following pattern: 

${GROUP}.csv. 

Code: 
 

Bash Command 
 
while read ifn 

do 

  GROUP=`basename "${ifn}" ".list"` 

  ofn="group_csv/${GROUP}.csv" 

 

  # get and write a header 

  hfn=plasmid_csv/`head -q -n 1 "${ifn}"`".csv" 

  head -q -n 1 "${hfn}" > "${ofn}" 

 

  # get and write the non-headers lines 

  nhfns=`cat "${ifn}" | sed -r 's,^(.+)$,plasmid_csv/\1.csv,' | 

tr '\n' ' '` 

  tail -q -n +2 ${nhfns} >> "${ofn}" 

 

done < <(ls -1 groups/*.list) 



 

90 
 

 
sed Note 

sed must be GNU (https://www.gnu.org) sed. -r does not enable extended regular 

expression syntax with BSD (http://www.bsd.org) sed. 

 

Step 14. Create Group Matches from Plasmid Matches 

Note that this step is not technically necessary to generate the desired output (the group CSV 

files (step #13) and the group statistics files (step #15)). This is really for convenience in 

inspecting results. 

Input: The inputs required are the group list files that contain the plasmids in each group (see 

step #4) and the individual plasmid matches (see step #11). The group list files are assumed 

to be in the directory groups and named after the pattern ${GROUP}.list. The plasmid 

matches are assumed to be in the plasmid_matches directory and named after the pattern 

${ACCESSION}_matches.tsv. 

Output: One text file containing the matches for the group. We assume the output file will be 

in the directory group_matches and will be named after the following pattern: 

${GROUP}_matches.tsv. 

Code: 
 
Bash Command 

 
while read ifn 

do 

  GROUP=`basename "${ifn}" ".list"` 

  ofn="group_matches/${GROUP}_matches.tsv" 

 

  fns=`cat "${ifn}" | sed -r 

's,^(.+)$,plasmid_matches/\1_matches.tsv,' | tr '\n' ' '` 

  head -q -n 1 ${fns} | head -n 1 > "${ofn}" 

  tail -q -n +2 ${fns} >> "${ofn}" 

 

done < <(ls -1 groups/*.list) 
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sed Note 
 
sed must be GNU (https://www.gnu.org) sed. -r does not enable extended regular 

expression syntax with BSD (http://www.bsd.org) sed 

Step 15. Calculate Group Statistics from Group CSV 

Input: This Python program requires 2 inputs. 1- The CSV file for a group. Here, we show 

the CSV files in the directory group_csv, named after the pattern ${GROUP}.csv. 2- The 

output statistics file for the group. Here, we show the statistics files in the directory 

group_stats, named after the pattern ${GROUP}.stats. 

Output: One text file named as described in position 2 of the input to the Python program. 

That file is formatted as follows: 

 
GROUP_NAME 

=== 

Total # of Plasmids: ## 

 

Incompatibility Groups Structure: 

 Inc.         Plasmid   Size         Size 

 Group        Count     Mean         St. Dev. 

 IncGrp1      #         #.###        #.### 

 IncGrp2      #         ######.###   #####.### 

 . 

 . 

 . 

 IncGrpN      #         #####.###    ####.### 

  

Plasmids Summary: 

      Min: #### 

      Max: ###### 

   Median: ##### 

     Mean: ######.### 

 St. Dev.: ######.### 

 

Key Words Structure: 

 Key                      Plasmid   Size         Size 

 Word                     Count     Mean         St. Dev. 

 anti_microb_resist       ##        ######.###   ######.### 

 anti_microb_resist_not   #         ######.###   ###### 

 beta_lact                ##        ######.###   ######.### 

 beta_lact_not            #         ######.###   ###### 

 plasmid_transfer         ##        ######.###   ######.### 

 plasmid_transfer_not     #         #####.###    #####.### 
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 toxin                    ##        ######.###   #####.### 

 toxin_not                ##        #####.###    ######.### 

 dna_maint                ##        ######.###   ######.### 

 dna_maint_not            #         ######.###   ###### 

 mob_gen_elem             ##        ######.###   ######.### 

 mob_gen_elem_not         #         ######.###   ######.### 

 hypo_genes               ##        ######.###   ######.### 

 hypo_genes_not           #         ######.###   ###### 

 other                    ##        ######.###   ######.### 

 other_not                #         ######.###   ######.### 

 

Plasmid Structure: 

 This information is already reported in the CSV file: GROUP_NAME.csv 

 
Code: 
 
Bash Command 

 
while read gfn 

do 

  GROUP=`basename "${gfn}" ".list"` 

 

  ifn="group_csv/${GROUP}.csv" 

  ofn="group_stats/${GROUP}.stats"   

 

  python3 calcGroupCSVstats.py\ 

   "${ifn}" \ 

   "${ofn}" 

 

done < <(ls -1 groups/*.list) 

 
Python Version 
 
Python 3.6.4 (https://www.python.org). 
 
Python Script (calcGroupCSVstats.py) 
 

############# 

# FUNCTIONS # 

############# 

 

def handleArgs(args, sefd, sexit): 

 if len(args) != 3: 

  sefd.write("\n\tERROR: Incorrect arguments\n\t\t1- input group 

csv file\n\t\t2- output text file\n\n") 

  sexit(1) 

  

 ifn = sys.argv[1] 

 ofn = sys.argv[2] 

 

 return ifn, ofn 

 

def writeIncGroupsStructure(ofd, inc_groups): 
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 output = [] 

 sizes = [] 

  

 header1 = ("Inc.", "Plasmid", "Size", "Size") 

 header2 = ("Group", "Count", "Mean", "St. Dev.") 

 

 output.append(header1) 

 sizes.append(tuple(map(len, output[-1]))) 

 output.append(header2) 

 sizes.append(tuple(map(len, output[-1]))) 

 

 for inc_group in sorted(inc_groups.keys()): 

  if inc_group != "NA": 

   lengths = inc_groups[inc_group] 

   count = len(lengths) 

   mean = count 

   st_dev = 0 

   if count > 1: 

    mean = stats.mean(lengths) 

    st_dev = stats.stdev(lengths) 

   output.append((inc_group, str(count), 

"{0:.3f}".format(mean), "{0:.3f}".format(st_dev))) 

   sizes.append(tuple(map(len, output[-1]))) 

  

 c0 = 0 

 c1 = 0 

 c2 = 0 

 c3 = 0 

 for size in sizes: 

  if size[0] > c0: 

   c0 = size[0] 

  if size[1] > c1: 

   c1 = size[1] 

  if size[2] > c2: 

   c2 = size[2] 

  if size[3] > c3: 

   c3 = size[3] 

  

 ofd.write("Incompatibility Groups Structure:\n") 

 for o,s in zip(output,sizes): 

  ofd.write('\t') 

  ofd.write(o[0] + ' ' * (c0 - s[0] + 3)) 

  ofd.write(o[1] + ' ' * (c1 - s[1] + 3)) 

  ofd.write(o[2] + ' ' * (c2 - s[2] + 3)) 

  ofd.write(o[3] + ' ' * (c3 - s[3] + 3)) 

  ofd.write('\n') 

 

def getGroupStructureMeanStr(lengths): 

 if len(lengths) > 0: 

  return "{0:.3f}".format(stats.mean(lengths)) 

 else: 

  return "NA" 

 

def getGroupStructureStDevStr(lengths): 

 if len(lengths) > 1: 

  return "{0:.3f}".format(stats.stdev(lengths)) 

 elif len(lengths) < 1: # == 0 
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  return "NA" 

 else: # == 1 

  return str(lengths[0]) 

 

def writeGroupStructure(ofd, all_group_structure_fields): 

 

 # set up the group structure arrays (to be populated with plasmid 

lengths) 

 anti_microb_resist = [] 

 anti_microb_resist_not = [] 

 beta_lact = [] 

 beta_lact_not = [] 

 plasmid_transfer = [] 

 plasmid_transfer_not = [] 

 toxin = [] 

 toxin_not = [] 

 dna_maint = [] 

 dna_maint_not = [] 

 mob_gen_elem = [] 

 mob_gen_elem_not = [] 

 hypo_genes = [] 

 hypo_genes_not = [] 

 other = [] 

 other_not = [] 

 

 # extract the information and load it into the group structure arrays 

 for group_structure_fields in all_group_structure_fields: 

  # if three is a count, add it. else add it to the not. We're 

adding the length. 

  length = group_structure_fields[0] 

  anti_microb_resist_count = group_structure_fields[1] 

  beta_lact_count = group_structure_fields[2] 

  plasmid_transfer_count = group_structure_fields[3] 

  toxin_count = group_structure_fields[4] 

  dna_maint_count = group_structure_fields[5] 

  mob_gen_elem_count = group_structure_fields[6] 

  hypo_genes_count = group_structure_fields[7] 

  other_count = group_structure_fields[8] 

 

  if anti_microb_resist_count: 

   anti_microb_resist.append(length) 

  else: 

   anti_microb_resist_not.append(length) 

  if beta_lact_count: 

   beta_lact.append(length) 

  else: 

   beta_lact_not.append(length) 

  if plasmid_transfer_count: 

   plasmid_transfer.append(length) 

  else: 

   plasmid_transfer_not.append(length) 

  if toxin_count: 

   toxin.append(length) 

  else: 

   toxin_not.append(length) 

  if dna_maint_count: 

   dna_maint.append(length) 
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  else: 

   dna_maint_not.append(length) 

  if mob_gen_elem_count: 

   mob_gen_elem.append(length) 

  else: 

   mob_gen_elem_not.append(length) 

  if hypo_genes_count: 

   hypo_genes.append(length) 

  else: 

   hypo_genes_not.append(length) 

  if other_count: 

   other.append(length) 

  else: 

   other_not.append(length) 

 

 # for each of the arrays, calc mean & st. dev., write to file 

 

 # calc 

 anti_microb_resist_mean_str = 

getGroupStructureMeanStr(anti_microb_resist) 

 anti_microb_resist_stdev_str = 

getGroupStructureStDevStr(anti_microb_resist) 

 anti_microb_resist_not_mean_str = 

getGroupStructureMeanStr(anti_microb_resist_not) 

 anti_microb_resist_not_stdev_str = 

getGroupStructureStDevStr(anti_microb_resist_not) 

 beta_lact_mean_str = getGroupStructureMeanStr(beta_lact) 

 beta_lact_stdev_str = getGroupStructureStDevStr(beta_lact) 

 beta_lact_not_mean_str = getGroupStructureMeanStr(beta_lact_not) 

 beta_lact_not_stdev_str = getGroupStructureStDevStr(beta_lact_not) 

 plasmid_transfer_mean_str = getGroupStructureMeanStr(plasmid_transfer) 

 plasmid_transfer_stdev_str = 

getGroupStructureStDevStr(plasmid_transfer) 

 plasmid_transfer_not_mean_str = 

getGroupStructureMeanStr(plasmid_transfer_not) 

 plasmid_transfer_not_stdev_str = 

getGroupStructureStDevStr(plasmid_transfer_not) 

 toxin_mean_str = getGroupStructureMeanStr(toxin) 

 toxin_stdev_str = getGroupStructureStDevStr(toxin) 

 toxin_not_mean_str = getGroupStructureMeanStr(toxin_not) 

 toxin_not_stdev_str = getGroupStructureStDevStr(toxin_not) 

 dna_maint_mean_str = getGroupStructureMeanStr(dna_maint) 

 dna_maint_stdev_str = getGroupStructureStDevStr(dna_maint) 

 dna_maint_not_mean_str = getGroupStructureMeanStr(dna_maint_not) 

 dna_maint_not_stdev_str = getGroupStructureStDevStr(dna_maint_not) 

 mob_gen_elem_mean_str = getGroupStructureMeanStr(mob_gen_elem) 

 mob_gen_elem_stdev_str = getGroupStructureStDevStr(mob_gen_elem) 

 mob_gen_elem_not_mean_str = getGroupStructureMeanStr(mob_gen_elem_not) 

 mob_gen_elem_not_stdev_str = 

getGroupStructureStDevStr(mob_gen_elem_not) 

 hypo_genes_mean_str = getGroupStructureMeanStr(hypo_genes) 

 hypo_genes_stdev_str = getGroupStructureStDevStr(hypo_genes) 

 hypo_genes_not_mean_str = getGroupStructureMeanStr(hypo_genes_not) 

 hypo_genes_not_stdev_str = getGroupStructureStDevStr(hypo_genes_not) 

 other_mean_str = getGroupStructureMeanStr(other) 

 other_stdev_str = getGroupStructureStDevStr(other) 

 other_not_mean_str = getGroupStructureMeanStr(other_not) 
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 other_not_stdev_str = getGroupStructureStDevStr(other_not) 

 

 # write to file 

 ofd.write("Key Words Structure:\n") 

 

 #  create columned output 

 output = [] 

 sizes = [] 

 

 header1 = ("Key", "Plasmid", "Size", "Size") 

 header2 = ("Word", "Count", "Mean", "St. Dev.") 

 output.append(header1) 

 output.append(header2) 

  

 output.append( ( "anti_microb_resist", str(len(anti_microb_resist)), 

anti_microb_resist_mean_str, anti_microb_resist_stdev_str ) ) 

 output.append( ( "anti_microb_resist_not", 

str(len(anti_microb_resist_not)), anti_microb_resist_not_mean_str, 

anti_microb_resist_not_stdev_str ) ) 

 output.append( ( "beta_lact", str(len(beta_lact)), beta_lact_mean_str, 

beta_lact_stdev_str ) ) 

 output.append( ( "beta_lact_not", str(len(beta_lact_not)), 

beta_lact_not_mean_str, beta_lact_not_stdev_str ) ) 

 output.append( ( "plasmid_transfer", str(len(plasmid_transfer)), 

plasmid_transfer_mean_str, plasmid_transfer_stdev_str ) ) 

 output.append( ( "plasmid_transfer_not", 

str(len(plasmid_transfer_not)), plasmid_transfer_not_mean_str, 

plasmid_transfer_not_stdev_str ) ) 

 output.append( ( "toxin", str(len(toxin)), toxin_mean_str, 

toxin_stdev_str ) ) 

 output.append( ( "toxin_not", str(len(toxin_not)), toxin_not_mean_str, 

toxin_not_stdev_str ) ) 

 output.append( ( "dna_maint", str(len(dna_maint)), dna_maint_mean_str, 

dna_maint_stdev_str ) ) 

 output.append( ( "dna_maint_not", str(len(dna_maint_not)), 

dna_maint_not_mean_str, dna_maint_not_stdev_str ) ) 

 output.append( ( "mob_gen_elem", str(len(mob_gen_elem)), 

mob_gen_elem_mean_str, mob_gen_elem_stdev_str ) ) 

 output.append( ( "mob_gen_elem_not", str(len(mob_gen_elem_not)), 

mob_gen_elem_not_mean_str, mob_gen_elem_not_stdev_str ) ) 

 output.append( ( "hypo_genes", str(len(hypo_genes)), 

hypo_genes_mean_str, hypo_genes_stdev_str ) ) 

 output.append( ( "hypo_genes_not", str(len(hypo_genes_not)), 

hypo_genes_not_mean_str, hypo_genes_not_stdev_str ) ) 

 output.append( ( "other", str(len(other)), other_mean_str, 

other_stdev_str ) ) 

 output.append( ( "other_not", str(len(other_not)), other_not_mean_str, 

other_not_stdev_str ) ) 

 

 for o in output: 

  sizes.append( tuple(map(len, o))) 

 

 c0 = 0 

 c1 = 0 

 c2 = 0 

 c3 = 0 

 for size in sizes: 
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  if size[0] > c0: 

   c0 = size[0] 

  if size[1] > c1: 

   c1 = size[1] 

  if size[2] > c2: 

   c2 = size[2] 

  if size[3] > c3: 

   c3 = size[3] 

 

 #  actually write to file 

 for o,s in zip(output,sizes): 

  ofd.write('\t') 

  ofd.write(o[0] + ' ' * (c0 - s[0] + 3)) 

  ofd.write(o[1] + ' ' * (c1 - s[1] + 3)) 

  ofd.write(o[2] + ' ' * (c2 - s[2] + 3)) 

  ofd.write(o[3] + ' ' * (c3 - s[3] + 3)) 

  ofd.write('\n') 

 

######## 

# MAIN # 

######## 

if __name__ == "__main__": 

 

 import sys 

 import statistics as stats 

   

 ifn, ofn = handleArgs(sys.argv, sys.stderr, sys.exit) 

 

 group_name = '.'.join(ifn.strip().split('/')[-1].split('.')[:-1]) 

 

 with open(ofn, 'w') as ofd: 

 

  # write the groupname title to the output 

  ofd.write(group_name + '\n' + '=' * len(group_name) + '\n') 

 

  # parse the input file and extract necessary information 

  with open(ifn, 'r') as ifd: 

 

   # skip past header line 

   ifd.readline() 

 

   # set some handy vars 

   total_number_of_plasmids = 0 

   plasmid_lengths = [] 

   all_inc_groups = {} 

   all_group_structure_fields = [] 

 

   # loop through each plasmid_record (line) in the input 

file 

   for plasmid_record in ifd: 

    # increment the total num of plasmids (one 

plasmid exists per line) 

    total_number_of_plasmids += 1 

 

    # split the record into its 28 separate 

columns/fields 

    fields = 
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plasmid_record.rstrip('\n').rstrip('"').lstrip('"').split("\",\"") 

 

    plasmid_accession = fields[0].strip('"') 

    plasmid_length = int(fields[1].strip('"')) 

    inc_groups = fields[28].strip('"').split(',') 

    group_structure_fields = tuple(map(lambda 

field: int(field.strip('"')), (fields[1], fields[2], fields[4], 

fields[10], fields[12], fields[15], fields[21], fields[23], 

fields[25]))) 

 

    # capture length information 

    plasmid_lengths.append(plasmid_length) 

 

    # capture info about inc groups 

    for inc_group in inc_groups: 

     if inc_group not in all_inc_groups: 

      all_inc_groups[inc_group] = [] 

    

 all_inc_groups[inc_group].append(plasmid_length) 

 

    # capture info about group structure 

   

 all_group_structure_fields.append(group_structure_fields) 

 

 

  # write stuff to the output file 

  # total number of plasmids 

  ofd.write("Total # of Plasmids: " + 

str(total_number_of_plasmids) + '\n') 

  ofd.write('\n') # extra newline 

 

  # inc groups structure 

  writeIncGroupsStructure(ofd, all_inc_groups) 

  ofd.write('\n') # extra newline 

 

  # group plasmids size 

  ofd.write("Plasmids Summary:\n") 

  ofd.write("\t     Min: " + str(min(plasmid_lengths)) + '\n') 

  ofd.write("\t     Max: " + str(max(plasmid_lengths)) + '\n') 

  ofd.write("\t  Median: " + str(stats.median(plasmid_lengths)) 

+ '\n') 

  ofd.write("\t    Mean: " + 

"{0:.3f}".format(stats.mean(plasmid_lengths)) + '\n') 

  ofd.write("\tSt. Dev.: " + 

"{0:.3f}\n".format(stats.stdev(plasmid_lengths)) if 

len(plasmid_lengths) > 1 else '0' + '\n') 

  ofd.write('\n') # extra newline 

 

  # group structure 

  writeGroupStructure(ofd, all_group_structure_fields) 

  ofd.write('\n') # extra newline 

 

  # plasmid structure 

  ofd.write("Plasmid Structure:\n") 

  ofd.write("\tThis information is already reported in the CSV 

file: " + ifn.split('/')[-1] + '\n') 

  ofd.write('\n') # extra newline 
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APPENDIX C 

TABLE 4: CR-plasmid accession numbers  

 

CP008933 CP006661 CP018974 CP021534 CP021961 CP024836 CP026577 JX101693 KF732966

KX214669 CP006799 CP018977 CP021536 CP021962 CP024840 CP026584 JX104759 KF874496

KX214670 CP012902 CP018981 CP021546 CP022126 CP025006 CP026589 JX104760 KF874497

KX214671 CP012990 CP018989 CP021548 CP022574 CP025009 CP026590 JX193301 KF874498

KP873171 CP014757 CP018992 CP021682 CP022693 CP025010 EU855787 JX193302 KF874499

CP010881 CP015835 CP018999 CP021687 CP023488 CP025039 EU855788 JX283456 KF914891

CP025626 CP015991 CP019001 CP021692 CP023554 CP025141 FJ628167 JX397875 KF954759

KT362706 CP016035 CP019006 CP021699 CP023871 CP025144 GU585907 JX424614 KF954760

MF353156 CP016402 CP019010 CP021709 CP023895 CP025147 GU595196 JX430448 KF976405

AB616660 CP016403 CP019014 CP021716 CP023910 CP025148 HF955507 JX442975 KF977034

AB759690 CP016921 CP019017 CP021720 CP023914 CP025458 HG969995 JX461340 KF992018

AP012055 CP017937 CP019026 CP021734 CP023923 CP025463 HG969996 JX988621 KF998104

AP012208 CP017981 CP019053 CP021738 CP023926 CP025467 HG969997 KC311431 KJ146687

AP013064 CP018366 CP019073 CP021743 CP023928 CP025468 HG969998 KC405622 KJ146688

AP018137 CP018426 CP019774 CP021750 CP023938 CP025517 HG969999 KC788405 KJ146689

AP018138 CP018432 CP020049 CP021754 CP023942 CP025710 HQ451074 KC845573 KJ187751

AP018139 CP018436 CP020056 CP021756 CP023948 CP025948 HQ589350 KC887916 KJ187752

AP018141 CP018668 CP020059 CP021759 CP023952 CP025952 JF503991 KC887917 KJ413946

AP018142 CP018669 CP020066 CP021778 CP023959 CP025964 JF714412 KC958437 KJ440075

AP018143 CP018675 CP020068 CP021835 CP024039 CP025965 JF785549 KC999035 KJ440076

AP018144 CP018817 CP020075 CP021860 CP024192 CP026175 JN157804 KF017315 KJ577613

AP018146 CP018884 CP020110 CP021861 CP024522 CP026179 JN233705 KF182187 KJ588779

AP018147 CP018887 CP020119 CP021881 CP024529 CP026201 JN420336 KF220657 KJ653815

AP018454 CP018945 CP020848 CP021899 CP024557 CP026204 JN687470 KF220658 KJ721789

AP018455 CP018949 CP020854 CP021900 CP024805 CP026205 JN861072 KF250428 KJ721790

CP003224 CP018956 CP020902 CP021936 CP024818 CP026394 JQ349086 KF295829 KJ802404

CP003997 CP018959 CP021177 CP021941 CP024825 CP026395 JQ364967 KF534788 KJ802405

CP004366 CP018963 CP021206 CP021947 CP024828 CP026401 JQ824049 KF623109 KJ812998

CP004367 CP018968 CP021210 CP021952 CP024833 CP026474 JQ837276 KF701335 KJ933392

MF344563 MF042356 KY882285 KY093014 KX711880 KU862632 KU167609 KR559890 KJ958926

MF344564 MF042357 KY887590 KY130431 KX756453 KU886034 KU295131 KR822247 KJ958927

MF344565 MF042358 KY887591 KY270849 KX783439 KU934011 KU295132 KT148595 KM400601

MF344566 MF042359 KY887594 KY270850 KX783440 KX023261 KU295133 KT185451 KM877517

MF344567 MF133495 KY887595 KY271403 KX783441 KX062091 KU295134 KT345946 KM977631

MF344574 MF150120 KY887596 KY271413 KX786648 KX094555 KU295135 KT345947 KP125892

MF511773 MF156708 KY930324 KY271414 KX833071 KX154765 KU295136 KT725788 KP345882

MF547507 MF156709 KY930325 KY271415 KX868553 KX236178 KU302800 KT725789 KP776609

MF547508 MF156711 KY978631 KY288024 KX881941 KX276209 KU302801 KT982613 KP868646

MF547509 MF156713 LT009688 KY399972 KX928750 KX348144 KU302802 KT982615 KP868647

MF547510 MF168402 LT009689 KY399973 KX928751 KX348145 KU314941 KT982616 KP893385

MF547511 MF168403 LT216438 KY399974 KX928752 KX348146 KU318419 KT982618 KP900015

MF582638 MF168404 LT838197 KY399975 KX960109 KX397572 KU318421 KT989376 KP987218

MF679143 MF168405 MF042350 KY435936 KX960110 KX447767 KU647721 KT989598 KR059864

MF679147 MF168406 MF042351 KY463220 KY020154 KX470734 KU665641 KU051707 KR091915

MG049738 MF178139 MF042352 KY798505 KY041843 KX507346 KU665642 KU051708 KR351290

MG053313 MF344561 MF042353 KY798506 KY062156 KX674681 KU726588 KU051709 KR559888

MG271839 MF344562 MF042354 KY798507 KY093013 KX683284 KU761328 KU167608 KR559889

MG516907 MG516908 MG516909 MG516910 MG557998 MG557999 AM778842 CP011370 KC189475

KC543497 KC609322 KC609323 KP873172 KP975076 KU578314 KX169264 KX711879 KX889311

KY296095 KY494864 KY630469 MF168945 MF344578

Accession #



 

100 
 

APPENDIX D 

TABLE 5: Percent of plasmids belonging to each incompatibility group. 

Percent of plasmids Inc Group Percent of plasmids Inc Group 

0.22% IncA/C 13.68% IncN 

11.88% IncA/C2 0.67% IncN2 

0.22% IncB/O/K/Z 0.67% IncN3 

0.67% Col 0.22% IncP1 

1.35% Col440I 0.90% IncP6 

1.79% ColRNAI 1.35% IncQ1 

4.71% IncFIA 0.22% IncQ2 

12.78% IncFIB 8.97% IncR 

19.73% IncFII 2.24% repA 

2.24% IncHI1B 1.79% IncU 

0.45% IncHI2 13.23% IncX3 

0.45% IncHI2A 0.22% IncX4 

0.22% IncI1 0.90% IncX5 

0.90% IncI2 0.67% IncX6 

2.69% IncL/M 0.90% IncY 

  7.62% Unclassified 

(Note: Total is greater than 100% because some plasmids have multiple incompatibility 

groups) 
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APPENDIX E 

TABLE 6: Relative abundance of incompatibility groups among carbapenemase-carrying 

plasmids. 

 

Supplementary Table 4: Relative abundance of incompatibility groups among carbapenemase-carrying plasmids. 

Carbapenemase 

Family 

Incompatibility Groups (Percent of plasmids) 

IncA/C IncA/C2 IncB/O/K/Z Col Col440I ColRNAI IncFIA IncFIB IncFII IncHI1B IncHI2 

KPC 0.0% 4.0% 0.0% 0.0% 2.5% 4.0% 5.6% 18.2% 20.2% 0.0% 0.0% 

NDM 0.0% 17.9% 0.6% 0.0% 0.0% 0.0% 6.0% 10.7% 28.0% 6.0% 0.0% 

IMP 0.0% 22.4% 0.0% 0.0% 0.0% 0.0% 0.0% 2.0% 2.0% 0.0% 4.1% 

VIM 3.2% 16.1% 0.0% 9.7% 3.2% 0.0% 0.0% 6.5% 3.2% 0.0% 0.0% 

 

 
IncHI2A IncI1 IncI2 IncL/M IncN IncN2 IncN3 IncP1 IncP6 IncQ1 IncQ2 

KPC 0.0% 0.0% 2.0% 2.5% 17.7% 0.0% 1.0% 0.5% 1.5% 1.5% 0.5% 

NDM 0.0% 0.0% 0.0% 1.2% 3.0% 1.8% 0.0% 0.0% 0.0% 1.8% 0.0% 

IMP 4.1% 2.0% 0.0% 10.2% 34.7% 0.0% 2.0% 0.0% 0.0% 0.0% 0.0% 

VIM 0.0% 0.0% 0.0% 0.0% 12.9% 0.0% 0.0% 0.0% 3.2% 0.0% 0.0% 

 

 
IncR repA IncU IncX3 IncX4 IncX5 IncX6 IncY NA 

  
KPC 13.6% 5.1% 2.5% 5.6% 0.0% 1.5% 1.5% 1.5% 5.6% 

  
NDM 4.8% 0.0% 0.0% 29.2% 0.6% 0.0% 0.0% 0.6% 2.4% 

  
IMP 2.0% 0.0% 6.1% 0.0% 0.0% 2.0% 0.0% 2.0% 16.3% 

  
VIM 12.9% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 35.5% 

  
Note: Totals are greater than 100% because some plasmids carry more than one replicon type. 

 


