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ABSTRACT

Analysis of Nucleosome Mobility, Fragility, and Recovery: From Embryonic Stem Cells to
Invitrosomes

Ashley N. Wright
Department of Microbiology and Molecular Biology, BYU
Master of Science

Several factors direct the placement of specific nucleosomes, which in turn have the abil-
ity to regulate DNA accessibility. These factors include, but are not limited to, nucleotide
sequence preference, nucleotide modifications, the type of histones present within the nucleo-
some, and the presence of additional transcription factor or chromatin remodelers. A combi-
nation of these and other factors are responsible for tightly controlled efficient transcription
within the eukaryotic cell. In order to contribute to the understanding of these complicated
processes, three separate hypothesis-driven investigations were carried out. First, we looked
into nucleosome positioning and phasing within closely related cells lines. Second, we exam-
ined domain level nucleosome occupancy on various portions of the chromosome. Finally, we
generated a novel method that significantly reduces data loss in in vitro nucleosome reconsti-
tution experiments caused by nucleosome fragment-end bias. All three of our investigations
yielded separate results. First, by examining positions and phasing patterns within similar
cell types we find common patterns and minor differences within similar cell types. The
presence of minor differences in nucleosome positions may cause unique expression patterns.
Secondly, we found that decreased domain level nucleosome occupancy at the chromosome
arms is not caused by the presence of a class of nucleosomes, termed fragile nucleosomes.
Finally, we found that when our nucleosome recovery method is applied conservatively to
our dataset, it is possible to recover 80% of the lost nucleosome reconstitution data.

Keywords: epigenetic regulation, nucleosome positioning, in vitro nucleosome reconsitution
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CHAPTER 1. BACKGROUND

The most recent published draft of the human genome contains approximately three
billion base pairs [1, 2]. This enormous number of nucleotides is not found in one long
string, but rather packaged neatly into 23 chromosomes. With the exception of gamete cells
(i.e. female ova and male sperm cells), all the cells in our bodies have two copies of the
genome, such that each cell contains a total of more than six million base pairs. To put
this number into perspective, a single base pair is about 0.34 nanometers long, so six billion
base pairs should equal a total length of approximately two meters of DNA. If we estimate
the average human body to have about 50 trillion cells, this would suggest that there is a
total of 100 trillion meters of DNA within the human body. This may seem meaningless,
but consider the fact that the distance between the sun and the earth is about 150 billion
meters [3]. This means that the total length of all the DNA molecules in the body are long
enough to reach from the surface of our planet to the sun and back more than 300 times!
Yet this entire length of our genome is packaged within the microscopic space of the cell’s
nucleus whose diameter measures in at a mere six micrometers [4]. How is this possible?

The answer lies with a family of proteins called histones. Characterized in 1974, histones
are a family of small, positively charged proteins that share a common histone fold [5].
By using the electrostatic force generated by the attraction between the positive histone
proteins and the negative phosphate backbone of the DNA molecule, histones have the
ability to condense the DNA to a length six to seven times shorter than its original length
[6]. This combination of the DNA and histone proteins is called a nucleosome. Nucleosome
protein structure consists of an octomer containing two dimers made up of the histones H2A
and H2B and a tetramer made up of two of each of H3 and H4 histones [7]. Grooves in
the octomer act as a helical ramp around which the target DNA (approximately 147 bp) is
wrapped about 1.7 times in a left-handed manner [8]. Additional compaction is generated by

a fifth histone protein, H1, that wraps up the intervening DNA, termed linker DNA, bringing



neighboring nucleosomes closer together [9]. Further compaction involves additional complex
coiling of the DNA molecule until the well-known chromosome structures are achieved.

In addition to facilitating the first step of DNA compaction, nucleosomes are also the first
barrier the transcription machinery must overcome if successful gene expression is to take
place [10]. To illustrate this concept, consider the initial steps that must be taken before
the RNA polymerase can begin transcribing a gene. Almost all those steps involve the
interaction between a DNA binding protein (e.g. a transcription factor or an activator) and
target sequence found upstream or within the gene itself. The consequences of one or several
of those target sites being bound up in a nucleosome would prevent the essential protein-
DNA interactions that are required for the initiation of transcription. However, say that this
same nucleosome was shifted to the left or right. These essential sequences are now free to
interact, allowing transcription initiation to begin. Understanding nucleosome positions and
the factors that direct nucleosome positioning is key to our complete understanding of gene
regulation within our own bodies.

To illustrate the importance of a proper understanding the process of nucleosome posi-
tioning, consider the example of gene therapy. The principle behind this type of therapy is
simple; replace the native mutated DNA with a new functional copy [11]. Unfortunately,
several problems have arisen as this principle has been put in practice. A common problem
with gene therapy is that successive generations are unable express the new functioning copy,
despite the fact that the first generation of cells was successfully able to do so. It has been
suggested that this is a result of gene silencing caused by nucleosome placement [12]. The
new copy lacks the signals that prevent nucleosomes from generating heterochromatin over
the new copy, effectively silencing the new gene. Initial studies suggest that if the copy of
the DNA could be modified in such a way to prevent this form of epigenetic regulation, this
common problem would be solved (unpublished data). This problem illustrates the impor-
tance of understanding the process of nucleosome positioning within the cell. Having a more

complete understanding of the factors that determine where a nucleosome places itself and



how patterns of nucleosome positioning affect gene transcription will allow us to generate
medical therapies that could very well allow us to finally overcome diseases that are currently
incurable.

Over the last 20 years the list of factors that direct and regulate nucleosome positions
has begun to take shape. In general, these factors affect the nucleosome in one of two ways.
Either the factor affects energy of the steric hindrance to be overcome in order for the DNA
to bend thereby increasing or decreasing the favorability of nucleosome formation or it affects
the accessibility of the DNA to the nucleosome [6].

Numerous studies support the notion that nucleotide sequences have a significant effect
on nucleosome binding. Whole genome nucleosome mapping approaches show that nucle-
osomes, in general, prefer GC rich regions and avoid strings of poly-A/Ts [6, 13]. Several
studies measuring histone-binding affinities have found that high-affinity sequences generally
contain 10-11 periodic dinucleotide motifs [14, 15]. It is thought that this periodicity helps
to form and stabilize a favorable confirmation by minimizing the costs of DNA bending [12].
Specifically, there is a preference for G/C to be placed where the major groove is compressed
and A /T where the minor groove is compressed.

DNA methylation specifically has been shown to have a direct effect on nucleosome posi-
tioning. CpG methylation creates sites were the DNA becomes stiffer than the surrounding
DNA [16]. This creates instability if the sequence is bound up by a nucleosome, especially
so if the methylation is in a place where it would come between the histone core and the
DNA [17]. By generating unfavorable sites, methylation can change individual positions
as well as the positions of large groups of neighboring nucleosomes [17]. This in turn can
change the local DNA accessibility and gene functionality. However, a very recent 2012 study
has shown that when methylated DNA is used in in vitro reconstitutions, the nucleosomes
formed are actually very stable [18]. While these studies contradict one another, it is clear
DNA methylation affects nucleosome formation and positioning.

The placement of a nucleosome can also be dictated by the presence of histone variants



within the octomer. It is only recently that histone variants have been a subject of interest.
H3.3 and H2A.Z are two variants that have been studied extensively. These two are histone
isoforms of H3 and H2A, respectively. H3.3 is thought to function in regions where histones
have been displaced as a result of chromatin remodelers involved in transcription [19]. H2A.Z
is controversial, as contradictory roles have been observed. In some cases, H2A.Z has been
shown to be involved in histones that need to be quickly displaced, such a promoter regions
[20]. In other cases, this histone variant has been seen to play a part in histones that occupy
and are responsible for chromatin silencing [21]. In either variants case, it is clear that
the distribution of this histone is non-random. H2A.Z and H3.3 both seem to play a part
in histones that place themselves in positions that have a distinct purposes, such as quick
removal to allow quick transcription or to mark a section for silencing.

Finally, steric hindrance caused by the presence of a bound protein can also affect nucle-
osome positioning. A bound transcription factor, polymerase, or other DNA binding protein
can position a nucleosome by sequestering portions of the DNA that favor nucleosome for-
mation [22, 23]. This in turn forces the nucleosome to seek an alternative site on which to
form. It has been observed that nucleosomes near transcription start sites often position
themselves directly adjacent to a bound protein, which in turn can cause other local nucleo-
somes to distribute themselves evenly beginning with this first nucleosome in a phenomena
know as nucleosome phasing [15, 24].

A combination of all of these factors is likely what controls transcription. While each
different variable has been shown to have an effect on nucleosome positions, one of these
variables alone cannot account for the complex and dynamic patterns of positioning observed
in multiple organisms [6]. A more complete understanding of the dynamic processes that
control these patterns and in turn regulate transcription will provide enormous insight in
many fields including development, evolutionary and molecular biology.

In order to make a significant contribution to the understanding of these chromatin

processes, | have performed three hypothesis-driven sets of experiments that: 1) analyze



differences in nucleosome position and phasing between closely related cell lines on the local
scale; 2) examine domain-level differences in nucleosome occupancy on various portions of
chromosomes; and 3) test the validity of in wvitro nucleosome reconstitution techniques in

common use in the nucleosome positioning field.



CHAPTER 2. NUCLEOSOME MOBILITY AND CELLULAR

DIFFERENTIATION

2.1 INTRODUCTION

Embryonic stem (ES) cells represent a major leap forward in biology and medicine. Their
discovery has allowed for 1) the creation of in vitro models of early mammalian development;
2) the generation of animal models of that accurately represent the progression of human
diseases; and 3) the production of biologically identical differentiated cell types for cell
replacement therapy [25]. However, when the factors that maintain their totipotent state
are removed, ES cells undergo differentiation [26, 27, 28]. If the appropriate combination of
factors is added to the cells at this point, ES cells will take on the characteristics of a specific
embryonic germ layer (e.g. mesoderm, endoderm, or ectoderm)[25, 29]. Human embryonic
cells are unique in that when induced with BMP4, the cells will take on the characteristics of
the trophectoderm, which is responsible for the generation of the placental interface between
mother and embryo [30]. Other eukaryotic wild-type ES cell populations, such as mouse ES
cells will not do this; they are only capable of reflecting the potential of the normal origin
of embryonic cells, the inner cell mass.

It has been observed that ES cell lines, when allowed to differentiate on their own and no
additional factors are added, will choose a specific cell type a majority of the time. The cell
type into which it develops varies from line to line [31]. We proposed that this preferential
differentiation of ES cells may be a consequence of differential transcription factor bind that
will be easily detected by nucleosome phasing. As described above, the phenomena of phasing
is caused by the presence of some type of barrier (e.g. a bound transcription factor). As it
occupies a prime position, this barrier forces local nucleosomes to positions directly adjacent
to this barrier. This has a cascading effect on the neighboring nucleosomes, which respond
by positioning themselves at precise intervals from the nucleosomes directly adjacent to the

barrier [24]. This creates a distinct pattern of nucleosomes that can be clearly detected in



nucleosome mapping experiments.

We hypothesize that this is the result of differences in transcription regulation. It stands
to reason that the differences in cell lines are not due to the cell’s genomic sequence. While
each cell line’s origin is different, it is unlikely that minor variation between the genomes
could cause such a drastic difference [31]. This leaves transcription regulation as the most
likely cause of these cell line preferences. However, detecting these differences will be very
difficult as they are likely to be very small subset of transcription factors relative to general
regulation by transcription factors going on within these ES cells.

The purpose of this investigation is to test the hypothesis that minor motif level differ-
ences in nucleosome positions exist between cell lines, and can reveal the different transcrip-
tion factors binding patterns that may be causing the differentiation preference. A simple
yet novel way to detect these minor differences will be through the use of high throughput
sequencing. As mentioned previously, bound proteins are very often the cause of nucleo-
some phasing. Ideally, by sequencing nucleosome fragments and mapping them back to the
genome, we will be able to detect phasing in the various cell lines. Nucleosome phasing
unique to each of the cell lines will act as a putative yet easily detectable marker for tran-
scription factors and other bound proteins unique to this cell line. We were able to identify
cell-line specific differential sites of these bound proteins. Though this project was put on
hold, we will be able to identify cell-specific transcription regulation occurring in the dif-
ferent stem cell lines. We will also be able to provide identification of the bound factors
by completing additional experiments isolating bound factors at sites of identified phasing.
This information will further our limited understanding of stem cell differentiation, which

has already been shown to be extremely powerful tool.

2.2 MATERIALS AND METHODS

Isolation of mononucleosome core DNA fragments

The following is modified from [15]. Flash frozen H9 hES cells were ground to a fine powder



in liquid nitrogen using a mortar and pestle. An equal volume of 0.34 M sucrose/Buffer A
(15 mM Tris-HCl at pH 7.4, 15 mM NaCl, 1 mM DTT, 60 mM KCl, 0.5 mM spermidine, 0.15
mM spermine, 25 mM bisulfite) was added to powered cells. After thawing on ice, CaCly and
micrococcal nuclease (Roche) resuspended at 300 U/uL were added for final concentrations
of 1 mM and 25 U/uL, respectively, followed by incubation at 16°C for 12 min to liberate
the mononucleosome cores. The reaction was stopped by the addition of an equal volume
of worm lysis buffer (0.1 M Tris-HCI at pH 8.5, 0.1 M NaCl, 50 mM EDTA, 1% SDS), and
proteins were removed by treating with one-tenth volume proteinase K (20 mg/mL in TE at
pH 7.4) for 45 min at 65°C, followed by phenol, phenol/chloroform, and chloroform extrac-
tions and ethanol precipitation. After RNase treatment and phenol/chloroform, chloroform
extraction, separation of the micrococcal nuclease-digested DNA into mono-, di-, tri-, and
multinucleosome DNAs was done using a 4% UltraPure Agarose (Invitrogen) gel run at 100
V for 4 hours. DNA from the mononucleosome DNA band was extracted from the gel using
the QIAquick Gel Extraction Kit (Qiagen) following the standard protocol, with the excep-
tion of allowing the isolated gel sample to incubate in Buffer QG at room temperature until
dissolved. Once isolated, the concentrations of each fragment was quantified using Agilent

bioanalyzer high sensitivity DNA analysis kit in the BYU DNA sequencing center.

Library Preparation and Illumina Sequencing

Library preparation of isolated sequences was completed at the USC sequencing facility. The
facilities standard protocol can be found on their website (epigenome.usc.edu). The ends of
fragments were repaired using the Epicenter Biotechnology End-Repair Kit (EpiBio). Se-
quence fragments were combined with 10X end repair buffer, ANTPs, ATP, end repair en-
zyme in a 50 pl reaction. The reaction was incubated at room temperature for 45 min.
The repair enzyme was deactivated by incubating the reaction at 70°C for 10 min. The
reaction was cleaned by using a standardized magnetic bead cleanup protocol. 1.5x volume

of beads were added to the reaction and incubated for 5 min. A magnet was used to migrate



the beads, allowing the solution to clear. Supernatant was discarded and the beads were
washed several times with 70% ethanol. Ethanol was removed and 42 pL distilled water
added. Supernatant was pipetted and used in the A-tailing reaction. A-tailing ligation was
prepared using NEBNext dA-tailing Module (NEB). To the eluted end-repaired template
NEB Next d-A buffer and Klenow fragment was added. The reaction was incubated at 37°C
for 30 min. The reaction was cleaned up using the same magnetic bead protocol described
above. The enzymatic adapter ligation kit (Enzymatic) was used to ligate adapters to the
eluted reaction. To the eluted A-tailed template 2x rapid ligation buffer, stock adapters, and
T4 ligase enzyme were added. The reaction was incubated at room temperate for 10 min
and cleaned up using the same magnetic bead clean up protocol. The ligated template was
eluted in 16 pL of elution buffer. The concentration of the template was quantified using the
NanoDrop 2000 UV-Vis Spectrophotometer. The adapter ligated templates were amplified
using PCR amplification to produce enough product in preparation for cluster formation
and sequencing. I[llumina sequencing was preformed at the USC sequencing facility using

the lumina Hi-Seq2000 system.

Bioinformatic analysis using NuMap

Once sequenced the collected fragments were processed using NuMap. NuMap is a set of
computational programs developed by our collaborator Anton Valouev. The purpose of
this set of programs is the analysis of nucleosome mapping data (MNase-Seq), and his-
tone modification data. To access the program specifications and a user guide please visit
http://www-hsc.usc.edu/valouev/NuMap/NuMap.html. This program first calls all of the
positions of the nucleosomes within the cell. Once completed, called positions are used to

detect phasing patterns.



L1 L2 L3 L4 L5 L6 L7 L8 L9

Figure 2.1: The digestion gel shows a the muti-, tri-, di-, and mononucleosome bands of the
100 U/200 puL digestion (lane 4) and the 5,000 U/ 200uL digestion (lane 6). For point of
reference, ladders were run along side of the digestion. These include a 100 bp ladder (lanes
1 and 8) and a 50 bp ladder (lanes 2 and 9)

2.3 RESuULTS

In order to determine phasing patterns, nucleosome fragments were isolated and mapped
back to the genome. The results of the MNase digestion are shown in Figure 2.1. Two
separate digestions were preformed. The digestion on the left (lane 4 of Figure 2.1) shows
clear multi-, tri-, di-, mono-, and sub mononucleosomal bands. However, the greater intensity
of the mononucleosomal band of the digestion on the right (lane 6 of Figure 2.1 suggests a
more complete digestion. The mononucleosome bands from both digestions were dissected
from the gel. A size selection step was necessary for the sequencing to contain exclusively
mononucleosomes, and avoid di-, tri-, and higher order nucleosome structures.

The resulting sequenced reads were analyzed by our collaborator, Dr. Anton Valouev.

Phasing patterns were detected that conformed to observed patterns in the literature [32].

10



2.4 FUTURE DIRECTIONS

This project was unfortunately put on hold. It was decided that further investigation
was need before continuing with other cell lines. While the phasing patterns did indicate
the presence of transcription factors, it was decided that the transcription factors should be
directly isolated to provide further confidence. Until this additional investigation has been
completed, this project will continue to be put on hold.

When the project is ready to continue, additional hES cell lines will be digested following
the same protocol described above allowing for the isolation of nucleosome fragments. The
nucleosome positions provided by these additional digestions should allow us to detect any
minor differences in cell lines as indicated by specific phasing patterns. Nucleosome phasing
unique to the cell lines will act as a detectable marker for transcription factors and other
bound proteins unique to this cell line. Through identification of cell-line specific local
phasing patterns in combination with the isolated transcription factors bound at these same
sites, we should be able to identify cell-specific transcription regulation occurring in the

different stem cell lines.
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CHAPTER 3. LOCALIZED FRAGILE NUCLEOSOME BIAS AT CHROMOSOME

ENDS

3.1 INTRODUCTION

As mentioned previously, it has been established that nucleotide sequences affects nucle-
osome binding. However, the actual strength of sequence influence is still up for debate. The
energy required to move a nucleosome is relatively small compared to other processes that
take place during transcription [13, 33]. Often the transcription machinery contains or is
capable of recruiting chromatin-remodeling enzymes [34]. Comparative studies of chromatin
formation in vivo and in vitro (performed in Saccharomyces cerevisae) show that while the
bulk of the nucleosome do not seem to be influenced by sequence preference, there are a sub-
set of nucleosomes that are predictably positioned by the DNA sequence [33]. It is unclear,
however, whether the same is true within more complex organisms that have multiple cell
types and nucleosome positions more strongly affected by chromatin remodeling.

To address these issues, a recent 2013 study was performed using the nematode worm
Caenorhabditis elegans [14]. Through salt dialysis, nucleosomes were formed on naked worm
DNA. High-throughput sequencing was used to create genome-scale maps of these in wvitro
reconstituted nucleosome positions. These were then compared to two different in wvivo
maps generated using whole worms (Illumina and SOLID sequencing). Additionally, the in
vitro maps were compared to maps generated from C. elegans, embryonic tissues, adult so-
matic cells, and germ cells (Illumina sequencing). This extensive comparison to invitrosomes
(in wvitro reconstituted nucleosomes) allowed for the systematic identification of sequence-
determined positions from those positioned by other external factors within a multi-cellular
organism.

One of the most interesting results of this study was the nucleosome distribution across
the chromosomes. The in vitro data clearly shows that across the autosomes, the nucleosomes

distribute very evenly. However, the in vivo generated data did not show this same even

12



distribution. This data, shown in Figure 3.1 reveals that there is an uneven distribution of
nucleosomes on the chromosome arms, a relative depletion, right before the telomeric regions.
We believe two possibilities exist to explain this distribution. First, there are simply fewer
nucleosomes on the chromosome arms. Secondly, it is possible that there are a high number
of fragile nucleosomes (i.e., nucleosomes that are highly susceptible to Micrococcal nuclease

digestion) within these regions.

A B
Read Coverage in vivo Read Coverage in vitro
3000
o 1000 o rea
1000
] - § x
30
B ® 30
& 10 & 10
3 3
0 0
00 02 04 06 08 10 00 02 04 06 08 10
Position along chromosome Position along chromosome

Figure 3.1: In wvivo chromosomal nucleosome distribution verses in wvitro chromosomal nu-
cleosome distribution. While distribution is relatively even across the in wvitro generated
dataset (right), this is clearly not true of the in vivo generate set (on left). In the in wvivo
set, there is a clear depletion of nucleosomes at the chromosome arms and an increase at the
chromosome center. Figure modified from [14].

Studies in yeast have shown that histone composition and the conformational state of the
nucleosome may alter the relative Micrococcal nuclease (MNase) resistance of an individual
nucleosome. For example, it has been documented that nucleosomes containing H2A.Z
and H3.3 isoforms are unstable and appear hypersensitive to MNase resulting in the loss
of their associated DNA during a typical MNase digestion [21]. Additionally, a portion
of the core DNA may become spontaneously unwrapped from the histone core. If this
confirmation were stabilized through adjacent protein interactions, this would render the
nucleosome less resistant to MNase digestion. Several lines of evidence support the notion

that variable MNase resistance does occur (termed nucleosome fragility) throughout the
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genome [23, 22, 35].

Fragile nucleosomes can be identified by their higher abundance in incomplete MNase di-
gests relative to complete digests [35]. To identify fragile nucleosomes, chromatin is subjected
to MNase digestion without formaldehyde cross-linking. As shown in Figure 3.2, mononu-
cleosomal DNA is recovered at two separate time points during a digestion: at a point of
incomplete digestion and at the point of complete digestion (i.e. at which time all present
chromatin has been reduced to mononucleosomes). These samples are sequenced and the
nucleosomal positions and occupancy at those positions are determined. Examining nucle-
osome maps generated from these two conditions allow fragile nucleosomes to be identified,
as they will be abundant in the incomplete digestions but mostly absent in the complete
digestion [35]. Fragile nucleosomes can be rescued using crosslinking. Studies in yeast sug-
gest that fragile nucleosome distribution is not random and is likely due to physiological
conditions [35].
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Figure 3.2: A. Fragile nucleosomes are defined by their presence in incomplete digestions
and absence in complete digestions (represented by peaks within the red broken lines). B.
Additionally, fragile nucleosomes can be partially rescued using formaldehyde cross linking.
Figure modified from [35]
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The purpose of this investigation is to test the hypothesis that there is a high number
of fragile nucleosome localized to the chromosome ends within the C. elegans genome. To

detect the presence of these nucleosomes, a series of digestions were preformed using variable
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concentrations of MNase as well as varying lengths of digestion time. Fragile nucleosomes are
highly sensitive to digestion and so should be the first nucleosomes to be liberated by and the
first to be lost withe further digestion [35]. Therefore, a majority of fragments isolated from
the incomplete digestion conditions (e.g. short digestion time and small concentration of
Mnase) should represent the positions of fragile nucleosomes. Incomplete digestions used to
define these fragile nucleosomes will be referred to light digestions. Complete digestions will
be referred to as heavy digestions. In order to support the proposed hypothesis, these lightly
digested fragments should also map back to the sites of decrease nucleosome occupancy seen
in the in vivo maps. Accordingly, a majority of the heavily digested fragments should map
to regions outside of these regions of decreased occupancy. These results should shed some

light on this unique domain-level chromatin architecture presence in the C.elegans genome.

3.2 MATERIALS AND METHODS

Variable MNase Digestion

The following is modified from [10]. Mixed stage, wild-type (N2) C. elegans were cultured
on DHbalpha E. coli, flash frozen with liquid nitrogen in 0.34 M sucrose/Buffer A (15 mM
Tris-HCI1 at pH 7.4, 15 mM NaCl, 1 mM DTT, 60 mM KCI, 0.5 mM spermidine, 0.15
mM spermine, 25 mM bisulfite), and ground to a fine powder in liquid nitrogen using a
mortar and pestle. After thawing on ice, CaCl, and micrococcal nuclease (Roche). Separate
digestions were performed using increasing units of micrococcal nuclease (40, 160, or 640
U/pL) which were incubation at 25°C for 2, 6, 18, or 54 min to liberate the mononucleosome
cores. The reaction was stopped by the addition of an equal volume of worm lysis buffer (0.1
M Tris-HCI at pH 8.5, 0.1 M NaCl, 50 mM EDTA, 1% SDS), and proteins were removed by
treating with one-tenth volume proteinase K (20 mg/mL in TE at pH 7.4) for 45 min at 65°C,
followed by phenol, phenol/chloroform, and chloroform extractions and ethanol precipitation.
After RNase treatment and phenol/chloroform, chloroform extraction, separation of the

micrococcal nuclease-digested DNA into mono-, di-, tri-, and multinucleosome DNAs was

15



done using a 2% UltraPure Agarose (Invitrogen) gel run at 50V for 4 hours, and DNA
from the mononucleosome DNA bands were extracted from the gel using the QIAquick Gel
Extraction Kit (Qiagen) following the standard protocol, with the exception of allowing the
isolated gel sample to incubate in Buffer QG at room temperature until dissolved. Once
isolated, the concentrations of each fragment was quantified using the NanoDrop 2000 UV-
Vis Spectrophotometer. Series of digestions allows us to sample from a variety of conditions
that contrast one another. The ten digestion conditions used are described in Table 3.1 and

pictured in Figure 3.3 below.

Table 3.1: Table shows the various digestion conditions
and the corresponding barcode. Additionally, the table
indicates whether the digestion condition was designated
as a heavy or light digestion. Finally, the lane from figure

3.3 representing the individual digestion is indicated

Digestion Time (min) U/ulL Barcode Digestion Designation Lane

2 40 TTGT Light 3
2 160  ACGT Light 4
2 640 CAGT Light 5
6 40 GCTC Light 7
6 160 TGCT Light 8
6 640 cccT Heavy 9
18 40 AACT Light 11
18 160 GCAT Heavy 12
54 40 CGAT Heavy 15
54 160 GGGT Heavy 16
54 640 TAAT Heavy 17
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Figure 3.3: Gel shows digestions performed with increasing concentrations of micrococcal
nuclease (0, 40, 160, and 640 units) for varying lengths of time (2, 6, 18, 54) at 25°C.
Digestions used in this study are listed in Table 3.1. Figure modified from [12]

End Polishing and Barcode Ligation

Fragments ends were polished in preparation for barcode ligation. Mononucleosome frag-
ments were combined with 10 pL 10x T4 DNA ligase buffer, 5 uL. T4 DNA polynucleotide
Kinase, and 55 plL of water to produce 100 pL reaction. This was run at 37°C for 3 hours.
The reaction was quenched by adding 200 uL of 1x stop buffer ( 0.2% solution SDS) and
1 puLi of glycogen. 1 mL of Ethanol was added and the contents placed at -80°C overnight.
The following morning the contents were spun to pellet the contents followed by a 500 uL
ethanol wash. The ethanol was removed and the resulting pellets resuspended in 33 pL of
TE. Polishing continued with the addition of 4 uL. NEBuffer, 2 uL. ANTPs, and 1 pL of T4
polymerase. The reaction was carried out at 12°C for 15 min. The reaction was quenched
with 200 L stop buffer. The remaining dN'TPs were removed using Qiagen PCR purification
kit. The polishing process was completed by combining the eluted 32 plb of DNA with 5 ulL
of NEBuffer 2, 10 uL of 1mM ATP, and 3 uL of Klenow exonuclease. This reaction was run
for 30 min at 37°C. The polished sequences were separated from the other contents of the
reaction using Qiagen PCR kit. Isolated polished fragments were then ligated to an adapter

to facilitate barcode ligation. Barcode ligation followed. Once the fragments were isolated
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post-digestion, they were ligated to barcodes. Doing so allowed us to pool our fragments
together for sequencing and then easily sort sequenced reads based on digestion condition
afterwards. The barcodes used are listed in table 3.1 above. Barcodes were designed so
that the likelihood of finding the equivalent sequence at random within a sequence would
be minimal. Final concentrations of the libraries were quantified using Agilent bioanlyzer
high sensitivity DNA analysis kit in the BYU sequencing center. Portions from each of the
libraries were combined into a single sample in preparation for sequencing. The amount each
of the libraries contributed to the final was based on bioanalyzer concentration, such that
in theory each digestion was represented equally within the combined sample. In reality, a
single condition (lane 16 of Figure 3.3) was over represented and made up the vast majority

of our sequenced reads.

High-Throughput Sequencing

Our pooled samples were sent to the USC sequencing facility for sequencing. A single lane
of Illumina sequencing was preformed at the USC sequencing facility using the [llumina Hi-
Seq2000 system. Due to the over representation of one of our conditions, phiX DNA was

added to our sample to increase the diversity of the first base reads and facilitate sequencing.

Bioinformatic Analysis

The resulting reads were first parsed into separate files based on the identifying barcode.
The parsed reads were then each mapped to a template file contain the WS190 Celegans
genome. Alignments were generated using the program BLAT. Parameters were set so that
reads only mapped with sequences that would generate very high alignment scores (maxi-
mum of 1 mismatch). All other parameters for BLAT were set to default settings. Multiple
alignments were processed using a perl script written by Fredrick Tan, such only the match
with the greatest alignment score was retained. The remaining processed and mapped reads

were and then sorted based on chromosome of origin. The five autosomes were divided in 10
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equal pieces and the number of reads per chromosomal fragment was calculated.

3.3 RESULTS AND DISCUSSION

Each chromosome was divided into 10 equal sized increments. For each digestion condi-
tion, the number of reads that mapped to each of these individual increments were separated
out and summed. Additionally, these numbers were divided by the total number of reads
mapping to the individual chromosome within the individual digestion condition. All of
these analyses for the individual digestion conditions can be found in appendix A. To iden-
tify general trends within the light digestions, the total reads per increment for each light
digestion were summed together to determined the summed read distribution (Figure 3.4).
These sum totals were added together to determine the total number of reads mapping to
each increment originating from all light digestions. These sums were used to determine
the percent of reads that mapped to each chromosomal increment within all light digestions
(Figure 3.5).This same analysis was completed for the heavy digestions (Figures 3.4 and 3.5).

Examining the summed total read distribution for both light and heavy conditions show
a few similar general trends. The summed total distribution for the light conditions shows
that across chromosomes I,II, and III there are about the same number of reads distributed
evenly within each increment. However, for chromosomes IV and V the number of reads
varies greatly, with the greatest number of reads in the center of the chromosome. These
trends are illustrated in Figure 3.4). In the summed read distribution for the heavy conditions
we see similar trends. Again, across chromosomes I, II, and III we see an equal number of
reads across each increment. Additionally, the number of reads on chromosome IV and V
varies, through the variability is less dramatic than that is seen within the distributiond for
the light conditions. The greatest number of reads for the heavy conditions seems to fall
within the center of these two chromosomes. All of these trends are illustrated in Figure
3.4. At first glance, the two summed distributions look different. However, the trends

followed within both distributions do not indicate dramatic differences that would support
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our hypothesis.
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Figure 3.4: Graphs show the total reads mapped to each tenth of the five C. elegans auto-
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The percentage of reads distributing to each increment for all heavy or all light conditions
also indicate similar general trends. An initial glance at the results of these two analysis show
far similar distribution relative to the summed distributions. For the light conditions, the
percentage of reads across all five chromosomes distribute evenly at or around 10%. Central
increments show a slightly greater number of distributed reads, while the outer increments
have slightly fewer number of distributed reads. These trends are illustrated in Figure
3.5. Two clear outliers are present. First, there is a clear increase in the number of reads
distributed within the final increment of chromosome I. This is an artifact of the collapse of
the 5bs TRNA genes presence within the WS190 genome in this increment. There also exists
a increase in the seventh increment of the fourth chromosome. We are unsure of its cause
at this time. Similar trends are observed with the heavy digestions. Very similar trends
are observed within percent read distributions for the heavy conditions. In general, the
percentage of reads distributing within each increment across all chromosome falls between
10% and 12%. This is illustrated in Figure 3.5. The same two outliers are present within
the heavy conditions. We believe the outlier present on chromosome I, is again an artifact
of the same genome assembly. The outlier present on chromosome IV, while less dramatic
than the one observed within the light conditions is present in the same increment and so it
is possible that this two is an artifact of the informatics used.

To further assess the differences between two sets of conditions, we subtracted the total
percentage for the light conditions from those of the heavy conditions. This simple analysis
clearly shows that little difference exists between the two digestions sets (Figure 3.6). Of
note is the clear outlier cause by far more heavy reads distributing to the seventh increment
of chromosome V. We are unsure as to what caused this, though one possibility is that
this is simply caused by randomness within this particular set of digestions. The remaining
large differences seem distributed at random though it should be noted that increases in
light read seem to occur at the ends of the chromosomes. Additionally, any relative increase

in distributions of heavy reads seem to be focused at the chromosome center. While this
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would seem to support our hypothesis, further investigation indicates that these increases

are caused by very large differences within a single digestion condition, skewing the results.
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Figure 3.6: Graph shows the difference between condition trends of total percentage of reads
mapped to each one-tenth of the five C. elegans autosomes.

These results do not support the original hypothesis. We predicted that we would see
a far larger increase of nucleosome fragments on the outer ends of the chromosomes with
the lighter digestions, while the heavier digestions would produce the opposite pattern (i.e.
larger decrease at chromosomes ends). This would be indicative of the presence of fragile
nucleosomes concentrated at the chromosome ends. Instead in both cases we see a generally
even distribution of nucleosome fragments across all five of the chromosomes. This pattern
also seems to contradict the alternative hypothesis proposed; the observed depletion is due to
a general depletion of all nucleosomes at the ends of the chromosomes. If this were the case,

we would expect to see that same terminal depletion in both the heavy and light digests. As
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the results fail to indicate any clear regions of significant depletion in either condition, this

alternative hypothesis is not supported.

3.4 FUTURE DIRECTION

While these results do not support the proposed hypothesis, further investigation is need
before this project is abandoned. The simple analysis described here does not seem to
indicate the presence of fragile nucleosome. However, a more complex analysis that mimics
the analysis seen in Figure 3.1 needs to be done before we are confident in this conclusion.
This will involve dividing the information into much smaller informatics bins. Doing so will
allow us to generate results using the same points of reference used in the locke analysis.
These result will provide clear indication of the presence or absence of fragile nucleosomes.
To provide further confidence, this investigation should be replicated using a dataset that
has been subject to initial cross linking. Fragile nucleosomes are rescued when cross-linking
is performed before digestions. If fragile nucleosomes are present, we should see the recovery
of depletions present in results of this investigation. The results of these two combined

investigations should provide enough relevant conclusions for a complete publication.
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CHAPTER 4. EFFICIENT RECOVERY OF LOST INVITROSOMES THROUGH

COMPARATIVE DEFINED-END ANALYSIS

4.1 INTRODUCTION

Access to the nucleotide sequence by trans-acting factors is primarily determined by nu-
cleosome positions taken on within the immediate chromatin architecture. As mentioned
previously, several factors have been shown to direct and regulate nucleosome positions,
including the underlying nucleotide sequence itself [14, 15]. A commonly used method for
determining high affinity DNA sequences is through the use of in wvitro nucleosome reconsti-
tutions. Whole genome applications of this method begin with isolation of naked genomic
DNA followed by generation of smaller DNA fragments primarily through sonic sheering or
restriction enzyme digestion of the high molecular weight DNA. Recombinant or isolated
histone octamers and DNA fragments are then added together in high-salt solution in a
stoichiometric ratio such that on average a single nucleosome will form on each individual
fragment. The salts in the solution are then dialyzed away, allowing the formation of nucle-
osomes [36]. The in vitro reconstituted assemblies can be compared to their in vivo genomic
equivalents, allowing for not only the identification of high affinity sequences determined
exclusively by their intrinsic DNA sequences, but also the amount of in vivo remodeling that
occurs within individual cell or tissue types. Such an approach was used by Locke et al.
to demonstrate the extent of nucleosome remodeling that happens in vivo to the C. elegans
genome [14].

While in wvitro nucleosome reconstitutions provide valuable information, the technique
contains certain inherent biases that must be overcome before the resulting data is useful. It
has been demonstrated that DNA fragment ends can influence nucleosome formation so as
to encourage end-proximal nucleosome formation relative to the remainder of the fragment
[37, 38]. This preference is termed fragment end bias and can introduce a major hurdle when

attempting to identify high affinity sequences as it becomes impossible to determine if in
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vitro nucleosome (invitrosome) formation was due to fragment end bias or an actual affinity
for the underlying nucleotide sequence. It is thought that this end bias can be overcome by
using sonication to generate the needed DNA fragments. In theory, if DNA fragmentation
by sonication is random, any fragment end bias generated during nucleosome reconstitutions
should be compensated for by the presence of excess random fragment ends which would be
evenly spread out over the entire sample and thus produce an uniform background coverage
that could be discounted. However, sonication is not a completely random process. Sonica-
tion more commonly generates fragment ends within sequences containing runs of polyAs or
polyTs. Thus sonication may not be a solution to the fragment end bias dilemma [39, 40].
One option to overcome this hurdle is to discarding nucleosome positions that fall near frag-
ment ends. This is only an option if the ends of the DNA fragments that are being used
in the reconstitution experiments are known. Even if this is the case, the amount of data
discarded using this option is often a large portion of the potentially meaningful data. This
presents a major limitation to nucleosome reconstitution, as it requires an excessive amount
of time and materials to guarantee enough usable data is generated once end-proximal nu-
cleosome positions are discarded. Such an approach to overcome potential end-bias was used
by Locke et al. in their analysis [14]. In the following investigation, we propose to valid our
novel approach for addressing fragment end bias that eliminates the need of discarding large
portions of the data produced in these type of experiments. We apply our approach to the

Locke et al. data set and show that we can recover up to 80% of the discarded data.

4.2 APPROACH

Currently using conventional approaches, two classes of DNA loci are typically excluded
from invitrosome analysis or have invitrosomes discarded in order to eliminate potential
end bias. When DNA fragment ends are defined, 1) any invitrosome found to map within
a defined number of nucleotides from a fragment end is classified as suspect of fragment

end bias and is discarded. 2) DNA fragments digested to sizes too small for reconstitution
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(less than 147 bp) are lost from invitrosome analyses [14]. We propose that both of these
classes of excluded loci can potentially be recovered and analyzed by performing nucleosome
reconstitutions on two DNA samples digested by two different restriction endonucleases. Our
approach is such that each individually digested DNA sample is used for separate nucleosome
reconstitutions and then invitrosome positions from the two experiments are identified by
mapping sequenced mononucleosomal core DNAs back to the original source of DNA. For
each individual reconstitution experiment, invitrosomes that may suffer from end-effect bias
can be identified by defining a specific number of bases from restriction enzyme cut sites as
too close to the end of the DNA fragment (the suspect range). Invitrosomes that map within
suspect range regions are considered theoretically subject to fragment end bias and so are
defined as “suspect” nucleosomes. Invitrosomes that do not fall within the suspect range
regions are assumed to not be affected by fragment end bias and are classified as “passed”
nucleosomes. The restriction sites of the two restriction endonucleases used will usually not
be near one another on the DNA. Therefore, invitrosomes from one experiment that are
defined as suspect and normally would be discarded (due to proximity to a fragment end)
can be recovered if the same locus is found to be occupied by a passed invitrosome in the
second experiment. This is demonstrated in Figure 4.1 with the example invitrosomes in
position 3 and position 4. In contrast, invitrosomes in position 2 remain in doubt as this
position is near a fragment end in both experiments and both invitrosomes are suspect.
Additionally, the positions where DNA fragments where generated that were too small to
participate in reconstitution can be recovered. As the likelihood of this happening with both
endonucleases digestions is small; a position lost in one experiment can be recovered if in
the second experiment the fragment is of sufficient size to form a passed invitrosome (e.g.

Figure 4.1 position 1).
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Figure 4.1: Recovery of lost or suspect invitrosome (grey ovals) positions by use of separate
samples cut by different restriction enzymes. R (Rsa I) and H (Hinc II) indicate restriction
cut sites within the loci shown (top black bar)
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In order to validate our approach, we have applied our recovery methods to the invit-
rosome datasets generated using the Caenorhabditis elegans genome described in Locke et
al.[14]. Using the same strict suspect range of 200 bp from DNA fragment ends used in
the Locke analysis, we find that we can recover the vast majority of discarded, suspect
invitrosome positions. As the suspect range is decreased, the recovery rate increases propor-
tionately. The percent recovery is also dependent on the number of total invitrosome position
generated in both datasets. These results show that our method is capable of preventing the

massive loss of data current nucleosome reconstitution studies are limited by.

4.3 MATERIALS AND METHODS

Creation of Invitrosomes

The following is modified from [10]. Naked genomic DNA from wild-type C. elegans (N2
strain) was isolated by digesting flash-frozen worms with proteinase K (Roche, 2mg/ml final
concentration) in worm lysis buffer (0.1M Tris HCI at pH 8.5, 0.1 M NaCl, 50 mM EDTA,
1% SDS) at 65°C for 45 min followed by phenol, phenol/chloroform, chloroform extraction
and ethanol precipitation. RNA was removed with RNAse A (Roche) followed by phe-
nol/chloroform, chloroform extraction and ethanol precipitation. DNA templates for both
the Rsa I and Hinc II experiments, high-molecular weight genomic DNA was digested with
200 units of either restriction enzyme Rsa I or Hinc II (New England BioLabs) with the
supplied buffers and 1X BSA (New England BioLabs). Digestion were carried out at 37°C
for two hours followed by phenol, phenol/chloroform, chloroform extraction and ethanol pre-
cipitation. The complete digestions run on a 1% UltraPure Agarose (Invitrogen) gel. A
continuous smear of fragments was seen for both digestions with a distribution of fragments
lengths visually estimated to be centered upon and enriched around ~850 bp and ~3500 bp
for the Rsa I and Hinc II digestions, respectively. The Rsa I and Hinc IT DNA digestions
were assembled with recombinant Xenopus histones into nucleosomes in a 1.1:1 molar ratio

of DNA to histone octamer, such that on average one nucleosome bound to one molecule of
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DNA.

Isolation of invitrosome core DNA fragments

The following is modified from [14, 33]. Invitrosome core DNAs from both Rsa I and Hinc II
reconstitutions were isolated by diluting the respective invitrosomes into a buffer containing
5 mM MgCl2, 5 mM CaCl,, 70 mM KCIl and 10 mM Hepes at pH 7.9 and digesting with 20
units of MNase (Roche) resuspended at 1 units per pL for 15 min at room temperature. The
digestion was stopped by adding an equal volume of 3% SDS, 100 mM EDTA and 50 mM
Tris. Histones were removed by treating with one-tenth volume proteinase K (20 mg/ml in
TE at pH 7.4) for 30 min at 50°C followed by phenol/chloroform and chloroform extractions
and ethanol precipitation. Invitrosome DNA cores were assayed for complete digestion and
isolated on a 2% UltraPure Agarose (Invitrogen) gel run at 100 V for one hour, followed by

DNA extraction from the gel using a QIAquick Gel Extraction Kit (Qiagen).

Illumina library preparation and sequencing

The following is modified from [14, 33]. The Rsa I and Hinc II libraries were prepared by
processing the invitrosome core DNA fragments using [llumina Genomic DNA Sample Prep
Kit (Illumina 2007 Rev. A). Fragment end repair, adapter ligation and library amplification
were all done according to the kit instructions with the following exceptions. Since our li-
braries are composed of ~147 bp DNA cores rather than intact genomic DNA, the protocol
was started at the “Perform End Repair” step. At this step, separate aliquots of both the
Rsa I invitrosome core DNA sample and the Hinc II invitrosome core DNA sample were
used. At the “Ligate Adapters to DNA Fragments” step, the purification was performed
with the QIAquick PCR Purification Kit (Qiagen) rather than MinElute PCR, Purification
Kit. Additionally, a no-DNA control sample was processed in parallel to the Rsa I and Hinc
IT samples. After library preparation, each library was sequenced using a single lane of the

[Mlumina GAII sequencer, resulting in 9.5 million and 5.5 million raw 36 bp reads for the Rsa
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I and Hinc ITI libraries, respectively.

Mapping and preprocessing of reads

Once the raw reads were obtained, they were mapped back to the WS190 C. elegans genome
using BLAT available on the BYU supercomputer. Parameters were set so that reads only
mapped with sequences that would generate very high alignment scores (maximum of 1 mis-
match). All other parameters were set to default. A number of reads were eliminated at
this point because they failed to map back to provided template. The programs generated
for use with this approach assume one position per read. Failure to do so introduces errors.
To prevent this multiple alignments were processed using perl scripts that only allow match

with the greatest alignment score to be retained.

Defining Suspect regions

Our recovery approach is composed of three steps the first of which is the generation of a
suspect range based on a user-defined variable. To generating a suspect range, the exact
position of the fragment start and end positions is required. We were able to define fragment
start and ends by use the fragment end tables generated by Locke et al. and avaliable at
http://nucleosome.rutgers.edu/nucenergen/celegansnuc/xfer [14]. These tables contain the
start, end and fragment size of all hypothetical fragments generated across all chromosomes
by both restriction endonucleases. However, the palindromic cuts sites are not included in
the provided end/start positions. The size of the suspect range is limited by the number of
bases from the fragment end that should be consider to be subject to fragment end bias. In
the Locke analysis this was defined to by 200 bp from a fragment end and 200 bp from the
fragment start, for a total range of 400 bps. For the purpose of assessing our approach, we
defined multiple suspect ranges beginning at a minimum suspect range of a single bp and
then increasing in specific increments until a max suspect range of 200 bp was reached. We

chose a maximum suspect range of 200 bp so as to match the results of the Locke analysis.
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To generate each suspect range, each fragment end and beginning position had the defined
number of bases pairs added and subtracted from it. All positions that fell between the
fragment start or end position and the end of the suspect range region were parsed into a
unique output bedfile defined by the fragment set of origin (i.e Rsa I generated fragments or
Hinc IT generated fragments). The sets of positions found in these output files define all po-
sitions within the suspect range region and allowed us to separate them from the remainder
of the fragment. The code for the perl script utilized at this step is provided in supplemental
Figure A.15.

Defining Suspects and Passed nucleosomes

The second step in our approach is to define suspect and passed nucleosomes using the
suspect ranges defined in the previous step. All the remaining reads post processing were
compared to and defined by their location relative to the suspect range. The reads were
classified as either suspect or cleared. If the read was found to begin within the suspect
range, was classified as a suspect invitrosome. The sense of the read is taken into account
when this comparison was made. All invitrosomes that do not receive this classification
are considered cleared because they did not fall within the suspect. Once defined, the two
classifications were separated into four temporary output files: Hinc II suspect invitrosomes,
Hinc IT cleared invitrosomes, Rsa I suspect invitrosomes, and Rsa I cleared invitrosomes.

The code used in the step is provided in Figure A.14.

Recovery of suspect nucleosomes

The final step in our approach is recovery suspect invitrosomes by comparison to the al-
ternative experiment’s set of passed invitrosomes. For the purpose of our assessment, Rsa
I suspect invitrosomes were compared to cleared Hinc II invitrosomes and Hinc II suspect
invitrosomes were compared to cleared Rsa I invitrosomes. Suspect invitrosomes that sit at

the same position as cleared invitrosomes in the alternative fragment set are now classified
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as recovered. Those that do not receive this new classification are considered to be biased
invitrosomes. The final result is a set of recovered and biased invitrosomes for each fragment

set. The code for step is provided in Figure A.14.

4.4 RESULTS

4.4.1 Discarded Invitrosomes. The Locke et al. datasets we use in our analysis were
derived from invitrosomes formed on C. elegans genomic DNA [14]. In their analysis, two
separate invitrosome data set were made by reconstituting invitrosomes on C. elegans ge-
nomic DNA that had been digested with either Rsa I (a blunt, four-cutter) or with Hinc II
(a blunt, five-cutter). Invitrosome core DNA was isolated using micrococcal nuclease and
sequenced on the Illumina platform. The resulting Rsa I reconstitution experiment pro-
duced a total of 9.5 million raw sequencing reads, while the resulting Hinc II reconstitution
experiment produced a total of 5.5 million raw sequencing reads. To control for invitrosomes
positioned due to end effects, Locke et al. defined a 200 bp suspect range from each restric-
tion enzyme cut site. In the C. elegans genome Rsa I cuts on average once per 490 bp, and
Hinc II cuts on average once every 2109 bp. Use of their 200 bp suspect range resulted in
excluding 87.7% of genomic bps for the Rsa I dataset and 19% of genomic bps for the Hinc
IT dataset, an alarmingly large portion of the genome [14].

We hypothesized that we could recover a significant portion of invitrosome positions lost
to the Locke et al. analysis by applying our recovery approach. Thus we used the 9.5 million
Rsa I raw sequencing reads and the 5.5 million Hinc II raw sequencing reads from Locke et

al. in our analysis.

4.4.2 Pre-processing of reads. Because we were using raw reads, it was necessary to
eliminate poor quality reads and reads that mapped to multiple loci before our approach
could be applied. The raw reads were mapped back to the WS190 C. elegans genome using

BLAT. Parameters were set so that reads only mapped with sequences that would generate
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very high alignment scores (maximum of one mismatch). A number of reads from both sets
mapped to multiple sites within the genome. As our approach assumes one position per read,
these multiple alignments were processed so only the match with the greatest alignment score
was retained. Using these parameters, a total of 8.4 million (88.4%) of the original Rsa I
generated sequence reads mapped back to the genome, while a total of 4.8 million (87.2%)

of the original Hinc II sequence reads mapped to the genome.

4.4.3 Application of Approach. Our recovery approach is composed of three steps,

namely
(i) a suspect range is generated based on a user-defined variable,
(ii) invitrosomes are mapped and declared either passed or suspect, and

(iii) suspect invitrosomes are recovered by comparison to the alternative experiment’s set

of passed invitrosomes.

In application of the first step, generation of suspect range regions is dependent on know-
ing precise fragment ends produced by restriction enzyme digestion. Because two different
restriction endonucleases are used, the loci that fall into the suspect range regions will be
different for the two experiments and will depend on the restriction enzyme use to prepare
the template DNA for reconstitution. In applying this step in our analysis, we used the frag-
ment end list generated by Locke et al. to define the beginning and end of DNA fragments
based on the presence of either a Rsa I or a Hinc II cut site. This list contains the start,
end and fragment size of all hypothetical fragments generated across all chromosomes by
digestion with these enzymes. In the Locke analysis the suspect range was defined as 200 bp
from a fragment start and 200 bp from the fragment end, a total range of 400 bps per DNA
fragment [14]. For the purpose of assessing the efficacy of our approach, we defined multiple
suspect ranges beginning at a minimum suspect range of a single bp and then increasing in

defined increments until a maximum suspect range of 200 bp was reached. We chose the 200
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bp maximum suspect range to match the results of the Locke analysis. To generate each
suspect range region, the genomic position of each DNA fragment start or DNA fragment
end (excluding the palindromic restriction enzyme cut site) had the suspect range-defined
number of base pairs added to or subtracted from it respectively producing suspect range
defined starts or ends. Any genomic regions between the original start of a DNA fragment
and the suspect range defined start of that fragment, or the original end of a DNA fragment
and the suspect range defined end of the DNA fragment were defined as the suspect range
regions. This resulted in unique sets of suspect range regions for each restriction enzyme at
each of the suspect range sizes.

We applied the second step of our approach by first mapping all the invitrosome sequence
reads from both experiments to the WS190 version of the C. elegans genome. After mapping
the sequence reads, each read was extended out to 147 bp to represent the entire footprint
of the invitrosome from which it was derived and the start and end of each invitrosome was
noted to produce Rsa I invtrosomes with both starts and ends and Hinc II invitrosomes with
both starts and ends. The invitrosome starts and ends from both sets of reconstitutions
were then compared to their respective suspect range regions. Depending on where each
invitrosome falls relative to the suspect range regions (within the suspect range or outside
of the suspect range), it is defined as either “suspect” or “passed”. Any invitrosome with a
start that fell into suspect range start region or any invitrosome with an end that fell into a
suspect range end region were defined as suspect. Passed invitrosomes were separated from
suspect invitrosomes and kept as good data for each experiment. For each experiment the
suspect range was kept the same between the Rsa I and the Hinc II datasets. This resulted
in four invitrosome sets from the two experiments: passed Rsa I invitrosomes, suspect Rsa I
invitrosomes, passed Hinc II invitrosomes and suspect Hinc IT invitrosomes. The distribution

of invitrosomes within those files are shown in Figures 4.2 and 4.3 below.
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Figure 4.2: Number of valid invitrosomes decrease as the window size increases for RSAI data
set. The end window is defined as the range of bases before or after restriction endonuclease
sites that are considered susceptible to end bias. Nucleosomes that fall within said window
are considered suspect and are eliminated from the data set. Nucleosomes that do not fall
within this window are considered passed.
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Figure 4.3: Number of passed nucleosomes decrease as the window size increases for Hinc II
data set. Nucleosomes that fall within said window are considered suspect and are eliminated
from the data set. Nucleosomes that do not fall within this window are considered passed.
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Our final step was to recover suspect invitrosomes from one experiment that could be
supported as being free of end-effect bias by comparison with passed invitrosomes reads
from the alternative experiment. For the purpose of our assessment, Rsa I suspect invitro-
somes were compared to passed Hinc II invitrosomes and Hinc II suspect invitrosomes were
compared to passed Rsa I invitrosomes. Suspect invitrosomes that sit at the same position
as passed invitrosomes in the alternative fragment set were now reclassified as “recovered”
invitrosomes. Those that did not receive this new classification are considered to be poten-
tially affected by end-bias and were reclassified as “biased” invitrosomes. The final result
is a set of recovered and biased invitrosomes for each fragment set. The results generated
by step two and this step were six unique output files: passed Rsa I invitrosomes, recovered
Rsa I invitrosomes, biased Rsa I invitrosomes, passed Hinc II invitrosomes, recovered Hinc

IT invitrosomes, and biased Hinc II invitrosomes.

4.4.4 Recovery of Rsa I and Hinc II Invitrosomes. The mapped Rsa I dataset
contained a total of 8,436,517 invitrosomes. Using our maximum suspect range of 200 bp;
4,899,372 or 58.1% of the Rsa I invitrosomes were declared suspect. Without our recovery
method these suspect invitrosomes would be lost to further analysis. This is substantially
lower than the number excluded from the Locke et al. analysis, but still a very large portion
of the data.

In order to recover suspect Rsa I invitrosomes we compared these invitrosomes to the
passed Hinc II invitrosomes that were analyzed at the Hinc II 200 bp-suspect range. As
described above, any Rsa I suspect invitrosome that shared the same position with a Hinc II
passed invitrosome was assumed to be an invitrosome that formed at that particular locus
due to preferable DNA sequence rather than end-position bias and was declared recovered.
This comparison resulted in 3,170,754 of the suspect Rsa I invitrosomes being reclassified
as recovered. Thus using our recovery method we recovered 64.7% of the suspect Rsa I

invitrosomes resulting in a total of 6,707,899 passed or recovered Rsa I invitrosomes, or
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79.5% of the original invitrosome set. This left 1,728,618 suspect invitrosomes that were
reclassified as biased and unusable, 20.5% of the original Rsa I invitrosome set, instead of
the 58.1% that would be unusable without our recovery procedure. These results are shown

below in Figure 4.4

Rsa | Recovery (11bp Suspect Range)

Rsa | Recovery

6x10° B Recovered Invitrosomes
mm Bias Invirosomes

4%105 El Suspect Invitrosomes

Number of Nucleosomes

2 33 44 55 66 77 88 99 110 121 132 143 154 165 176 187 200

6 77 88 99
Suspect Range

Figure 4.4: Suspect invitrosomes in the Rsa I dataset are recovered using comparative ap-
proach. The suspect invitrosomes (blue) within the Rsa I dataset are compared to passed
invitrosomes within the Hinc IT data set. This results in the recovery of 64.7% of the suspect
invitronsomes, or recovered invitrosomes (red) while 34.3% remain and are considered bias

(green).

The same analysis was performed on the 4,808,294 mapped Hinc II invitrosomes, with
recovery analysis being performed with the passed Rsa I invitrosomes that were analyzed
at the Rsa I 200 bp-suspect range. At a suspect range of 200 bp; 892,645 or 18.6% of the
Hinc II invitrosomes were declared suspect. Using the passed Rsa I invitrosomes, 300,080
Hinc IT suspect invitrosomes were recovered while the remaining 592,565 (66.4%) Hinc IT
suspect invitrosomes were labeled as biased. Thus using our recovery method we recouped
33.6% of the suspect Hinc II invitrosomes resulting in a total of 4,215,729 passed or recovered
Hinc II invitrosomes, or 87.7% of the original invitrosome set. The remaining 592,565 biased
invitrosomes represent 12.3% of the original Hinc II invitrosome set that was still unusable.
Despite the more modest size of this recovery, it still represents a substantial improvement

over the 18.6% that would be unusable without our recovery procedure. These results are
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shown below in Figure 4.5.
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Figure 4.5: Suspect invitrosomes in the Hinc II dataset are recovered using comparative
approach. The invalid invitrosomes (blue) within the Hinc IT dataset are compared to passed
invitrosomes within the Rsa I data set. This results in the recovery of 33.6% of the invalid
invitrosomes (red) while 36.4% remain and are considered bias (green).

4.4.5 Varying the suspect range length. We wanted to test the effect of varying
lengths of suspect ranges on the number of invitrosomes declared suspect and recovered by
our approach. Toward this end, we applied 19 more suspect ranges beginning with 1 bp,
5 bp, 11 bp (one helical turn of DNA) and then increasing by 11 bp until reaching 187
bp. We compared the results of applying these additional 19 suspect ranges to the results
from our maximum 200 bp suspect range. As expected, we see that the number of suspect
invitrosomes decreases linearly in relation to the length of the suspect range, and the lowest
suspect range of a single base pair results in a low of only 515,035 (6.1%) of the Rsa I and
51,618 (1.1%) of the Hinc II invitrosomes being declared suspect respectively. It is interesting
to note that at the larger suspect ranges (154 bp), for Rsa I invitrosomes, we observed that
the number of suspect invitrosomes is actually greater than the passed invitrosomes. This
is not the case for the Hinc II invitrosomes. All of these trends are demonstrated in Figures
4.4 and 4.5

One suspect range is of particular interest. The 11 bp suspect range represents one full
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turn of the DNA helix. If invitrosomes were to be affected by end-bias, but still try and
retain a preferential rotational setting, it might be predicted that they would form between
1-11 bp from the end of the DNA fragment. Interestingly, it has been demonstrated that
virtually all end-effect remodeling results in invitrosomes within about 10 bp of the fragment
end [37] . At the 11 bp suspect range 1,145,346 (13.6%) of Rsa I invitrosomes are suspect
and 117,143 (2.4%) of Hinc IT invitrosomes are suspect. At this same level 922 900 (80.6%)
and 84,717 (72.3%) of the suspect Rsa I and suspect Hinc II invitrosomes are recovered
respectively. Having applied our approach, we find that a substantial number of suspect
invitrosomes can be recovered within the Rsa I invitrosome set no matter what size the
suspect range is. Within the maximum suspect range we find that our approach is able
to recover 64.7% or 3,170,754 of the suspect invitrosomes within that particular suspect
range. However, within the smaller range such as 11 bp we are able to recover 80.6% or
922,900 of the suspect invitrosomes within this suspect range. It should be noted that in
the Locke analysis an 11 bp allowance was used when mapping the invitrosomes back to
the genome. In all our previously described analyses we have used this same allowance
when recovering suspect invitrosomes. That is to say, we reclassified a suspect invitrosome
as recovered if the footprint of the suspect invitrosome overlapped with the footprint of a
passed invitrosome from the alternative invitrosome set, effectively mapping within 11 bp
(one helical turn). When this allowance is removed and an exact overlap is required, all
previous described trends remain the same. The only observable difference is that actual
recovery rates decrease by 3.2 - 3.5% for the Rsa I analyses and 1.2% to 2.9% for the Hinc II
analyses across all suspect ranges, with the exception of the 1 bp suspect ranges where the

decrease is 4.2% and 9.0% for Rsa I and Hinc II respectively.

4.5 DISCUSSION

Our findings can be summarized in the statement of a few observed trends. First, re-

covery is most efficient when the suspect range is minimized. However, when a conservative
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suspect range is set, recovery is still significant. Of the two datasets, Rsa I achieves the
greatest amount of recovery, but this is expected as it contained the larger number of sus-
pect nucleosomes to begin with. The Hinc II, in contrast, had a much lower recovery rate,
but also far fewer suspect invitrosomes. When the stringency of recovery was increases, that
is to say when a perfect alignment was required for a suspect invitrosome to become a passed
invitrosome, all observed trends in recovery rate and suspect nucleosome definition for both
fragment sets remains the same.

Of note is the plateau in recovery rate observed in the Hinc II dataset (Figure 4.5). We
believe that this due to the difference in the number of invitrosome avaliable for recovery
between the datasets. The Hinc II data is smaller than the Rsa I dataset. Additionally,
inherent to our approach is that as the suspect range increases, the number of passed nucle-
osomes avaliable for the recovery of the other set decreases. We have found that in both the
Rsa I and Hinc II dataset, a liner relationship exists between the recovered invitrosomes and
the suspect ranged used when the passed invitrosome set used for for recovery is factored
in. We believe the observed plateau to be a reflection of this linear relationship and the
decreasing passed Rsa I invitrosome set.

Thus present a novel method by which end-bias can be successfully addressed while elim-
inating the need to discard large portions of data. This method generates two separate sets
of fragments using two different restriction enzymes, which are used in standard nucleosome
reconstitutions. Suspect invitrosomes that would normally be discarded can be recovered by
comparing the two dataset using our three-step approach. First a suspect range is defined
and all positions are mapped to the sequences from which they originated. Invitrosomes
are then separated based on where they fall relative to the suspect range. Finally, suspect
invitrosomes from one invitrosome set that would usually be discarded are compared to the
passed invitrosomes from the second fragment set. If a passed invitrosomes is found at the
same position as the suspect invitrosome in the first set, the suspect nucleosome is deter-

mined to have formed there by a force other than fragment end bias and is included in the
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usable dataset. By applying our method to the invitrosome data sets generated by Locke
et al., we have demonstrate that this is a valid approach for substantial data recovery and
thus provide a more complete dataset for analysis. With a more complete dataset, studies
utilizing reconstituted nucleosomes will be able to provide a more complete insight into the

influence of intrinsic sequence on the positions of nucleosomes

4.6 FUTURE DIRECTIONS

We have prepared this work for publication and a complete manuscript has been written.
This work is the first of its kind and represent a unique method of recovering in wvitro
nucleosome reconstitution data. The data utilized in this study was the first to genome-wide
invitrosome generate datasets with clearly defined fragment ends. While having defined ends
does introduce known bias, this same information allows for very significant recovery of these
types of datasets. We plan to submit this publication to PloS one and BMC Genomics July

1st, 2014 and believe it will be a new standard for genome-wide invitrosome analysis.
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Figure A.1: Graphs show the total reads (left) and percent reads (right) that mapped to
each tenth of the five C. elegans autosomes for the light digestion corresponding to lane 3 of
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Figure A.2: Graphs show the total reads (left) and percent reads (right) that mapped to
each tenth of the five C. elegans autosomes for the light digestion corresponding to lane 4 of

3.3.

L] L) L) L) L) 1) L) L) L) L)
19.9 10-19.9 20-29.9 30-39.9 40-49.9 50-59.9 60-69.9 70-79.9 80-89.9 90-100

Chromosomal Length Percentage

Chr. |
Chr.
Chr. 1l
Chr. IV
Chr.V

Chr. |

Chr.
Chr. 1ll
Chr. IV
Chr.V

45

Percent of Total

Percent of Total

20m

15=

10m

Digestion 2.40 (Percent)

25w

20=

15=

10m

5w

| ] L) L) L) u | ) | ) L} |} L]
1-9.9 10-19.9 20-29.9 30-39.9 40-49.9 50-59.9 60-69.9 70-79.9 80-89.9 90-100

Chromosomal Length Percentage

Digestion 2.160 (Percent)

| ] L) L) L) o |} |} L) L) L]
1-9.9 10-19.9 20-29.9 30-39.9 40-49.9 50-59.9 60-69.9 70-79.9 80-89.9 90-100

Chromosomal Length Percentage

Chr. |
Chr. 1l
Chr. 1l
Chr. IV
Chr. V

Chr. |

Chr. 1l
Chr. 1l
Chr. IV
Chr. VvV



500m

400=

300+

200+

Number of Reads

100+

Digestion 2.640 (Total Reads)

Figure A.3: Graphs show the total reads (left) and percent reads (right) that mapped to
each tenth of the five C. elegans autosomes for the light digestion corresponding to lane 5 of

3.3.
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Figure A.4: Graphs show the total reads (left) and percent reads (right) that mapped to
each tenth of the five C. elegans autosomes for the light digestion corresponding to lane 7 of

3.3.
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Figure A.5: Graphs show the total reads (left) and percent reads (right) that mapped to
each tenth of the five C. elegans autosomes for the light digestion corresponding to lane 8 of

3.3.

8000+

6000+

4000+

Number of Reads

2000+

1] L) L) L) L) L) 1) L) L) L]
1-9.9 10-19.9 20-29.9 30-39.9 40-49.9 50-59.9 60-69.9 70-79.9 80-89.9 90-100

Chromosomal Length Percentage

Digestion 6.640 (Total Reads)

Figure A.6: Graphs show the total reads (left) and percent reads (right) that mapped to
each tenth of the five C. elegans autosomes for the heavy digestion corresponding to lane 9

of 3.3.
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Figure A.7: Graphs show the total reads (left) and percent reads (right) that mapped to
each tenth of the five C. elegans autosomes for the light digestion corresponding to lane 11

of 3.3.
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Figure A.8: Graphs show the total reads (left) and percent reads (right) that mapped to
each tenth of the five C. elegans autosomes for the heavy digestion corresponding to lane 12

of 3.3.
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Figure A.9: Graphs show the total reads (left) and percent reads (right) that mapped to
each tenth of the five C. elegans autosomes for the heavy digestion corresponding to lane 15

of 3.3.
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A.2 SUPPLEMENTAL FIGURES FOR CHAPTER 4
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Figure A.10: Figure shows trends when a perfect alignment is required for definition. These
trends match what is seen when a 11 bp allowance is used in analysis of Rsa I dataset.
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Figure A.11: Figure shows trends when a perfect alignment is required for definition. These
trends match what is seen when a 11 bp allowance is used in analysis of Hinc II dataset.
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Figure A.12: Figure shows recovery trends when a perfect alignment is required for suspect
recovery. These trends match what is seen when a 11 bp allowance is used in analysis of Rsa
I dataset.
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Figure A.13: Figure shows recovery trends when a perfect alignment is required for suspect
recovery. These trends match what is seen when a 11 bp allowance is used in analysis of
Hinc II dataset.
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#!/bin/bash

#Identifier for restriction enzyme 1

RES1="resA"

#This is the directory containing all your 3-column tab-delimited
chromosome fragment descriptions from the digest using res. enzyme 1
RES1_CHR_DIR="/Users/norkish/Downloads/resADigestRegions™

#This is the new blat alignment summary file for nucleosome reads from
the restricted enzyme 1 digest
RES1_BLAT_FILE="/Users/norkish/Downloads/resA_nuc.psl.txt"

#Same as above except for restriction enzyme 2

RES2="resB"
RES2_CHR_DIR="/Users/norkish/Downloads/resBDigestRegions"
RES2_BLAT_FILE="/Users/norkish/Downloads/resB_nuc.psl.txt"

#Paths to executables (two perl scripts written by Paul Bodily)
USEQ_EXEC="/Applications/USeq_8.3.8/Apps/FilterIntersectingRegions"
RES_TO_BED_EXEC="/Users/norkish/Downloads/restrict2Bed.pl"
NUC_ALIGN_TO_BED_EXEC="/Users/norkish/Downloads/nucReadAlign2Bed.pl"

#Length of nucleosome

NUC_LEN=146

#Distance from fragment end within which, aligned nucleosomes should
be discarded

RES_WIN=10

#Amount by which brother nucleosomes must overlap to be considered
recoverable

OVERLAP_FRACTION=.93

grkkkkkDONT MODIFY BELOW THIS LINE*ksksskk
RES1_COMBINED_BED="$RES1_CHR_DIR/$RES1.combined.bed"
RES1_NUC_BED_FILE="$RES1_BLAT_FILE.bed"
RES2_COMBINED_BED="$RES2_CHR_DIR/$RES2.combined.bed"
RES2_NUC_BED_FILE="$RES2_BLAT_FILE.bed"

#Make single bed file from all restriction enzyme 1 fragments where
bed entries are "invalid zones"
rm $RES1_COMBINED_BED;
for file in “1s $RES1_CHR_DIR/*chr*.txt";
do

echo perl $RES_TO_BED_EXEC $file $RES_WIN

perl $RES_TO BED_EXEC $file $RES_WIN >> $RES1_COMBINED BED;
done

#Make bed file from blat file
echo perl $NUC_ALIGN_TO BED EXEC $RES1_BLAT FILE

Figure A.14: Code for perl program “Classifynucleosome.sh” written by Paul Bodily
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#Takes a restriction file, parses name for chromosome (assumes number
is either roman numeral or x), and then generates a bed file (prints
to stdout)

# i.e. a file with three tab-delimited columns: chr# sPos ePos

# Assumes: input is 1-base coords, e.g. the first 100 bases of a
sequence are represented at 1-100, and the second 100 are 101-200.
Output is in bed format, which is @-base, meaning the first 100 bases
of a chromosome are defined as chromStart=0, chromEnd=100, and span
the bases numbered 0-99.

use strict;
use warnings;

my $restriction_file = shift;
my $window_size = shift;
$window_size = 10 unless defined $window_size;

my $del = "\t";

die "No restriction file provided\n" unless defined $restriction_file;
my $chriD;

if($restriction_file =~ /\.(chr[~\.]+)\./i){
$chriD = $1;
}
die "Chromosome ID not parsable from filename\n" unless defined
$chriD;
open IN_FILE, "<$restriction_file";
print $chriD,$del,"0",$del,$window_size,"\n";
my ($start, $end, $size);
while(<IN_FILE>){
next if $. < 3;
($start, $end, $size) = split(' ");
print $chriD,$del, ($start - $window _size),$del, ($start +
$window_size),"\n";
}
close IN_FILE;

print $chriD,$del,($end + 1 - $window_size),$del, ($end + 1),"\n";

Figure A.15: Code for perl program “restrict2bed.pl” written by Paul Bodily
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