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A B S T R A C T   

Probabilistic forecasting of distribution tails (i.e., quantiles below 0.05 and above 0.95) is challenging for non- 
parametric approaches since data for extreme events are scarce. A poor forecast of extreme quantiles can have a 
high impact in various power system decision-aid problems. An alternative approach more robust to data 
sparsity is extreme value theory (EVT), which uses parametric functions for modelling distribution’s tails. In this 
work, we apply conditional EVT estimators to historical data by directly combining gradient boosting trees with 
a truncated generalized Pareto distribution. The parametric function parameters are conditioned by covariates 
such as wind speed or direction from a numerical weather predictions grid. The results for a wind power plant 
located in Galicia, Spain, show that the proposed method outperforms state-of-the-art methods in terms of 
quantile score.   

List of Acronyms and Symbols   

Notation Description  

CDF Cumulative distribution function 
CRPS Continuous ranked probability score 
EVT Extreme value theory 
Exp_Tails Exponential function 
GBT Gradient boosting tree regression 
GBT_EVT GBT combined with Hill estimator 
GBT_tGPD Proposed method combining GBT with truncated GPD 
GPD Generalized Pareto distribution 
POT Peaks-over-threshold 
QR Quantile regression 
QR_EVT QR combined with Hill estimator 
QR_EVT_T QR, Hill estimator and transformed power data 
RES Renewable energy sources 
C Installed power capacity 
H (.) Heaviside function 
h Sample size for tails representation, using GBT_tGPD 
k Sample size for extreme quantiles extrapolation 
p Number of covariates 
n Number of observations 
X p-dimensional vector of covariates 
x Observed p-dimensional vector of covariates 
Y Target variable 
y Observed target variable 
Y Y. ..n n n1, , Ordered sample of Y

Nominal proportion of a quantile, [0, 1]

(.) Pinball loss function 

Q x^ ( | )
exp Conditional quantile through exponential functions 

Q x^ ( | )
GBT Conditional quantile through a GBT model 

Q x^ ( | )
QR Conditional quantile through a QR model 

Q x^ ( | )
W Conditional extreme quantile through Weissmans estimator 

Q̂ ( )k
tGPD Extreme quantile through POT estimator for truncated GPD 

1(.) Indicator function 
( ) QR model coefficients 

x^ ( ) Conditional tail index estimator 

(.) Power transformation function 
Power parameter 

s (.) Similarity function between two CDF curves  

1. Introduction 

The growing integration of renewable energy sources (RES) brings 
new challenges to system operators and market players and robust 
forecasting models are fundamental for handling their variability and 
uncertainty. This fomented a growing interest in RES probabilistic 
forecasting techniques and its integration in decision-aid under risk [1]. 

Many satisfying methods already exist to forecast RES generation 
quantiles between 0.05 and 0.95, which can be parametric or non- 
parametric. An up-to-date literature review about RES probabilistic 
forecasting can be found in [2]. Parametric models assume that data is 
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generated from a known probability distribution (e.g. Gaussian, Beta), 
whose parameters are estimated from the data. Non-parametric models 
do not make any assumptions about the shape of the probability dis-
tribution and comprise techniques such as quantile regression (QR) 
with radial basis functions [3], local QR [4], conditional kernel density 
estimation [5] and gradient boosting trees (GBT) [6]. It is also possible 
to find semi-parametric approaches, e.g., mixture of a censored dis-
tribution and probability masses on the upper and lower boundaries 
that transform wind power data into a Gaussian distribution, whose 
mean and standard deviation are forecasted with a statistical model [7]; 
combination of linear regression, inverse (power-to-wind) transforma-
tion and censored normal distribution [8]. 

The main advantage of parametric methods is that the distribution’s 
shape only depends on a few parameters, resulting in a simplified es-
timation and consequently requiring low computational costs. 
However, the choice of the parametric function is not straightforward. 
On the other hand, non-parametric models require a large number of 
observations to achieve good performance. Therefore, when estimating 
quantiles below 0.05 and above 0.95, non-parametric models tend to 
have poor performance due to data sparsity. This suggests the combi-
nation of both approaches to forecast the conditional probability 
function: intermediate quantiles are estimated with a non-parametric 
model and the extreme quantiles (or tails) with a parametric approach. 

A poor forecast of extreme quantiles can have a high impact in 
different decision-aid problems, in particular when decision-makers are 
highly risk averse or the regulatory framework imposes high security 
levels. For instance, when setting operating reserve requirements 
system operators usually define risk (e.g., loss of load probability) levels 
below 1% [9]; the distribution’s tails forecasting accuracy affects the 
decision quality of advanced RES bidding strategies that are based on 
risk metrics such as conditional value-at-risk [10]; dynamic line rating 
uncertainty forecasting for transmission grids also requires the use of 
low quantiles (e.g., 1%) [11]. Moreover, the generation of temporal 
and/or spatial-temporal trajectories (or random vectors) with a statis-
tical method, such as the Gaussian copula [12], requires a full model-
ling of the distribution function and an accurate estimation of the tails 
avoids trajectories with “extreme” values. In all these use cases, it is 
important to underline that poor modelling of distribution’ tails might 
lead to over and under-estimation of risk and consequently to worst 
decisions. This impact can be measured by metrics such as the Value of 
the Right Distribution that measures the difference in the cost of op-
timal solution, in stochastic programming, obtained with the forecasted 
and realized probability distribution [13]. 

By exploring concepts from extreme value theory (EVT), which is 
dedicated to characterise the stochastic behaviour of extreme va-
lues [14], the present paper proposes a novel wind power forecasting 
methodology, focused in improving the forecasting skill of the dis-
tribution’s tails, which combines spatio-temporal information (obtained 
trough feature engineering), gradient boosting trees (GBT) as a non- 
parametric method for quantiles between 0.05 and 0.95 and the trun-
cated generalized Pareto distribution (GPD) for the tails. 

The remaining of this paper is organized as follows. Section 2 pre-
sents related work and identify contributions. Section 3 introduces the 
relevant statistical background of non-parametric and parametric 
methods. Section 4 describes a novel forecasting method combining 
GBT with truncated GPD. Section 5 describes the experiments to eval-
uate the proposed method and conclusions are drawn in Section 6. 

2. Related work and contributions 

In [15] and [16], a QR model is used to forecast the wind power 
quantiles from 0.05 to 0.95 and the distribution’ tails are modeled using 
an exponential function. The exponential function requires the esti-
mation of a single parameter that controls the tails’ decay, the thickness 
parameter ρ. This parameter can be estimated by computing the mean 
of the observed power conditioned by the forecasted wind power, i.e., 

observed power is divided into equally populated bins according to 
forecasted wind power, then ρ is the average power associated to each 
bin. This procedure is not as flexible as those provided by an EVT es-
timator like GPD (used in this work), which models extreme events 
through distributions with two parameters (scale and shape), allowing 
it to estimate lightweight and heavier tails. 

A two-stage EVT approach is proposed in [17] to estimate the ex-
treme quantiles of a random variable Y conditioned by covariate X. 
First, the conditional quantiles are estimated with a local QR. Then, 
generalized extreme value distribution with a single parameter (i.e., 
extreme value index estimated using maximum likelihood) is applied to 
these non-parametrically estimated quantiles in order to construct an 
estimator for extreme quantiles. Similarly, the authors of [18] apply 
linear QR to estimate the intermediate conditional quantiles, which are 
then extrapolated to the upper tails by applying EVT estimators (e.g., 
Hill estimator) for heavy-tailed distributions (GPD is assumed). How-
ever, the conditional quantiles of Y are assumed to have a linear rela-
tion with X at the tails, which may be too restrictive in real-world ap-
plications. In order to overcome this limitation, the approach proposed 
in [19] works by first finding an appropriate power transformation of Y, 
then estimating the intermediate conditional quantiles of transformed Y 
using linear QR and finally extrapolating these estimates to extreme 
tails with EVT estimators. At the end, these quantiles are transformed 
back to the original scale. 

More importantly, existing works only apply EVT as a post-proces-
sing step over a set of quantiles first estimated (or forecasted) by a non- 
parametric method [18]. However, since non-parametric models can 
suffer from high variability at the tails, the performance of EVT esti-
mators may be compromised. In order to overcome this problem, we 
restrict non-parametric estimation to the intermediate quantiles, as 
depicted in Fig. 1. This estimation is then used to guide the parametric 
model by rating historically similar periods conditioned by the cov-
ariates. 

Finally, two works proposed the use of spatio-temporal data in RES 
probabilistic forecasting: combination of GBT with feature engineering 
techniques to extract information from a grid of Numerical Weather 
Predictions (NWP) [6]; hierarchical forecasting models to leverage 
turbine-level data [20]. Both works do not deal or propose a specific 
methodology to forecast conditional distribution’s tails. 

3. Background:non-parametric and parametric methods 

This section presents the main statistical methods to construct the 
proposed method and baseline approaches. In what follows, xi is the 
observed p-dimensional vector of covariates and yi is the target vari-
able, with i n{1, , }. 

3.1. Non-parametric methods 

3.1.1. Quantile regression 
The QR model [21] estimates the conditional quantile function of Y 

given X, 

= + + +Q X X X( | ) ( ) ( ) ( ) ,p p
QR

0 1 1 (1) 

for the nominal proportion τ ∈ [0, 1], by minimizing 

Fig. 1. The proposed method uses different estimators for intermediate and 
extreme quantiles. 
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where =^ ( ) ( ^ ( ), , ^ ( ))p0 are unknown coefficients depending on τ, 
and ρτ(u) is the pinball loss function [21]. 

3.1.2. Gradient boosting trees 
A GBT model for quantile forecasting is constructed by combining 

base learners (i.e., regression trees), fj, recurrently on modified data, 

= +Q X Q X f X( | ) ( | ) ( | ).j j j
GBT

1
GBT

(3) 

with each regression tree fj fitted using the negative gradients as target 
variable, and as part of an additive training process to minimize the 
pinball loss function 

= +
=

f X y Q fx x^ ( | ) arg min , ^ ( | ) ( | ) .j
f i

n

i j i j i
1

1
GBT

j (4) 

The initial model Q1
GBT is typically the unconditional τ-quantile of y. 

The challenge of GBT is to tune the different hyperparameters, which 
are related with the regression trees and the boosting process — see [6] 
for more details. 

3.1.3. Rearrangement of quantiles 
Since both QR and GBT solve an optimization problem for each 

quantile τ independently, quantile crossing may happen, i.e. Q 
(τ1|x) < Q(τ2|x) for τ1 > τ2. Post-processing is applied to the model’s 
output to ensure that the estimated cumulative function is mono-
tonically non-decreasing. We can monotonize the function by con-
sidering the proportion of times the quantile Q(τ|x) is bellow a certain 
y, mathematically provided by the cumulative distribution function 
(CDF) 

=F y dx 1( | ) Q yx0

1
( | ) (5) 

which is monotone at the level y, and then use its quantile function 

=Q Fx x˜ ( | ) ( | )1 (6) 

which is monotone in τ [22]. 

3.2. Parametric methods for extreme quantiles 

3.2.1. Exponential function 
In [15], distribution’ tails of wind power are approximated by ex-

ponential functions. Given the estimated conditional quantiles for 
nominal proportion between 0.05 and 0.95, the extreme quantiles are 
computed as 

=

<

>

Q

Q

C Q
C

x

x

x
^ ( | )

^ (0.05| )
ln( )

ln( )
, 0.05,

1 1
^ (0.95| ) ln( )

ln( )
, 0.95,

exp

0.05

1 0.95

1

(7) 

where ρ corresponds to the thickness parameter for the exponential 
extrapolation and C is the installed capacity. Since the lower and upper 
tails may have different behaviors, ρ is independently estimated for 
each tail by maximum likelihood [16]. 

3.2.2. Hill-based methods 
In [18] and [19], a QR model is combined with EVT estimators. 

First, a local QR model is used to estimate the conditional quantiles τj, 
denoted as Q x^ ( | ),j

QR
…j n n{1, , [ ]}, for some 0 < η < 1, being [u] 

the integer part of u. Then, using these values, extreme quantiles are 
computed through an adaptation of Weissman’s estimator, 

=Q Qx x^ ( | ) 1
1

^ ( | ),n k

n
n k

xW ^ ( ) QR

(8) 

where x^ ( ) is based on Hill’s estimator 

=
=k n

Q

Q
x

x

x
^ ( ) 1

[ ]
log

^ ( | )
^ ( | )

.
j n

k
n j

n k[ ]

QR

QR
(9)  

In EVT, the selection of k is an important and challenging problem. 
The value k represents the effective sample size for tail extrapolation. A 
smaller k leads to estimators with larger variance, while larger k results 
in more bias, when estimating γ(x). In practice, a commonly used 
heuristic approach for choosing k is to plot the estimated γ versus k and 
then choose a suitable k corresponding to the first stable part of the 
plot [14], see Fig. 2. 

In [19], the response variable of the QR model is the power trans-
formation Λλ(.) of Y that aims to improve the linear relation with x, i.e. 

=
=

y
y

y
( )

1 , if 0,

log( ), if 0. (10) 

For this approach, k is estimated to minimize 

=
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3.2.3. Peaks-over-threshold (POT) method with truncation 
Since wind power generation is limited between 0 and installed 

capacity C, we observe the truncated random variable Y, < =Y C . The 
work in [23] provides an estimator for the extreme quantiles by using a 
random sample of Y, with independent and identically distributed ob-
servations, i.e. does not consider that Y is conditioned by covariates x. 
The POT method [24] is adapted to estimate extreme quantiles from a 
GPD distribution affected by truncation at point C. The quantiles for Y 
are estimated by 

= +
+

+

+
+Q p Y

D

p D
^ (1 )

^
^

^

( ^ 1)
1 ,k n k n

k

k

C k
k
n

C k
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,

,
( 1)
( 1)

,

^
k

(14) 

where < <Y Yn n n1, , is the ordered sample, ^
k and k̂ are the maximum 

likelihood estimates adapted for truncation, and D̂C the truncation odds 
estimator 

=
+

+
D k

n
E

E
^ max 0,

(1 (^ /^ ) )

1 (1 (^ /^ ) )
,C k

k k k k

k k k
,

1,
1/ ^ 1

1,
1/ ^

k

k (15) 

with = +E Y Yj k n j n n k n, 1, , . 

Fig. 2. Illustration of γ value in function of k. The first stable part of the plot 
happens for k ≈ 700. 
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The GDP estimator will be used in our proposed method because 
(i) the shape parameter ξ allows modeling everything from extreme 
events with lightweight distribution (ξ < 0) to events with exponential 
distribution ( = 0) and events with heavy distribution (ξ > 0); (ii) the 
existence of estimators for truncated GPD that can handle random 
variables with limited support like wind power. 

4. Gradient boosting trees with a truncated generalized Pareto 
model 

As previously discussed in Section 2, EVT estimators are, at present, 
used in post-processing steps for quantiles forecasted with a non-para-
metric model, i.e., the non-parametric model forecasts all quantiles 
(including extreme quantiles) and EVT estimators are applied to correct 
the forecasted distribution’s tails. However, since non-parametric ap-
proaches do not properly estimate extreme quantiles due to data spar-
sity, the performance of EVT estimators may be compromised. In this 
section and to overcome this gap, we propose to apply EVT estimator to 
historical data directly. The selection of the relevant historical data is 
guided by the non-parametric model. 

Our proposal consists of the following steps, also depicted in Fig. 3:  

1. Non-parametric estimation: A non-parametric model Q(τ|x) is 
estimated for intermediate quantiles, = {0.05, 0.10, , 0.95},
i.e. 19 models are estimated. A rearrangement is also performed as 
described in (6). For a given training observation i, yx( , ),i i

tr tr there is 
an estimation =q Q x^ ( ) ( | )i i

tr tr . 
2. Non-parametric forecast: Given a new observation x*, the esti-

mation q̂*( ) is given by the aforementioned non-parametric model 
Q for τ ∈ τ. 

3. Historical similarity: A similarity score s(q1, q2) is computed be-
tween two quantile curves along several values of τ. The quantile 
curve q̂* from the new sample = qq̂* [^*( ) | ] is compared with 
the quantile curve of each historical observation i, 

= qq̂ [^ ( ) | ]i i
tr tr . This similarity function is the Kolmogorov- 

Smirnov statistic given by 

=s q q q q( , ) sup ^ ( ) ^ ( ) .1 2 1 2 (16) 

The new observation is scored against each historical observation, 
=s s q q(^*, ^ )i i

tr . Since both quantile curves q̂* and q̂i
tr are conditioned 

by the covariates, the selection of the similar periods through si is 
also conditioned by the covariates  

4. EVT data sample: The EVT estimator is applied twice, for the 
lower-tail (τ < 0.05) and the upper-tail (τ > 0.95) quantiles. The 
historical values of yi, used as the fitting sample of the EVT esti-
mator, are selected as those corresponding to the top-h (hy-
perparameter) values of =s s q q(^*, ^ )i i

tr . To avoid quantile crossing, 
these values are further narrowed down to y q̂*(0.05)i and 
y q̂*(0.95),i respectively. 
Furthermore, EVT requires that the sample encompasses the entire 
quantile curve, therefore the remaining 90% quantiles, which cor-
respond to h0.9

0.05
observations, are sampled from a spline interpolation 

constructed from the discrete q̂* curve. The ensuing sample is called 
y′.  

5. EVT estimation: Lower-tail and upper-tail quantiles are estimated 
through the estimator in (14), considering the sample y′. Since, by 
convention, EVT distributions are defined for quantiles close to 1, 
the estimation of the lower-tail is obtained by considering the 
sample =y C yi i . EVT estimation is performed by (14) so that 
forecasted values are non-negative and below the installed capacity, 

y C0 ^ . 

Note that step S3 chooses i by comparing the probability distribu-
tion q̂ of the target variable conditioned on x* and xi

tr. This is different 
from the usual approach of choosing i by comparing x* against xi

tr di-
rectly, as in [17], which assumes that covariates have equal weight and 
does not take the target variable into consideration. For instance, 
covariate j may be uncorrelated with the target, i.e. =yxcorr(( ) , ) 0,j

tr tr

yet it contributes to the similarity through Euclidean distance as 
x x(( ) ( *) )i j j

tr 2. 

5. Numerical experiments 

5.1. Data description 

The proposed method is tested with a wind power dataset from the 
Sotavento wind power plant, located in Galicia (Spain), with a total 
installed capacity of 17.56 MW. The dataset extends from January 1st, 
2014 to September 22nd, 2016, with hourly time steps. 

The NWP data was retrieved from the MeteoGalicia THREDDS 
server, which is a publicly available service that provides historical and 
daily forecasts of several weather variables. The NWP is run at 0h UTC 
and the time horizon is 96 hours-ahead, meaning that for each day a set 
of four forecasts are available for each point of the grid (one generated 
in the current day at 0h UTC plus three generated on the previous days). 
The NWP model provides forecasts for: (a) u [m/s], azimuthal wind 
speed; (b) v [m/s], meridional wind speed; (c) mod [m/s], wind speed 
module; (d) dir [0, 360], wind direction. Four model levels (0 to 3) are 
available, meaning a total of 16 variables in each grid point. 

5.1.1. Covariates extracted from the NWP grid 
The features created by the authors of [6], from a NWP grid with 

13 × 13 equally distributed points (4 km), were used in this work and 
are described below. Our goal is to forecast the wind power for 24h- 
ahead and the majority of the covariates are constructed with the most 
recent NWP run. 

Temporal information is represented by:  

• Temporal variance for the mod variable (level 3) at the central point 
of the grid, computed as 

= = +
+ +

t
x i x

N
( )

( ( ) )
1

,i t k N
t k N

h
time

/2
/2 2

h
h

(17) 

with =N 7h .  
• Lags and leads, x(t  ±  z), for mod and dir (level 3) at the central 

point of the grid, =z 1, 2, 3.  
• Four predictions generated for mod (level 3) at the central point of 

the grid, for time t. 

Fig. 3. Overview of the proposed forecasting model.  
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The spatial information is represented through:  

• Principal Component Analysis (PCA), the best model in [6] included 
the PCA applied to mod and dir (levels 1, 2, 3), and to u and v (level 
3) with a 95% variance threshold.  

• Spatial standard deviation for mod, u and v at level 3, computed as 

= =t
x t x t
N

( )
( ( ) ( ))

1
,i

N
i

p
spatial

1
2p

(18) 

where Np is the number of geographical points in the NWP grid, xi(t) 
is the value of variable x at time t and location i, and x t( ) is the 
mean of variable i for all locations.  

• Spatial mean computed with the grid values of mod, u and v at 
model levels 1, 2, 3. 

5.1.2. Data division 
A sliding-window approach was used for training the models.  

Table 1 presents the four distinct test folds. Each train and test set 
consists of 12 and 5 months, respectively, allowing an evaluation under 
different conditions. 

5.2. Evaluation metrics 

This section describes the set of metrics adopted in this work to 
evaluate probabilistic forecasting skill of extreme quantiles. 

5.2.1. Calibration 
Measures the mismatch between the empirical probabilities (or 

long-run quantile proportions) and nominal (or subjective) prob-
abilities, e.g. a 0.25 quantile should contain 25% of the observed values 
lower or equal to its value. For each quantile τ, the observed proportion 
^ ( ) of observations bellow the estimated quantile is 

=
=n

1^ ( ) 1 .
i

n

y Q x
1

^ ( | )i y i (19)  

5.2.2. Sharpness 
Measures the “degree of uncertainty” of the probabilistic forecast, 

which numerically corresponds to compute the average interval size 
between two symmetric quantiles, e.g., 0.10 and 0.90 centered in the 
0.50 quantile (median), as follows 

=
=n

Q Qx xsharp ( ) 1 ^ (1 | ) ^ ( | ),Y
i

n

Y i Y i
1 (20) 

for τ ∈ [0, 0.5]. 

5.2.3. Continuous ranked probability score (CRPS) 
Evaluates the forecasting skill of a probabilistic forecast in terms of 

the entire predictive CDF, using an omnibus scoring function that si-
multaneously addresses calibration and sharpness [25]. Let y be the 
observation, and FY the CDF associated with an empirical probabilistic 
forecast, 

=F y F z H z y dzCRPS( , ) ( ( ) ( )) ,Y Y
2

(21) 

where H is the Heaviside function. 
Although CRPS is very popular in evaluating the quality of CDF 

forecast, recent work in [26] concluded that the mean of the CRPS is 
unable to discriminate forecasts with different tails behavior since it 
tends to benefit distributions with smaller uncertainty intervals, even if 
the calibration is poor. A more suitable scoring rule, following the 
suggestion in [25], is the pinball function or quantile loss. Smaller the 
value of the quantile score, better the model when forecasting quantile 
τ. 

5.3. Implementation details and baseline models 

In order to evaluate the added-value of the proposed method, the 
models described in Table 2 are compared. The implementation is 
performed through R and Python programming languages. The R- 
packages include quantreg [27] (for quantile regression), Re-
arrangement [28] (for quantile crossing problem) and ReIns [29] 
(for truncated GPD estimation). The GBT model was implemented in 
Python using the scikit-learn library [30]. 

The hyperparameters of the GBT models were estimated using the 
Bayesian optimization algorithm from a Python implementation [31]. A 
12-fold cross-validation was employed and, since all training sets con-
template one year of data, 12-folds guarantees 12 different monthly 
validation scenarios. For the final evaluation, the average of monthly 
CRPS is considered for each training set in the optimization process. 

The local_tGPD benchmark is a naive model. The EVT estimator 
in (14) is applied to a b% of training samples listed in ascending order 
according to the Euclidean distance between xi

tr and x*. The hy-
perparameter b was determined through grid-search from 5% to 50%, 
with increments of 5% and set to 15%. This model is used to assess if 
the mapping between covariates (e.g., weather forecasts) and target 
variable is important (as discussed in Section 4). 

Finally, the estimators in (8) and (14), used in QR_EVT and 
GBT_tGPD respectively, require the selection of the value of k for each 
time step. We followed the heuristic approach for choosing the first 
stable part of the plot of γ versus k. The stable part is found by com-
puting a moving average on the differences of γ. In our approach, we 
selected the hyperparameter h by grid-search from 50 to 500, with in-
crements of 50, with =h 200 being the best. 

5.4. Forecasting skill evaluation 

Since the GBT model performs better for power data, due to the 
nonlinear relationship between wind and power, GBT is used to esti-
mate quantiles between 0.05 and 0.95. The proposed model is 
then used to estimate the quantiles =e
{0.001, 0.005, 0.01, 0.02, 0.03, 0.04, 0.96, 0.97, 0.98, 0.99, 0.995, 0.999}. 

Table 1 
Time period for training and testing folds.     

Fold Train set range Test set range 
1 01/01/2014—31/12/2014 01/01/2015—31/05/2015 
2 01/06/2014—31/05/2015 01/06/2015—31/10/2015 
3 01/11/2015—30/10/2016 01/11/2015—31/03/2016 
4 01/04/2015—31/03/2016 01/04/2016—22/09/2016 

Table 2 
Evaluated forecasting models.    

Notation Description  

GBT GBT (non-parametric model) 
local_tGPD Hill estimator and truncated GPD (Eq. (14))⁎ 

Exp_Tails Exponential functions (Eq. (7)) 
QR_EVT QR combined with Hill estimator (Eq. (8))⁎⁎ 

QR_EVT_T QR, Hill estimator and transformed power data (Eq. (10))⁎⁎ 

GBT_EVT GBT combined with Hill estimator (Eq. (8))⁎⁎ 

GBT_tGPD Proposed method combining GBT with truncated GPD 

* applied to b% of training samples ranked by similarity 
** EVT estimator used in post-processing stage  
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Table 3 summarizes the relative quantile score improvement ob-
tained by GBT_tGPD over the baseline models. Quantile score is com-
puted by considering the extreme quantiles for nominal proportions τe. 

The GBT_tGPD improvement is greater than 3.5% for all testing 
folds, except over GBT. Table 4 shows a finer-grained view of the 
quantile loss for the most extreme quantiles, averaged over the testing 
folds. It can be noticed that the improvement of the proposed method is 
slightly higher for the upper quantiles, but, all in all, the proposed 
method shows the best results. 

The statistics of the wind power generation for the train and test 
periods are summarized in Table 5. Two factors might justify the dif-
ferent improvements obtained in the four folds: the variability of the 
wind power values and the differences between train and test data 
distributions. When high variability is associated with different dis-
tributions for train and test sets, as is the case of fold 3, the selection of 
200 observations results on more dispersed power measurements and, 
consequently, the EVT estimator has longer tails. 

Fig. 4 complements the previous analysis by showing the calibration 
values for each model. The numerical values of the calibration devia-
tion are also presented in Table 6. For the upper tail, the GBT_tGPD 
model exhibits almost perfect calibration for all quantiles. In the lower 
tail, it produces a lower overestimation of the quantiles. However, 
when considering all quantiles, QR-based models are the most well 
calibrated models. Yet, when analysing the sharpness of the forecast 

intervals generated by these methods in Fig. 5, these methods show that 
the better calibration comes at the cost of a higher amplitude (i.e., 
lower sharpness), which is a trade-off well-known in the forecasting 
literature. The lower sharpness from GBT_EVT, QR_EVT_T and QR_EVT 
is justified by the fact that the Hill estimator is more suitable for heavy- 
tailed distributions. 

For illustrative purposes, the most extreme forecasted quantiles 
(i.e., 0.001 and 0.999) obtained with GBT, Exp_Tails and GBT_tGPD are 
depicted in Fig. 6. The Exp_Tails model was chosen since it is the model 
with the lowest sharpness. This plot clearly shows that GBT_tGPD has a 
better calibration than Exp_Tails, but wider intervals, and also shows a 
higher temporal variability of the forecast generated by GBT_tGPD. 

The baseline model GBT shows small sharpness for all nominal 
coverage rates (between 92% and 99%) except the most extreme one 
(99.8%), as depicted in Fig. 5. The small sharpness is explained by the 
fact that GBT fails to capture the variability for the most extreme 
quantiles. The forecast of the lower quantiles is particularly bad with 
values very close to zero, as depicted in Fig. 6. 

6. Conclusions 

Accurate forecasting of distribution tails remains a challenge in the 
RES forecasting literature since are often associated with data sparsity. 
Furthermore, information from the tails is of major importance in 
power system operation (e.g., reserve capacity setting, dynamic line 
rating) and RES market trading. For this reason, concepts were bor-
rowed from EVT for truncated variables and combined with a non- 
parametric wind power forecasting framework that includes features 
created from spatial-temporal information. 

Two major benefits are provided by this work: (a) covariates are 
used to produce conditional forecasts of quantiles without any limita-
tion in the number of variables; (b) the parametric EVT-based estimator 
can be combined with any non-parametric model (artificial neural 
networks, GBT, random forests, etc.) without any major modification. 
Moreover, the results for a wind farm located in Galicia, Spain, show 
that the proposed method can provide sharp and calibrated forecasts 
(important to avoid over- and under-estimation of risk) and outper-
forms state-of-the-art methods in terms of the quantile score. Finally, 
the proposed method can be transposed to other use cases in the energy 
sector, such as risk management in portfolio’s future returns and study 
grid resilience to adverse weather events. 

Topics for future work are: (i) inclusion of information from 
weather ensembles, as additional covariates, in order to exploit its 
capability to capture extreme events with a physically-based approach; 
(ii) generalization of the proposed method to other energy-related time 
series, e.g., solar power and electricity price; (iii) new proper scoring 
rules are needed to evaluate the forecasting skill of extreme (rare) 

Table 3 
Relative quantile loss improvement [%] over the baseline models, considering 
the extreme quantiles τe.        

Folds Fold 1 Fold 2 Fold 3 Fold 4 W.Avg.  

GBT 5.40 1.97 7.03 0.12 3.76 
local_tGPD 22.27 29.34 21.71 27.80 26.25 
Exp_Tails 12.87 11.03 9.44 14.79 12.55 
QR_EVT 10.16 7.10 4.56 8.90 8.21 
QR_EVT_T 12.39 7.20 10.78 8.55 10.39 
GBT_EVT 12.20 9.06 9.33 5.03 9.75    

Table 4 
Quantile loss for each model (lower is better).         

τ 0.001 0.005 0.01 0.99 0.995 0.999 
GBT 3.20 15.49 29.60 52.65 30.98 10.60 
local_tGPD 3.16 15.74 31.05 84.52 45.21 9.69 
Exp_Tails 8.63 20.95 32.47 53.14 32.26 9.43 
QR_EVT 3.14 15.64 29.67 54.90 32.17 8.89 
QR_EVT_T 3.19 15.55 29.84 59.27 34.48 9.68 
GBT_EVT 3.17 15.72 31.97 67.13 35.23 8.45 
GBT_tGPD† 3.13 15.28 29.30 50.35 28.23 8.01 

†the proposed method  

Table 5 
Descriptive statistics for the observed wind power (% of installed capacity).           

Fold Fold1 Fold 2 Fold 3 Fold 4  

Train Test Train Test Train Test Train Test  

Min 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Q(.25) 1.4 2.8 0.8 0.4 1.2 5.7 2.3 0.1 
Q(.5) 11.0 12.5 9.0 6.7 9.4 19.6 11.6 5.3 
Q(.75) 32.1 33.6 26.6 23.0 28.6 41.3 31.6 16.5 
Max 93.2 90.3 90.3 87.1 90.3 88.3 88.3 77.3    

Fig. 4. Deviation between nominal and empirical quantiles for all folds. Dashed 
black line represents perfect calibration. 
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events (see [32] for instance). 
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