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A B S T R A C T

In Brazil, big consumers can choose the free market to purchase their energy. The main advantage is the pos-
sibility of negotiating a lower price and the main risk is the difference between the energy contracted and
consumed in each month, which should be settled by the spot price.

This paper proposes to optimize the parameters of a contract by a statistical and optimization model. In the
statistical part, the parameters for energy and peak demand time series are estimated in a correlated way with
the simulated scenarios of spot price, which is an input in the proposed methodology.

In the optimization part, a stochastic model is applied using a convex combination of the Expected Value and
Conditional Value-at-Risk to find the optimum contract parameters, which are the energy contracted, the upper
and lower bounds of the contract and peak demand contracted. To summarize, the main contribution of the
proposed approach is to provide a methodology for big electricity consumers in the free energy market in Brazil,
which considers a statistical model, that correlates and simulates scenarios of energy and peak demand with the
spot price scenarios, and optimizes it based on a stochastic optimization model combining the Expected Value
and Conditional Value at Risk as risk metrics.

The results indicate that the methodology can be a powerful tool for consumers in the free market and, due to
the nature of the model, it can be generalized for different energy markets.

1. Introduction

In the Brazilian electricity market, big consumers are characterized
by installed load capacity equal or greater than 2 MW [1]. In contrast
with small consumers, they have two different options for contracting
energy: the Regulated Contract Environment (RCE) and the Free Con-
tract Environment (FCE) [2]. The tradeoff for being in one or other
involves a higher cost in RCE and a higher risk in FCE.

The cost and risk are related with decision variables in the contract.
While in the RCE market the power demand is the variable computed
by consumers in contract with the utility, in the FCE market, beyond the
power demand contract with utility, energy and the duration of the
contract with commercialization company are mandatory variables to
be defined. In addition to that, the limits of energy contract are also
important to mitigate the risk due to the difference between the energy
consumed and energy contracted settled by the spot price [3].

Recently, in [4], the authors presented an optimization model to
address the problem in RCE by computing the optimal value of the
power demand contracted. To address the problem, firstly the para-
meters of the power demand were estimated based on the historic time

series data of power demand from a real consumer. Then, scenarios of
power demand were simulated to, finally, be applied in a stochastic
optimization model to compute the power demand contract. This model
considers metrics of risk such as Conditional Value at Risk (CVaR) and
EV (Expected Value) to find the best power demand contract.

Partially, the aforementioned methodology is being used as in-
spiration for this paper. Here, we propose to adapt the methodology
applied in [4] to compute the value of the energy contract, limits of this
contract and power demand contracted for the FCE market. This
adaptation involves the simulation of combined scenarios of energy,
power demand and spot prices in a statistical model and a stochastic
optimization model to minimize the total cost of the electricity bill.

The spot price in Brazil is a systemic variable. As stated in [5], the
Brazilian system is strongly based on hydrothermal generation, and the
short-term operation is centrally coordinated by an Independent System
Operator (ISO). The coordination is based on the minimal cost dispatch
model and a by-product of this model is the operational marginal cost,
which defines the spot price. Because most of the energy in Brazil comes
from hydro power plants, when inflows are favourable, the demand is
covered by hydro generation and the spot price tends to be lower. On
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the other hand, when the system's future simulated scenarios of hydro
generation are not favourable, the spot price can skyrocket. For big
consumers in FCE, the difference between the energy contracted and
energy consumed is settled by the spot price.

In Brazil, the ISO simulates spot prices scenarios for 5 years ahead
and, because of this, we can use it as input data in this paper. After the
combined simulation of the spot prices and the interested variables with
the statistic model, the values of power demand, energy and limits of
this energy are computed to set the contract in the optimization model
in order to mitigate the risk for the consumer. The metrics used in the
optimization model are CVaR and EV.

Related to the statistical part, many papers have been proposed in
the last few years to estimate load scenarios in long- and short-term
analysis. In long term analysis, classical approaches are still quite often
used. In [6], a mid-term electricity load demand database is considered
to fit an Autoregressive Moving Average (ARMA) model using Cor-
rected Akaike Information Criterion (AICC) as metric of analysis. Refs
[4,7] considered SARIMA (Seasonal Autoregressive Model integrate
with Moving Average) to estimate power demand and energy time
series for a big consumer on a monthly basis.

On the other hand, for short-term analysis, Artificial Intelligence,
optimization models and machine learning techniques have been re-
placing the classical approach. In [8,9], neural networks are used to

predict daily and quarter-hourly electricity load power, respectively.
The results are compared to actual load data in order to verify the ac-
curacy of the prediction.

Optimization models for energy load management and power de-
mand contracts have been proposed in many projects. In Ref. [10] an
optimal operation of an industrial system is established to minimize the
energy cost of an industrial process. In Ref. [11], the optimization
model is applied to minimize the energy cost by adjusting an industrial
process and takes into account the portfolio effect of renewable energy.
In Ref. [12] a real case application in the context of the Brazilian rules
for reducing costs of a large consumer is presented. In Ref. [13], a
stochastic optimization model with CVaR and EV is used for reducing
the energy cost of a consumer. The CVaR and EV is also applied in Refs.
[4,7] for big consumers to compute power demand and the optimal
number of PV panels applying Brazilian rules.

The Ref. [4] can be used as an inspiration for the proposed model in
this paper. The main difference is the statistical model that considers
the correlation between spot prices, energy consumption and power
demand. To combine those variables, the monthly energy consumed is
simulated taking into account the spot prices as explanatory variables.
Additionally, peak demand is simulated using scenarios of energy as
explanatory variables. At the conclusion all variables are combined in
the simulation process.

Notation

B Lag operator
BS Seasonal lag operator

+B Contract's upper bound
−B Contract's lower bound

Cs t
D
, Peak demand cost in the scenario s and month t

CEs t, Use of distribution energy cost in the scenario s and month
t

CANNUAL Annual optimum cost
Cs,t Function that calculates total cost in the scenario s and

month t
Cs t,

1 Cost above the upper bound in the scenario s and month t
Cs t,

2 Cost below the lower bound in the scenario s and month t
Cs t,

3 Cost within the lower and upper bounds in the scenario s
and month t

Dt Peak demand time series
Ds,t Peak demand simulated in the scenario s and month t
Dcont Peak demand contracted
ds t

u
, Exceeding demand in the scenario s and the month t

Et Energy consumption time series
Es,t Energy simulated in the scenario s and month t
Es t

op
, Off-peak energy in the scenario s and the month t

Es t
p
, Peak energy in the scenario s and the month t

M Big M used as an auxiliary parameter
Pe Contracted energy price
Q Contracted energy quantity

+Q Upper bound in terms of energy
−Q Lower bound in terms of energy

S Total scenarios
πs,t Spot price in the scenario s and the month t
T Analysis period
TUSDD Distribution system use tariff for peak demand
TUSDD

exc Distribution system use tariff for exceeding peak demand
TUSDE

p Distribution system use tariff for peak energy consumed
TUSDE

op Distribution system use tariff for peak energy consumed
TE

p Peak energy tariff
TE

op Peak-off energy tariff
u Tolerated exceeding demand percentage. In the case of

this paper, 5%.

wt Auxiliary variable that reaches the value-at-risk (VaR) of
the distribution costs in the month t for the period of
analysis.

xt Explanatory variable of a time series
Xs t,

1 Main binary variable that indicates if energy is above
upper bound in the scenario s and the month t

Xs t,
2 Secondary binary variable that indicates if energy is

within the bounds in the scenario s and the month t
Xs t,

3 Secondary binary variable that indicates if energy is
within the bounds in the scenario s and the month t

Xs t,
23 Main binary variable that indicates if energy is within the

bounds in the scenario s and the month t
Xs t,

4 Main binary variable that indicates if energy is below
lower bound in the scenario s and the month t

Ys,t Main binary variable that indicates exceeding demand in
the scenario s and the month t

Zt Current value of the time series
ΔD
s,t Peak demand tolerance to avoid penalty in the scenario s

and the month t
+Δs t, Difference between energy and upper bound in the sce-

nario s and the month t
−Δs t, Difference between lower bound and energy in the sce-

nario s and the month t
αt White noise of the time series
α Aversion to risk parameter that defines the confidence

level of the CVaR
γ Parameter associated with the explanatory variable
γπ Parameter associated with the Spot Price variable
δs,t Auxiliary variable that represents the left side of the dis-

tribution costs in the scenario s and the month t
λ Constant that makes the balance between Expected Value

(EV) and the Conditional Value-at-Risk (CVaR).
ϕp Autoregressive parameter of order p
ΦP Seasonal autoregressive parameter of order P
θq Moving average parameter of order q
ΘQ Seasonal moving average parameter of order Q
∇d Difference operator of order d
∇S

D Seasonal difference operator of order D
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The optimization model is also inspired by Lima et al. [4], but in this
paper it consists in a convex combination between EV and CVaR to
minimize the annual cost of the consumer in FCE instead of RCE. To
summarize, the main contribution of the proposed approach is to pro-
vide a methodology for big electricity consumers in the free energy
market in Brazil, which considers a statistical model, that correlates and
simulates scenarios of energy and peak demand with the spot price
scenarios, and optimizes it based on a stochastic optimization model
combining the Expected Value and Conditional Value at Risk as risk
metrics.

In order to detail the methodology, this article is organized as fol-
lows: Section 2 presents a short description of the energy contracting
rules in Brazil; Section 3 presents the historical data of the variables
involved in this problem such as energy consumption, spot price and
peak demand; Section 4 presents the statistical model used to simulate
future scenarios and the treatment proposed to correlate spot price,
peak demand and energy consumed; Section 5 presents the optimiza-
tion model that computes peak demand contracted value, energy con-
tracted and the limits of this contract using EV and CVaR as risk me-
trics; Section 6 presents the results of the proposed problem and, finally;
Section 7 presents the conclusion of the paper.

2. Brazilian contracting environments

In the RCE, consumers can freely choose between two different
modalities of contract, the Green Rate (GR) and the Blue Rate (BR) [2].
The main difference between them is the cost structure associated with
peak and off-peak demand. In GR only the maximum peak demand over
the month is considered to compute the bill, whereas in the BR the peak
and off-peak demands are separately charged. The price of energy
consumption is separated in peak and off-peak hours for both mod-
alities. In this paper, for the sake of simplicity, only GR will be used, but
it is important to highlight that the proposed approach can be gen-
eralized for any modality.

The cost computed in GR for peak demand combines the greatest
value between the peak demand (Dt

max) and the peak demand con-
tracted (Dt

c), for each month t. The rule to compute the total cost of this
contract can be written as follows:

= + + + +C T E T E TUSD E TUSD E C· · ·t
GR

E
p

t
p

E
op

t
op

E
p

t
p

E
op

t
op

t
D (1)

The demand cost can change according to Dt
max and Dt

c. If
< ≤D D0 1.05t t

cmax :

=C D D TUSDmax( , )·t
D

t
c

t
max

D (2)

Otherwise, if >D D1.05t
max

t
c:

= + −C D TUSD D D TUSD· ( )·t
D

t
max

D t
max

t
c

D
exc (3)

Observe that the tolerance for violating the value of the peak de-
mand contracted is 5%, which means that if the Dt

max value is greater
than 105%Dt

c, a cost penalty will take place. As stated in [4], the cost
function changes in each stage and the main challenge to model it as an
optimization model is the changing of the rule when Dt

max value violates
the tolerance of 5%, creating a non-convexity for the optimization
problem. Thus, a MILP (Mixed integer Linear Programming) formula-
tion should be used.

In FCE, the energy contract is freely agreed between the consumer
and commercialization company. A typical agreement involves the
energy to be contracted and the limits used to mitigate the spot price
risk. In order to illustrate this problem, a contract in FCE can consider
the following rule:

= + − +C Q P Q E π C· ( )·t
FCE

t t t t t t
D (4)

According to (4), the higher is the difference between the energy
contracted and the energy consumed is, the higher the risk associated
with spot price will be.

In order to minimize this risk, the contract can be bounded in such a
way that it minimizes the settlement by the spot price as follows:

If ≤ ≤− +Q E Qt t t :

= +C E P C·t
FCE

t t t
D (5)

If <+Q Et t:

= + − ++ +C Q P Q E π C· ( )·t
FCE

t t t t t t
D (6)

If < −E Qt t :

= + − +−C Q P E Q π C· ( )·t
FCE

t t t t t t
D (7)

The proposed problem also creates non-convexity in an optimiza-
tion approach that should be addressed by a MILP formulation. In
conclusion, the larger the bounds of the contract are the less risk in the
spot price will take place. It is important to highlight that due to the
large variation of the spot price over the year, the cost can increase or
decrease significantly when the consumer is exposed to this price.

2.1. Data analysis

In this paper, three time series are considered as inputs for the
statistical model: energy consumption, peak demand and spot prices
expressed in MWh, kW and R$/MWh, respectively. The historical data
of the series are monthly based from January 2002 to December 2018,
totaling 204 observations for each series. In Brazil, the spot price for
long term simulation is on a monthly basis. However, the proposed
approach in this paper could be applied for a week, day, an hour, or any
time discretization.

Fig. 1. Energy time series from 2002 to 2018.
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The energy consumption and peak demand data are from a big
consumer located in Rio de Janeiro, Brazil, and the spot prices data
were gathered from [14]. Figs. 1–3 show the energy consumption, peak
demand and spot price time series, respectively.

2.2. Time series correlation

The time series correlation, in this paper, can be justified by the
Pearson Correlation Test [15]. In this test, the covariance and the
standard deviation of two time series are combined in a way that pro-
duces a value between −1 and indicates the level of correlation be-
tween these series. If the results are close to 1 or −1, it indicates a
strong positive and negative correlation, respectively, between the
series. On the other hand, if the result is close to zero, there is a weak
correlation. For the time series presented in this paper, the correlation
of the time series is presented in Table 1. As it can be observed, the spot
price and energy have a weak correlation compared with Energy and
Peak demand. However, to be conservative, the statistical model used
in this paper will take into account the correlation between all vari-
ables.

2.3. Statistical models

The approach chosen to estimate the appropriate model to fit the
data was the SARIMA model. The general expression of a SARIMA (p, d,
q) x (P, D, Q)S model considers the use of an explanatory variable as in
the following expression [16]:

∇ ∇ = +ϕ B B Z γx θ B B a( )Φ ( ) ( )Θ ( )p P
S d

S
D

t t q Q
S

t (8)

There are several evaluation metrics that can be used to decide the
best SARIMA model. In Ref. [7] the AIC (Akaike Information Criteria),
BIC (Bayesian Information Criteria), MAPE (Mean Absolute Percentage
Error) and R² (Coefficient of Determination) were combined to create a
metric of evaluation. The AIC and BIC are estimators of a mathematical
model adherence by penalizing the difference of the model with a set of
models [17,18]. The difference between AIC and BIC is the level of
penalization. Similarly, R² indicates how much the total data variation
is explained by the model [19]. Finally, MAPE is one of the most used
forecast accuracy measures and is calculated by the difference between
estimated values and real values [20]. As in [7], the coefficient pro-
posed in this paper is calculated as follows:

=
∑

+
∑

+
∑

+
−

∑ −
K AIC

AIC
BIC

BIC
MAPE

MAPE
R

R
(1 )

(1 )i
i

i i

i

i i

i

i i

i

i i

2

2 (9)

According to the numerical meaning of the evaluation metrics, the
smaller the value of Ki, the better the model i is. Based on this

coefficient, the appropriate statistical model was identified for each
time series. In this paper, the software used to perform this analysis was
RStudio, version 1.2 [21].

The chosen model was SARIMA (5,1,4)×(0,1,2)12, with =K 0.4126i ,
and the mathematical representation of this model is as follows:

= + − − − − − −
− − − − + − + −
− − − − − − −

+ + − − − − −
+ + + + −
+ + + +

− −

− − − − −

− − −

− − − − − −

− − − − −

− − − − −

E γ π ϕ E ϕ ϕ E ϕ ϕ E
ϕ ϕ E ϕ ϕ E ϕ E E ϕ E
ϕ ϕ E ϕ ϕ E ϕ ϕ E ϕ ϕ

E ϕ E a θ a θ a θ a θ a
a θ a θ a θ a θ a
a θ a θ a θ a θ a

(1 ) ( ) ( )
( ) ( ) (1 )
( ) ( ) ( ) ( )

Θ Θ Θ Θ Θ
Θ Θ Θ Θ Θ

t π t t t t

t t t t t

t t t

t t t t t t t

t t t t t

t t t t t

1 1 2 2 2 3 3

3 4 4 4 5 5 5 6 12 1 13

2 1 14 3 2 15 4 3 16 5 4

17 5 18 1 1 2 2 2 3 3 4

1 12 1 1 13 2 1 14 3 1 15 4 1 16

2 24 1 2 25 2 2 26 3 2 27 4 5 28

(10)

For the case of peak demand, the model chosen was SARIMA (4,1,3)
x(1,1,1)12, with =K 0.4367i and the following mathematical model:

= + + − − − − −
− − + + − + + +

− + − −

− + − −
− + − − + + − +

− − − − − −
− + + − − −

− + + +

− − −

− − −

− −

−

− − −

− − −

− − − −

− − − − −

D γ E ϕ D ϕ ϕ D ϕ ϕ D
ϕ ϕ D ϕ D D ϕ ϕ

D ϕ ϕ ϕ ϕ D

ϕ ϕ ϕ ϕ D
ϕ ϕ ϕ ϕ D ϕ ϕ D D

ϕ D ϕ ϕ D ϕ ϕ D
ϕ ϕ D ϕ D a θ a θ a
θ a a θ a θ a θ a

(1 ) ( ) ( )
( ) (1 Φ ) ( Φ 1 Φ )

( Φ Φ )

( Φ Φ )
( Φ Φ ) ( Φ ) Φ

( Φ Φ ) ( Φ Φ ) ( Φ Φ )
( Φ Φ ) Φ

Θ Θ Θ Θ

t E t t t t

t t t

t t

t

t t t

t t t

t t t t t

t t t t t

1 1 1 2 2 2 3 3

3 4 4 4 5 1 12 1 1 1 1

13 2 2 1 1 1 1 14

3 3 1 2 2 1 15

4 4 1 3 3 1 16 4 4 1 17 1 24

1 1 1 25 1 1 2 1 26 2 1 3 1 27

3 1 4 1 28 4 1 29 1 1 1 2

3 3 1 12 1 1 13 2 1 14 3 1 15

(11)

The coefficients computed for energy and peak demand of the
proposed model can be summarized in Tables 2 and 3. In order to
evaluate the proposed model, some metrics such as lag values of ACF
(autocorrelation function) and PACF (partial autocorrelation function)
must be non-significant to guarantee that the residuals are not corre-
lated. In the Figs. 4 and 5 it can be seen that there are no correlation
patterns between the residuals, which indicate that the models are
appropriate.

In addition to that, in Figs. 6 and 7 the normality of the residuals in
each time series is checked. Both figures indicate that there is a normal
distribution of the residuals, which is highly desirable for the proposed
approach in this paper.

Finally, to validate the quality of both SARIMA models, a Pseudo
Out-of-Sample analysis can be performed. The available time series
were divided in 2 different groups: training data, starting from 2002 to
2014, and test data, from 2015 to the end of 2017.

Figs. 8 and 9 present the models applied for In-Sample and Pseudo
Out-of-Sample analysis. The tests indicated that both models could be
used to explain the behavior of the related time series.

Fig. 2. Peak Demand time series from 2002 to 2018.
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Fig. 3. Spot Price time series from 2002 to 2018.

Table 1
Pearson correlation test results.

Time series correlated Pearson coefficient

Spot price and Energy 0.2871553
Energy and peak demand 0.7258662

Table 2
SARIMA coefficients for energy time series.

Coefficient Value Coefficient Value

γπt 0.0529 θ1 −0.8603
ϕ1 0.0836 θ2 0.2382
ϕ2 −0.2354 θ3 0.3251
ϕ3 −0.6739 θ4 −0.7029
ϕ4 0.1455 Θ1 −1.0612
ϕ5 −0.0395 Θ2 0.2300

Table 3
SARIMA coefficients for peak demand time series.

Coefficient Value Coefficient Value

γE 1.5516 θ1 −1.2545
ϕ1 0.5605 θ2 1.2546
ϕ2 −0.7972 θ3 −0.9999
ϕ3 0.2983 Φ1 0.0430
ϕ4 0.2562 Θ1 −0.9999

Fig. 4. ACF and PACF of energy time series.

Fig. 5. ACF and PACF of peak demand time series.

Fig. 6. Residual normality of energy time series.

Fig. 7. Residual normality of peak demand time series.
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2.4. Scenarios generation

In Brazil, the ISO simulates many future scenarios of spot price as a
result of the system operation simulation. Because the spot price is an
explanatory variable for energy, we can simulate many scenarios of
energy consumed correlated with the spot price and, finally, simulate
many scenarios of peak demand with the energy scenarios. Fig. 10
presents 200 scenarios of spot price simulation randomly chosen from
the optimization system in Brazil. The dataset used in this work is
available in [22].

After the simulation of energy scenarios by the 200 scenarios of spot
prices, a weak variability of energy scenarios was observed due to a
weak correlation among the spot price and energy. In order to resolve
this problem, the energy scenarios were resampled keeping the mean of
the data and introducing a variability based on the historical data.

Figs. 11 and 12 presents the historical data and the final simulation
of energy and peak demand after introducing the resample process.

3. Optimization model

The proposed model considers similar objective functions presented
in [4]. However, in this paper, the objective function is based on the
FCE cost function presented in Eqs. (4) to (7) in order to compute the
optimal contract using the previously generated scenarios. The model
uses EV and CVaR as measurements to consider different levels of risk,
as follows:

∑ ∑

∑ ∑ ⎜ ⎟

= − +

⎡
⎣⎢

+ ⎛
⎝ −

⎞
⎠

⎤
⎦⎥

∈ ∈

∈ ∈

+ − + −

C

min λ
S

C λ

w
δ

α S

(1 )· 1 · ·

1
· 1

ANNUAL

B B X X X X X

C C C D du y C C δ w

t T s S s t

t T t s S
s t

Δ ,Δ , , , , , , , ,

, , , ,Δ , , , , , ,

,

,

s t s t s t s t s t s t s t

s t s t s t cont s t
D s t t s t

D s t s t t

, 2, , ,
1

,
2

,
3

,
4

,
23

,
1

,
2

,
3

, , , , ,

(12)

Subject to:

≤ ≤+B0 1 (13)

≤ ≤−B0 1 (14)

= ++ +Q B Q(1 )· (15)

= −− −Q B Q(1 )· (16)

= −+ +E Q XΔ ( )·s t s t s t, , ,
1 (17)

≥+Δ 0s t, (18)

− ≥+Q E X( )· 0s t s t, ,
2 (19)

∑ ∑ + =
∈ ∈

X X 1
s S t T

s t s t,
1

,
2

(20)

− ≥−E Q X( )· 0s t s t, ,
3 (21)

= −− −Q E XΔ ( )·s t s t s t, , ,
4 (22)

≥−Δ 0s t, (23)

∑ ∑ + =
∈ ∈

X X 1
s S t T

s t s t,
3

,
4

(24)

∑ ∑ + − =
∈ ∈

X X X1
s S t T

s t s t s t,
2

,
3

,
23

(25)

∈X X X X X, , , , {0, 1}t t t s t s t
1 2 3

,
4

,
23 (26)

= ++ +C Q P π· Δ ·s t e s t s t,
1

, , (27)

= − −C Q P π· Δ ·s t e s t s t,
2

, , (28)

=C E P·s t s t e,
3

, (29)

+ + ≥D du DΔcont s t
D

s t s t, , , (30)

≤ ×D uΔs t
D

cont, (31)

≥ − + ×du D u D Y( (1 ) )·s t t s cont s t, , , (32)

∈Y {0, 1}s t, (33)

≤du M Y·s t s t, , (34)

= + +C D TUSD du TUSD( Δ )· ·s t
D

cont s t
D

D s t D
exc

, , , (35)

= +C E TUSD E TUSD· ·s t
E

s t
p

E
p

s t
op

E
op

, , , (36)

= + + + +C C X C X C X C C· · ·s t s t s t s t s t s t s t s t
D

s t
E

, ,
1

,
1

,
2

,
23

,
3

,
4

, , (37)

≥ −δ C ws t s t t, , (38)

≥δ 0s t, (39)

The expression (12) optimizes the energy cost in FCE weighting the

Fig. 8. In-sample and out-of-sample analysis for energy time series.

Fig. 9. In-sample and out-of-sample analysis for peak demand time series.

Fig. 10. 200 Spot Prices scenarios.
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EV and CVaR by the λ parameter. The expressions from (13) to (16)
establishes the limits of the contract (in MWh), and +Q and −Q are the
upper and lower bounds expressed in MWh. Constraints from (17) to
(26) are modelled to choose the rules of the contract defined from (5) to
(7), according to the energy consumption in a scenario s and month t.

Constraints from (27) to (29) present the energy cost computed for
each rule that will be activated by the binary auxiliary variables com-
puted from (17) to (26).

Constraints from (30) to (34) are related to the peak demand con-
tract, where the tolerance is 5% to avoid penalties. Once more, binary
variables are used to indicate whether or not the penalty is applied for
each peak demand scenario s and month t.

The expressions (35) and (36) are the cost of peak demand and
energy for each scenario s and month t. The expression (37) represents
the total cost of the consumer for each scenario s and month t and,
finally, constraints (38) and (39) defines the CVaR for the − α(1 )%
worst case scenarios to be applied in the objective function (12).

4. Model simulations

The proposed optimization model described from (12) to (39) was
implemented in the software Xpress [23] though the use of a built-in
MILP [24] solver. The period of analysis considered was one year and
the energy contract Q was computed ex-ant by optimizing the model
without the limits (upper and lower bound) for an energy price of 200 R
$/MWh.1 After that, the upper and lower bound contract was optimized

for energy price equal to 200 R$/MWh and 100 R$/MWh.
The risk aversion parameter α was chosen to be equal to 0.95, which

means that 5% worst-case cost scenarios will be used by CVaR in the
optimization process. Besides that, the λ parameter was used to simu-
late the risk aversion profiles. If λ = 0, the simulation considers only
EV; if λ=0.5, the simulation weighs 50% for EV and 50% for CVaR;
finally, if λ=1, the simulation considers only CVaR.

For the appropriate interpretation of the results, it is important to
observe the energy price in the contract. In a simplified way, if the
average of the spot price is cheaper than the energy price contracted in
a scenario s and month t, a reduced energy and upper bound contracts
are obtained, as well as a greater lower bound contract. This happens
because the settlement (purchase) by the spot price is desirable for the
consumer in this scenario. On the other hand, for higher spot prices, the
best solution would be to increase the energy contract and upper bound
and reduce the lower bound in order to sell the energy by the spot price.
Obviously, in a stochastic context, the proposed analysis is more com-
plex due to the many scenarios of spot price, energy and peak demand
to be considered. Tables 4 and 5 present the results of the optimization
model considering energy prices of 200 R$/MWh and 100 MWh, re-
spectively. The results present the energy contract, average energy,
which is the average value of energy scenarios, peak demand contract
and average peak demand, which is the average value of peak demand
scenarios. In addition, the average value of the spot price in risky sce-
narios, the lower and upper bound of the contract and, finally, the cost
associated with the risk parameters are also presented.

In the first situation (energy price = 200 R$/MWh), the average
value of the spot price (R$ 120.85) for λ = 0 is lower than the energy
price, which means that to purchase energy by the spot price can be an
advantage. Because of this, a lower energy contract (720 MWh) and
upper bound (0%) was established. The lower bound (15.4%) aims to
avoid selling by the spot price. For λ = 0.5, as expected, the energy
contract (864 MWh) and upper bound (82.23%) increased indicating
more aversion of risk for purchasing by the spot price, since the average
spot price in risky scenarios (307.05 R$/MWh) is greater than the en-
ergy price. The lower bound also increased, but much less than the
upper bound because to sell energy by the spot price can be an ad-
vantage in some cases. Finally, for and λ = 1 the energy contract
(1296 MWh) increased even more. For this case, the upper and lower
bound can be reduced because the higher energy contract will result in
selling by the spot prices, which is desirable when this risk aversion
parameter is applied.

In the second case (energy price = 100 R$/MWh), keeping the
energy contract equal to the first case, for λ = 0, the upper bound
(100%) is much higher than the lower bound (19.39%). It means that to
purchase energy by the spot price (R$ 120.85) could be a drawback. For
λ = 0.5 and λ = 1, the amplitude (difference between the upper and
lower bound) is reduced mainly to sell the energy by the spot price.

In all cases, peak demand contract follows the combination with
energy scenarios and, consequently, the spot prices scenarios, in-
dicating the importance to correlate the variables in the simulation
process.

5. Conclusion

In this paper, a statistical and optimization model is proposed to be
applied in the FCE market in Brazil. The main contribution of the
proposed paper is to provide a methodology for big electricity con-
sumers in the free energy market in Brazil, which considers a statistical
model, that correlates and simulates scenarios of energy and peak de-
mand with the spot price scenarios, and optimizes it based on a sto-
chastic optimization model combining the Expected Value and
Conditional Value at Risk as risk metrics. By the generated scenarios
produced by the statistical approach, the optimization model provides
the best contract and its limits according to the level of risk taken by the
consumer, indicating more or less exposure to the spot price. In

Fig. 11. Energy historical and generated data side by side.

Fig. 12. Peak demand historical and generated data side by side.

1 According to Ref [25], US$ 1 corresponds to R$ 5.28 in April of 2020.
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addition to the numerical results, due to the nature of the MILP pro-
blem, the proposed approach can be adapted for other modalities of
contract in Brazil or other countries. It is important to highlight that, in
Brazil, according to ([3]), the migration of big electricity consumers to
FCE provides 29% of reduction, on average, in the electricity bill
compared with RCE. However, in this paper, the comparison between
FCE and RCE is not trivial, once the risk component associated with FCE
takes into account energy, spot price and peak demand. In contrast,
RCE only considers peak demand in the risk component. For future
projects, other modalities of contract will be incorporated as well as the
integration in a bilevel problem of the energy contract and its limits.
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