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A B S T R A C T

In many situations, conductor rupture in distribution systems or even its contact with structures external to the
systems (such as trees) does not sensitize protection systems. This type of occurrence and its variations are
typically called high impedance faults. The present work proposes a method for detection of high impedance
faults based on linear prediction. Concerning validation of the method, a database was created through simu-
lations performed in the Alternative Transients Program, based on a real energy distribution system. In addition
to high impedance faults, load energization and capacitor bank switching situations were also simulated in order
to test the robustness of the method against probable false positives. From obtained results, a decision criterion
was developed aiming at the detection of high impedance faults based on the linear predictor of current signals
through time, which obtained success rates above 80 % for real data.

1. Introduction

Electric Power Distribution Systems (EPDS) are exposed to various
disturbances and anomalies that affect the operation of electric net-
works. Among numerous perturbations, High Impedance Faults (HIF)
are some of the major concerns, and can occur when an energized cable,
either ruptured or unruptured, contacts with a high impedance surface,
such as a tree branch. In the occurrence of a HIF, the fault current
shows low amplitude, having the same order of magnitude as other
typical phenomena of an EPDS, such as load energization (LE) or a
capacitor bank switching (CBS). According to [1], usual protection
devices activated by overcurrent cannot detect such faults.

Concerning HIF episodes occurrence, in addition to compromising
the quality of the service, power distribution companies may suffer
sanctions stipulated by regulatory agencies, which evaluate and reg-
ulate - in several aspects - the electric power supply.

According to [2], the service continuity is of paramount importance,
since it affects people's daily life and causes major disruptions by
compromising essential services to the consumer. The ideal situation is
no interruption in electricity supply. In case of any interruption, it
should be minimal, and informed to the consumer in a timely manner,
in order to prevent possible losses arising from lack of energy [2].
However, in case of HIF, the interruption of power supply may be much

longer than the typical one, since the time between occurrence of the
cut in the supply and perception of the non-attendance of the con-
sumers by the power company may depend on the fault detection.

Nevertheless, financial losses and intangible damages associated
with the image of power companies are not the most concerning con-
sequences of HIF. Accidents, health risks for animals and people,
eventually leading to death, are in fact, the most tragic consequences.

Several studies based on techniques for detection and location of
HIF have been developed in recent years. In the 1980′s, many works
were published proposing the analysis of signals from HIF in the time
domain [3]. In relation to the frequency domain, some studies have
highlighted the use of low frequency harmonic components [4]. In
1988, Huang et al [5] evaluated the performance of four different al-
gorithms for HIF detection by means of a stage failure test using pro-
portional relays, second and third harmonic current relays, and ground
fault relays. Already in 1990, Emanuel et al [6] carried out extensive
measurements of harmonic currents in HIF in sandy terrain to evaluate
the extent in which the harmonic currents can be used for HIF detec-
tion.

More recently, many research findings have been published invol-
ving voltage unbalance [7, 8], traveling wave theory [9, 10], discrete
wavelet transform (DWT) [11–14] and analysis of harmonic content
[15–19].
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The voltage unbalance method is based on voltage monitoring after
conductor disruption. Vieira and others [7] presented a method for
detecting and locating HIF using an approach based on voltage un-
balance. The results showed that the algorithm effectively identifies
broken conductors, either with or without ground contact faults, lo-
cated on the load or source side. Malagod [8] also proposes a HIF
protection system based on voltage unbalance along the feeder.
Through simulations, the author demonstrated that the voltage un-
balance allows detecting the conductor disruption, with the installation
of sensors connected to the network. In the event of a fault, only the
downstream sensors would act. Voltage unbalance based techniques,
however, may not be reliable in cases where there is no conductor
breakage, as in faults caused by conductor contact with trees.

Methods based on traveling waves rely on the analysis of the high
frequency signal components. Lopes and others [9] described a fault
location algorithm that performs transient detection by applying Park
transformation. Silva [10] presented a technique based on the reflection
and refraction of the electric impulses of voltage or current at the fault
point. However, traveling waves based methods have high demands of
both, sampling rates and computational processing, which significantly
increases implementation costs.

Other HIF detection techniques are based on Discrete Wavelet
Transform (DWT). Hafidz and others [11] proposed a method, which
analyses the wavelet coefficients of the current signals through an ar-
tificial neural network, and obtained success rates of 67%. Santos and
others [12] technique aimed to detect HIF and other transient phe-
nomena associated with distribution system disturbances employing
DWT. Results have shown good average performance, but also room for
improvement. Despite of the DWT advantages, designing a systematic
detection technique based on this transform is challenging, due to
subjectivity in mother wavelet choice and loss of resolution through
decomposition.

A harmonic content analysis technique was presented by Gomes and
others [15], aiming to detect HIF in the grass and reducing the risk of
fire. Results were encouraging, however its applicability was demon-
strated only for faults in vegetated soil, excluding HIF occurrence in
other soils. Yeh and others [16] proposed the use of sliding fast Fourier
and Walsh-Hadamard transform to extract the entire low-frequency
spectrum, both amplitude and phase. According to their results, the
method could detect the fault in two cycles, however, the capacity of
distinguishing HIF from other disturbances was not presented.

Although significant research has been carried out for the detection
of HIF in distribution systems, there is a strong need for the develop-
ment of new methods that can efficiently and reliably detect HIF, since
none of the techniques presented so far has been consolidated in
practice.

In this context, this work presents a method capable of detecting
HIF based on the current signal analysis, using the linear prediction,
which presents lower computational cost and has no dependence on
network topology. The parameter for HIF detection comes from error
between current signal and its linear prediction. The proposed method
performance was evaluated with real data and Alternative Transients
Program (ATP) simulated data. Tests with signals from capacitor bank
switching and load energization, which produce characteristics similar
to those of HIF were also performed, in order to evaluate the robustness
of the method against false positives. Finally, the proposed technique is
compared to a wavelet based method.

This paper is organized as follows: Section 2 describes high im-
pedance faults; Section 3 presents linear predictor, the method used for
detecting HIF; Section 4 describes the methodology used in the devel-
opment of the work. Section 5 presents the results with the detection
method based on the linear predictor. And finally, section 6 presents
conclusions along with future work.

2. High impedance fault

The main characteristic of a HIF is the low amplitude of the cur-
rents, which is mainly caused by the rupture of the energized conductor
and its contact with a high impedance surface such as sand, asphalt,
gravel, grass and pavement [2]. During the phenomenon, before the
cable comes into contact with the ground, an electric arc may occur,
since when the energized cable approaches the ground, potential dif-
ference increases and the electric field becomes more intense, reducing
the resistance of the air, which facilitates the air conduction process
[20]. The occurrence of the electric arc in the HIF gives rise to some
characteristics in the waveforms of the current signals of a HIF, which
are:

• Intermittence: process related to the formation and extinction of the
electric arc during the HIF [20];

• Asymmetry: magnitude of the positive half-cycle greater than that of
the negative half-cycle. This characteristic is attributed to porosity
and moisture of the contact surface [6];

• Non-linearity: resultant of different resistivities from the several
layers of the soil [18];

• Buildup: fault current envelope growth. During this phenomenon,
the amplitude can remain constant before growing back, giving rise
to the phenomenon called shoulder [20].

All these features are illustrated in Fig. 1.
With respect to the frequency domain, the characteristics of the

current signals of the HIF produce a harmonic behavior, which may be
used to detect the HIF. According to Nakagomi [20], the HIF currents
produce the following spectral components:

• The distortion in the waveform, due to the non-linearity of the arc
resistance leads to the appearance of low order harmonics in the
current (third to tenth harmonics, approximately);

• The asymmetry between the half-cycles is responsible for the pre-
sence of even-order harmonics;

• The intermittence of the current during the formation and the ex-
tinction of the arc leads to the appearance of a high frequency
harmonics spectrum;

The buildup and shoulder phenomena cause variation of the current
amplitude over time, producing inter-harmonics resulting from the
dynamic behavior of the defect contact resistance.

3. Linear predictor

The linear predictor (LP) is a mathematical method aimed at

Fig. 1. HIF characteristics.
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predicting the value of a sample in a sequence as a linear combination
of the former ones. The weighting coefficients are obtained by com-
parison between observed and predicted values [21]. LP is considered a
powerful technique for predicting time series in a time-varying en-
vironment. The linear prediction model recursively represents time
series of signal samples over a time interval [22], such as:

+ = + +…+
+ +

y t T C y t C y t T C
y t m T e t T

( ) · ( ) · ( )
· ( ( 1)· ) ( ),

m1 2

(1)

wherein C1, C2, ..., Cm are the linear prediction coefficients or weighting
coefficients, m is the model order, T the sampling time, y(t+T) the
future observation and y(t), y(t-T), ..., y(t-(m-1)T) are the present and
past observations, and e(t+T) is the model error. In (1), the output is
the linear combination of the current and past samples, hence it is
called the linear prediction [22].

Eq. (1) is also called an all-pole model, a reference to the Z-domain
representation of the corresponding transfer function, where the pre-
diction error, e(n), is taken as input signal, whereas y(n) is regarded as
an output signal. As a result, the all-pole model in the frequency domain
is given by (2):

=
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For the prediction of HIF signals it was necessary to define the
model degree, that is, m (which should be carefully selected, as detailed
in section V) and the coefficients, C1, C2, ..., Cm, which must be calcu-
lated from the modeling window. The purpose of the prediction applied
to HIF signals is to use waveform modeling to predict future signal
samples. The prediction error is the difference between the predicted
and actual values, which can play the role of transient indicator.

The block diagram of the linear predictor is presented in Fig. 2,
wherein y(n) represents the original signal, ŷ(n) the signal predicted
and e(n) the prediction error. The predicted value of the signal y(n) is
given by (3):

= + +
… +
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To determine the coefficients C1, C2, ..., Cm, the pseudoinverse was
used, as given in (4) and (5):

=Y Y C[ ^] [ ]·[ ] (4)

=C Y Y Y Y( · ) · · ^. ,T T1 (5)

wherein Ŷ is the predicted signal, Y is the original signal and C is the
prediction coefficients vector.

The error generated between the predicted value and the actual
value is (6):

=e n y n y n( ) ( ) ^ ( ). (6)

Due to dynamic regime deviation, we should expect that, when HIF
occurs, a remarkable prediction error variation should occur as well,
which may constitute a fault detection trigger.

4. Methodology

In order to allow the development and test of the proposed detection
algorithm, a database containing HIF, CBS and LE signals was built,
based on signals obtained through ATP simulations. Besides HIF current
signals, load energization (LE) or a capacitor bank switching (CBS) were
also simulated.

The HIF simulations were generated from a model proposed in [2],
which was able to reproduce the main characteristics of a HIF, that is:
nonlinearity, asymmetry, intermittence, buildup and shoulder. To
construct the model, [2] used oscillographic records resulting from field
experiments, considering six types of soils (dry and wet): sand, asphalt,
pavement, gravel and local land. Simulations of HIF based on the model
proposed in [2] were applied to a real distribution system from a Bra-
zilian electricity utility, whose diagram is presented in Fig. 3.

The test-system was modelled considering the following character-
istics [2]:

• Operating voltage: 13.8 kV.
• Neutral regime: isolated.
• No capacitive compensation.
• Radial topology.
• Non-transposed three-phase lines at distributed and constant para-

meters.
• Stretches consisting of cable 4 AWG.
• Loads near points along the feeder, grouped on a single bus, re-

sulting in a feeder with 90 buses.
• Skin effect factor of 0.33 for the cables.
• Ground resistivity of 350 Ωm.
• Constant impedance model for the loads, which are considered as

parallel resistor-inductor (RL) circuits connected between eachFig. 2. LP block diagram.

Fig. 3. Distribution feeder (test system), adapted from [2].

R.B.G. Grimaldi, et al. Electric Power Systems Research 190 (2021) 106846

3



phase of each bus and the ground.
• Average power factor of 0.955.

The HIF model used to emulate the fault's main characteristics is
presented in Fig. 4, which is composed by [2]. The model is composed
by:

• Two time-varying resistances (TVRs), in series, and controlled by
Transient Analysis of Control Systems.
○ Resistance R1: simulates the characteristics of nonlinearity and

asymmetry (providing the same characteristics at every cycle of
the signal).

○ Resistance R2: simulates the phenomena of buildup and shoulder
(just influencing at the beginning of the signal).

• Two time-controlled switches:
○ Switch 1: connects the resistances to the fault point and simulates

the fault inception time.
○ Switch 2: connected downstream from the fault point, simulating

the conductor breakage.

The LE and CBS events were simulated in the same test system in the
following way:

• The load energizations were simulated by connecting significant
loads to the system, as in a system recomposition. For example, by
energizing all buses, from 54 onwards, by connection with bus 53.
Transients are expected to occur for a few cycles after switching,
followed by an increase of the currents upstream of the bus con-
nection;

• The switching of capacitor banks was simulated considering a bank
of 1.8 Mvar (usual value in distribution systems). Transients are
expected to occur at the time of switching for a few cycles.

The used simulation variables were: fault location, contact surface,
load conditions, and fault inception angle. Only faults between one
phase and ground were simulated because HIFs are considered mono-
phasic [2].

The considered load conditions varied between 25 to 100% by 25%
of installed capacity. The fault inception angle varied between 0 to 180°
by 30°. Nine among ninety buses were chosen as fault locations, which
were buses 10, 23, 30, 44, 49, 56, 63, 68 and 90.

In real applications, the recorded voltage and current signals are
subject to the presence of noise. Thus, it was necessary to perform noise
modeling on the simulated signals. According to [5], the noise in power
systems measurements has a normal probability distribution, and it is
present throughout the whole recorded signals, irrespectively if the
record is either with or without disturbances. Signal-to-noise ratio
(SNR) is presented in (7):

=SNR log
A
A

20·dB
sign

noise (7)

The current observed in the substation of the test system (recloser in

bus 1) was used as the only input parameter for the proposed classifi-
cation process. In this way, voltage information is not required. The
sampling rate employed was 15360 Hz, which is the typical sampling
frequency adopted by digital disturbance recorders (DDR). Finally, the
current signals of the simulated phenomena (HIF, LE, CBS) underwent a
windowing process with a width of 5 cycles, with a step of one cycle at a
time [18]. In this windowing process it was possible to define how
many samples should have HIF characteristics to the point of sensitizing
the algorithm. This information is very important, as it has a decisive
influence on the applicability of the methods in real time HIF detector
systems.

A second database, composed of real oscillographic records of HIF
obtained from field experiments [2], was also used to validate the
method. The main characteristics of the whole database are shown in
Table 1.

In the development of the algorithm, the LP model was initially
defined, including its order, according to the theory presented in
Section 3. Methodology flow is illustrated in Fig. 5.

The model output, when compared to a database signal, gives rise to
an error signal whose energy is referred as ELPE (error energy of the
linear predictor), a basic parameter to detect and classify the phe-
nomena through the proposed method. The use of ELPE also has ad-
vantages for minimization of spurious noises that can make the classi-
fication task difficult. Energy was calculated from a sliding window of
fixed size equal to 128 samples (half cycle). The window moves sample-
by-sample sequentially, while at each step the window energy is cal-
culated.

Then, a threshold was used for detection and classification of HIF
compared to other disorders. The threshold ρ used is adjusted based on
the ELPE values and is calculated at each window [23] (8):

= + ELPE(1 )·max( )past (8)

Where ELPEpast represents the energy of the prediction error of the
past window; max() is a function to compute the global maximum value

Fig. 4. HIF model [2].

Fig. 5. Proposed methodology.
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among analyzed energy samples; and η is a secure margin.
The calculation of the threshold ρ is done repeatedly until the first

sample exceeds it. This instant indicates that electromagnetic transients
have been detected. Then, the threshold is kept constant and equal to
the value calculated in that window before the crossing. This allows
spurious variations not affecting the detection of disturbances, and
prevents the threshold from being above the energy values when the
system is subjected to disturbances. Both HIF, CBS and LE, cause an
increase in the ρ threshold, however in the last two phenomena this
increase tends to be maintained for a relatively short period of cycles
(typically five). Thus, the detection time used was 100 milliseconds,
which is equivalent to 6 (six) cycles. Thereby, if the ELPE indicator
persists for less than 100 milliseconds, the occurrence of a CBS or a LE
can be considered. Otherwise, the detection of a HIF is considered.

It stands out that several scenarios were simulated to define the best
predictor order and threshold. Those scenarios included real and si-
mulated waveforms, which were randomly divided into adjustment and
validation sets, in the proportion of 30% and 70%, respectively. Each
scenario was run 10 times.

5. Results analysis

The method for diagnosis of HIF proposed in this work is based on
the analysis of electromagnetic transients induced by HIF to detect
disturbances and to differentiate it from other phenomena, thus
avoiding false positives.

As placed in the Methodology Section, two parameters must be
determined: LP order and threshold. Linear predictors of orders 2, 4, 6,
8 and 10 were tested, combined with a secure margin of 0.1; 0.2; 0.3;
0.4 and 0.5. The success rate of the test sets for all scenarios are shown
in Table 2.

Regarding the choice of η, the values of 0.3, 0.4 and 0.5 obtained
similar results and, considering the statistical nature of the presented
results, it can be inferred that these results are statistically equivalent.
However, by objectively evaluating Table 2, it is observed that the
predictor of 10th-order with a η of 0.5 obtained the best results.

Considering the LP order, it is noticeable from Table 2 that 2 and 4
had the most unsatisfactory performance, either for simulated or real
signals database. The performance of the LP of order 6, 8 and 10,
presented a performance similar to each other; however, for the real
database, the predictor of order 10 obtained a better performance. A
success rate of more than 90% was obtained for predictors of order 6, 8,
10 with η of 0.3, 0.4 and 0.5 for simulated data.

It is also important to note that the 10th-order LP can model up to
the 5th harmonic of the analyzed signal, which corroborates findings of
other researchers who focus their analysis in the 2nd, 3rd and 5th
harmonics to detect HIF [18, 23–25].

The 10th-order LP with a η of 0.5 was applied to the adjustment sets
of the database (30%) and the calculation of the ELPE for HIF, CBS and
LE signals. Both HIF, CBS and LE cause an increase in ELPE, however, in
CBS and LE this increase is not maintained for more than 5 (five) cycles.

In Figs. 6, 7 and 8 the results of the currents observed from the
substation are presented (bus 1).

In Fig. 6, the predicted error and ELPE of a HIF in bus 10 of the test
system on a gravel surface with load conditions in 75% is shown. Fig. 7
presents the same results of an LE between bus 17 and 18 of the test

system with load conditions in 75%. In Fig. 8, a CBS is shown in bus 9 of
the test system with load conditions in 75%.

It can be noticed that in HIF there is a change in prediction error and
ELPE, and this behavior remains throughout the observation window of
the phenomenon, as shown in Fig. 6. In the specific case in the phe-
nomena of LE and CBS (Fig. 7 and 8) there is a change in prediction
error and ELPE, however this change lasts only a few milliseconds. Soon
after, the error and energy return to normal operation values.

Figs. 9, 10 and 11 show details of HIF detection process based on LP.
The parameters used are still 10th-order and η = 0.5. The evaluation of
the threshold crossing is made in each processing window, repeatedly,
until the threshold is exceeded by the first sample that indicates a
transient. If the energy value exceeds the limit for more than 6 cycles
(100 ms), the algorithm will determine that a HIF has been detected.

In Fig. 9 (a) the ELPE is shown for the entire duration of the phe-
nomenon observed. In Figs. 9 (b) to (e), plots of this phenomenon are
observed in smaller time windows. Fig. 9 (b) presents the event im-
mediately before the occurrence of HIF (257.7 ms at 341.1 ms). It is

Table 1
Database

Phenomenon Number of Records

Simulations HIF 214
CBS 316
LE 264

Real HIF 27
Total 281

Table 2
Scenarios rate for test set.

Order Threshold Simulations Real

HIF CBS LE HIF

2 0.1 97.31% 17.81% 19.07% 44.44%
0.2 91.50% 54.38% 55.10% 74.07%
0.3 88.14% 85.69% 84.79% 66.67%
0.4 83.22% 97.41% 95.57% 59.26%
0.5 78.07% 99.54% 98.26% 46.15%

4 0.1 52.12% 26.18% 22.54% 48.15%
0.2 96.86% 73.67% 72.06% 82.37%
0.3 95.75% 94.82% 92.87% 77.77%
0.4 93.28% 98.93% 98.07% 74.07%
0.5 89.04% 100% 99.81% 59.26%

6 0.1 100% 26.18% 24.66% 74.07%
0.2 100% 74.12% 72.06% 88.58%
0.3 100% 94.98% 95.28% 83.48%
0.5 98.65% 99.24% 98.07% 81.57%

8 0.1 100% 27.39% 27.55% 59.26%
0.2 100% 78.38% 72.45% 88.88%
0.3 100% 96.19% 94.60% 86.38%
0.4 99.32% 99.69% 99.42% 85.18%
0.5 98.21% 100% 99.61% 81.48%

10 0.1 100% 22.83% 16.57% 48.15%
0.2 100% 77.01% 65.70% 92.59%
0.3 99.55% 96.04% 90.01% 85.18%
0.4 98.65% 99.39% 96.15% 82.40%
0.5 96.64% 100% 98.65% 87.48%

Fig. 6. Result of the processing of a HIF in gravel, in bus 10: (a) Current Ia; (b)
Prediction Error; (c) ELPE.
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noticed that the threshold (red dashed line) is not crossed. Fig. 9 (c)
presents the ELPE, when the first sample obtained during HIF is con-
sidered (257.8 ms at 341.2 ms).

In the first sample, ELPE crosses the threshold (at the extreme right
of the graph). It is important to emphasize that, as the ELPE value in-
creases intensely, it turns the samples previously present in the window
(before 341.2 ms) imperceptible, resembling a line close to zero. Then,
in Fig. 9 (d), the ELPE window allows three cycles to be observed
during the fault (307.8 ms at 391.2 ms). This well-featured event cor-
responds to the buildup and shoulder period. In Fig. 9 (e) the ELPE is
shown six cycles after the onset of HIF (357.8 ms at 441.2 ms). The
ELPE values persist in exceeding the threshold.

In Fig. 10, an example of the result of applying the algorithm pro-
posed to CBS can be observed. In Fig. 10 (a), as in Fig. 9, ELPE is shown
for the entire duration of the phenomenon observed. In Fig. 10 (b) the
event is observed before the occurrence of CBS (238.4 ms at 321.8 ms).
It is noticed that the threshold is not crossed. Fig. 10 (c) presents the
ELPE when the first sample performed during CBS is considered (238.5
ms at 321.9 ms).

In the first sample, ELPE crosses the threshold (at the extreme right
of the graph). Afterwards, in Fig. 10 (d), the ELPE is shown during
288.5 ms at 371.9 ms, and the threshold is crossed twice, with final
values of the ELPE below the threshold. In Fig. 10 (e) the ELPE is shown
six cycles after the onset of CBS (338.5 ms at 421.9 ms). The ELPE

values no longer cross the proposed threshold.
In Fig. 11, results of a LE are presented. The similarity with CBS

curves, shown in Fig. 10, is noticeable. In both cases it is possible to
distinguish the curves in relation to a HIF six cycles after the beginning
of the phenomena.

Fig. 7. Result of the processing of a LE between buses 17 and 18: (a) Current Ia;
(b) Prediction Error; (c) ELPE.

Fig. 8. Result of the processing of a CBS in bar 9: (a) Current Ia; (b) Prediction
Error; (c) ELPE.

Fig. 9. Energy result of HIF in bus 10 on the sand surface: (a) Complete sign of
HIF; (b) One cycle before HIF; (c) 1st sample with HIF; (d) 3 cycles after HIF
onset; (e) 6 cycles after HIF onset.

Fig. 10. Energy result of CBS in bus 9: (a) Complete sign of CBS; (b) One cycle
before CBS; (c) 1st sample with CBS; (d) 3 cycles after CBS onset; (e) 6 cycles
after CBS onset.
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5.1. Evaluation of the real data method

After the method had been tested with simulated data, real oscil-
lography records of HIF were used for validation. An oscillography of
the current signal of a HIF on a wet gravel surface, as well as the results
of the predicted error and ELPE are presented in Fig. 12.

As noticed in Fig. 12, in HIF there is a change in prediction error and
ELPE, and this behavior remains throughout the observation window of
the phenomenon, as presented in Fig. 6.

The experiment took place in a low load feeder, so the current is
low, but even so, the method was able to detect HIF. It should be noted
that the current and potential transformers interference did not disable
the detection of the electromagnetic transients [2].

It is also observed that the variations in the current signal are

considerable, however the overcurrent protection did not act in these
cases [2]. With the results, the secure margin η was established in 0.5.
The results obtained from the application of the detection algorithm of
a HIF on a wet gravel surface are shown in Fig. 13.

The results shown in Fig. 13 are organized as in Fig. 8. In Fig. 13 (a)
the whole 1 second time window is presented. Fig. 13 (b) presents the
event immediately before the occurrence of HIF (27.2 ms at 110.6 ms).
It is noticed again that the threshold is not reached. Fig. 13 (c) presents
the ELPE when the first sample performed during HIF is considered
(27.3 ms at 110.7 ms).

In the first sample, ELPE crosses the threshold (at the extreme right
of the graph). In Fig. 13 (d), the ELPE window allows to observe three
cycles during the fault (77.3 ms at 160.7 ms), where we can see the
variations of ELPE generated by the buildup and shoulder phenomena.
In Fig. 13 (e) the ELPE is presented six cycles after the onset of HIF
(127.3 ms at 210.7 ms), and it is observed that the ELPE values persist
in exceeding the threshold, as expected and obtained during the tests
with simulated signals.

At the end, it has been concluded that the HIF detection method
proposed in this work has performed satisfactorily in all cases, proving
to be effective, even in cases where the amplitude variation of the
current is small.

5.2. Comparison with Wavelet based method

Wavelet based techniques for HIF detection has been a vigorous
research theme. In this work, the DWT based technique proposed by
[12] was implemented for comparative purposes. In [12], the HIF sig-
nals were decomposed by DWT (Daubechies 4) wavelet. The energy of
first level wavelet coefficients was calculated and used as the detection
parameter of HIF, similarly to the role played by the EPLE in this work.
The linear predictor used in this case was a 10th-order model with a
threshold of 0.5. The same evaluation methodology was used in both
methods. Each scenario was run 10 times and the average results are
presented in Table 3.

Fig. 11. Energy result of LE between buses 11 and 12: (a) Complete sign of LE;
(b) One cycle before LE; (c) 1st sample with LE; (d) 3 cycles after LE onset; (e) 6
cycles after LE onset.

Fig. 12. Result of the processing of a HIF (Real Data) by the algorithm LP: (a)
Current Ia; (b) Prediction Error; (c) ELPE.

Fig. 13. Result of the processing of a HIF (Real Data) by the LP algorithm: (a)
Complete sign of HIF; (b) One cycle before HIF; (c) 1st sample with HIF; (d) 3
cycles after HIF onset; (e) 6 cycles after HIF onset.
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It is possible to notice that the linear prediction obtained better
results than the DWT based method. Furthermore, as described in [12],
the HIF detection time using the DWT-based method is up to 150 ms,
while in the method proposed in this paper, the time limit is 100 ms,
demonstrating that the LP-based method is also faster.

6. Conclusion

This paper proposes the use of a technique for the HIF detection in
electrical systems. The technique in question uses the energy raising of
linear predictor error signals as indicator of HIF. It has also demon-
strated the robustness of the method against eventual false positives,
when other disturbances with similar behavior, such as load energiza-
tion and capacitor bank switching occur.

The results obtained with linear prediction have demonstrated the
method viability, which can correctly distinguish the transient period of
occurrence in the first sample where the targeted phenomena occurs
(i.e. HIF).

Both threshold and LP order that had the best performance and
efficiency for the analyzed database were 50% and 10, respectively,
both for real and simulated cases.

Regarding the classification of the disorders, the method was se-
lective, presenting reliable results and maximum rate of success. For
both, real and simulated cases, detection and classification are per-
formed in up to 100 milliseconds, lower than the maximum time
adopted in Brazil for detection of transient disturbances (150 milli-
seconds) [18].

However, it is still necessary to evaluate the method in the presence
of phenomena such as inrush currents or nonlinear loads. Increasing the
prediction order is a promising path, aiming to deal with such phe-
nomena. Additionally, the impact of the distributed generation on the
algorithms performance must be evaluated, as well as its applicability
in other systems (e.g. the IEEE 14 bus) and neutral regimes. Also,
Fourier transform based variations of the method must be implemented,
in order to verify the occurrence of beneficial model regularizations.
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