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A B S T R A C T

Although electricity transmission systems are typically very robust, the impacts that arise when they are dis-
rupted motivate methods for analyzing outage risk. For example, N-k interdiction models were developed to
characterize disruptions by identifying the sets of k power system components whose failure results in “worst
case” outages. While such models have advanced considerably, they generally neglect how failures outside the
power system can cause large-scale outages. Specifically, failures in natural gas pipeline networks that provide
fuel for gas-fired generators can affect the function of the power grid. In this study, we extend N-k interdiction
modeling to gas pipeline networks. We use recently developed convex relaxations for natural gas flow equations
to yield tractable formulations for identifying sets of k components whose failure can cause curtailment of
natural gas delivery. We then present a novel cutting-plane algorithm to solve these problems. Finally, we use
test instances to analyze the performance of the approach in conjunction with simulations of outage effects on
electrical power grids.

1. Introduction

In power system operations and planning, N-k contingency analysis
is used to assess system reliability and resilience. In these analyses, k
components are turned “off” in a computational model of the electrical
grid and system-wide effects of this removal are modeled through a
computer simulation. These simulations use optimal power flow (OPF)-
like optimization models, such as maximal load delivery [1], to esti-
mate outages caused by a contingency.

Contingency analysis is often combined with N-k interdiction
modeling to identify sets of k components whose simultaneous failure
leads to the worst outcome (typically outages) during a contingency
analysis. While solving an interdiction problem itself is challenging, the
state-of-the-art has improved considerably over the last several decades
and (at least heuristic) solutions are regularly reported on problems
with large N and k (see [2–8] and references therein).

One of the weaknesses of N-k analysis, in particular for large k, is
that it is often implausible for the identified k components to fail si-
multaneously, i.e., they are geographically separated by a large dis-
tances. This has led to the development of new models and methods for
identifying sets of k components whose concurrent failure is more likely

[7], or that constrain the possibilities of the interdiction plan [9]. In this
article, in order to further address this limitation in traditional power
system interdiction modeling, we develop an approach for identifying
failures in a power system that are caused by exogenous failures, which,
in this case, arise in natural gas pipeline networks that deliver fuel to
gas-fired generators.

Our investigation is motivated by the increased reliance of many
power systems on natural gas-fired generation, which is used to meet
increasing production requirements, replace retiring coal and nuclear
plants, and provide controllable resources to compensate for the
variability from renewable sources like wind and solar [10]. Gas-fired
generators now supply a significant fraction of base electric power
production in many countries, which creates a fundamental reliance of
power grids on gas pipelines for just-in-time fuel delivery. As a result, it
has become increasingly likely that unplanned component outages or
other contingencies in a natural gas pipeline could cause correlated
(large k) electricity generator outages [11,12]. We develop an approach
to support the identification of sets of N-k scenarios in gas pipeline
networks that induce large failures in a dependent power system. We
also demonstrate the method on models of the Belgian and New Eng-
land natural gas pipeline networks, as well as the gaslib-582 test
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instance.

1.1. Background

In comparison with the power systems literature, there are rela-
tively few studies that apply contingency analysis and interdiction
modeling to natural gas pipeline systems. In one study, the authors
suggest gas pipeline networks as natural candidates for interdiction
modeling [13], but do not discuss the complexities associated with
modeling natural gas systems in interdiction problems. As a result,
many subsequent papers have relied on enumeration methods, used
simplified models that neglect the physics of natural gas flows, or are
restricted to small problems. For example, one study focused on de-
veloping a vulnerability assessment approach in which all combinations
of failures up to size k are enumerated, and then performs a max-flow
calculation (that does not account for natural gas flow physics) on a 33-
node system [14].

The effect that interdicting a gas pipeline network has on a power
system that relies heavily on natural gas for generation is another area
that has received limited attention. The most relevant study on the
behavior of a power system after a natural gas pipeline failure is re-
ference [15]. In this study, the authors develop a model that enumer-
ates all single failures ( −N 1) in a gas pipeline and then use the results
to identify generator outages and security constraint violations in the
power system. They do not model the response of the power system, nor
does the paper seek to identity the “worst” k-outage for a gas network.
References [16–18] are the most closely related works to this paper.
These studies focus on developing tri-level models for the design or
hardening of electric power and natural gas delivery systems such that
the lost demand after a worst case k-outage scenario is minimized. To
preserve tractability, linear approximations of gas flows are used and
empirical results are limited to systems with no more than 40 nodes in
the gas pipeline network.

1.2. Contributions

In this study, we focus on the details of natural gas physical flow
modeling in interdiction and, for the first time, relaxations of the gas
flow are used, which in contrast to approximations are able to provide
guarantees on solution quality as well as to scale to a case study with
582 nodes (in a bi-level model).

In summary, the contributions of this article are:

• A comprehensive N-k interdiction model for natural gas systems
based on recently developed convex relaxations for gas pipeline
networks.

• A tractable computational method for solving natural gas N-k in-
terdiction problems.

• A detailed case study that examines how an N-k interdiction on a gas
pipeline network impacts an associated electric power system by
estimating the potential loss of generation on gas-fired generators on
that system.

Throughout the rest of the paper, we use steady-state equations to
model the physics of gas flows. This choice has two primary motiva-
tions: (i) to the best of our knowledge there is no work in the literature
that considers the N-k interdiction problem in gas networks that takes
into account any physics of gas flows, (ii) the steady-state is a good
starting point to understand the theoretical and computational limits of
the problem before modeling the full transient equations. The rest of the
paper is organized as follows. Section 2 states the N-k interdiction
problem for a gas pipeline network and introduces notation. Section 3
discusses steady-state modeling and Section 4 presents the formal
problem definition. Section 5 describes the convex relaxation we use
and Section 6 describes our methodology. Section 7 describes the case
study, and we conclude with Section 8.

2. Problem statement and notation

The goal of the N-k interdiction problem for natural gas pipeline
networks is to identify k components in the gas network that, when
damaged, have the greatest impact on the transportation capacity of the
system. For these systems, we measure impact by computing the
minimum amount of gas that the system is unable to provide to delivery
points, relative to the baseline (unaffected) flow allocation. A subset of
these delivery points correspond to power plants that use the natural
gas to generate electricity.

Formally, the N-k problem is stated as follows: given a natural gas
pipeline network with nodes � , pipelines, � , and compressors �, an N-k
interdiction problem identifies k components in � �∪ whose loss
maximizes the minimum amount of un-served gas loads at delivery
points. Gas is injected into or withdrawn from the system from a subset
of nodes (receipt and delivery points, � and � , respectively) in the
network. The max-min structure makes the N-k interdiction problem a
bi-level optimization problem. These problems are often modeled as
Stackelberg games with an attacker and a defender [19], where the
attacker’s and defender’s actions are sequential and the attacker has a
perfect model of how the defender will respond to an attack. Such
problems are NP-Hard [7] because of the inherent combinatorial nature
of the problem. Furthermore, the number of possible N-k contingencies,
even for small values of k, makes complete enumeration intractable.
This makes such models difficult to scale to large systems, which is a
prerequisite to apply the desired interdiction modeling in practice.

The following notation is used for indexing sets, decision variables,
and parameters in the optimization formulation:

Sets:
� , �, � - sets of nodes, compressors, and pipes
� , � - sets of receipt and delivery points
� i( ), � i( ) - sets of receipt and delivery points at node i
� - N-k contingency scenario set
� s( ), � s( ) - sets of damaged compressors and pipes in scenario
�∈x

� i( ) - subset of pipes and compressors connected to node i and or-
iented from i

� i( )r - subset of pipes and compressors connected to node i and
oriented to i

Decision variables:
πi - square of pressure at node i (Pa2)
fe - mass flow rate across � �∈ ∪e (kg s−1)
si - total gas produced at receipt points in � i( ) (kg s−1)
λi - unserved gas-factor for each node �∈i
γe - auxiliary variable for each pipe �∈e
ye - binary flow direction variable for each � �∈ ∪e
xe - binary interdiction variable for each � �∈ ∪e
x - vector of interdiction variables xe
Parameters:
di - total gas delivered at delivery points in � i( ) (kg s−1)
we - resistance of the pipe �∈e
a - speed of sound in the gas (m s−1)
βe - friction factor of the pipe �∈e
ℓe, De - length, diameter of the pipe �∈e (m,m)
(πi, πi) - min and max limits for πi (Pa2)
(αe, αe) - min and max compression limits for �∈e
fe - max flow rate for � �∈ ∪e (kg s−1)

3. Steady state gas flow equations

Before presenting the formulation, we review the physics that
govern steady flow of natural gas through pipelines. The physics of flow
across a pipeline, =e i j( , ), are described by a set of partial differential
equations (PDEs) that have dimensions in both time and space [20]. In
steady-state, the PDEs reduce to equations of the form

M. Ahumada-Paras, et al. Electric Power Systems Research 190 (2021) 106725

2



− = wπ π f f| |,i j e e e (1)

where the phenomenological expression on the right hand side quan-
tifies the dissipation of kinetic energy caused by turbulent flow through
the pipe. The parameter we is called a resistance factor, and is given by

In
pu

t:
op

tim
al

ity
to

le
ra

nc
e,
ε
>

0
O

ut
pu

t:
x∗
∈X

,a
n
ε-

op
tim

al
so

lu
tio

n
1:

in
iti

al
pr

ob
le

m
:F

w
ith

ou
tc

on
st

ra
in

t(
10

b)
2:
η
∗
←
−∞

�
lo

w
er

bo
un

d
on

th
e

op
tim

al
ob

j.
va

lu
e

3:
η̄
←
+
∞

�
up

pe
r

bo
un

d
on

th
e

op
tim

al
ob

j.
va

lu
e

4:
x̂
←

an
y

in
iti

al
N

-k
sc

en
ar

io
5:

so
lv

e
M

IS
O

C
P

re
la

xa
tio

n
of

M
G

S
us

in
g

x̂
an

d
le

tη
(x̂

)
be

th
e

ob
je

ct
iv

e
va

lu
e

6:
if
η
(x̂

)
>
η
∗ t

he
n
η
∗
←
η
(x̂

)
an

d
x∗
←

x̂
7:

co
m

pu
te
δ e

(x̂
)

fo
r

ev
er

y
e
∈C
∪P

sa
tis

fy
in

g
(9

)
8:

ad
d
η
(x

)
�
η
(x̂

)+
∑

e∈
C∪
P
δ e

(x̂
)·

x e
to
F

an
d

re
so

lv
e

9:
up

da
te

x̂,
an

d
se

tη̄
us

in
g

so
lu

tio
n

fr
om

St
ep

(8
)

10
:

if
η̄
−η

∗
�
εη
∗ t

he
n

(x
∗ ,
η
∗ )

is
th

e
ε-

op
tim

al
so

lu
tio

n,
st

op

11
:

re
tu

rn
to

st
ep

:(
5)

A
lg
or

it
hm

1.
C
ut
ti
ng

-p
la
ne

al
go

ri
th
m
:p

se
ud

o-
co

de
.

Table 1
Belgian gas network results.

k Iterations Unserved gas (%) Time (s)

1 4 29.4 0.163
2 4 50.4 0.109
3 4 75.1 0.104
4 7 88.9 0.147
5 6 95.1 0.125
6 8 98.0 0.247
7 9 99.3 0.267
8 13 100.0 0.348

Table 2
New England gas network results.

k Iterations Unserved gas (%) Time (s)

2 4 39.1 5.742
3 12 47.3 15.633
4 19 56.1 27.088
5 15 64.3 23.107
6 17 71.3 23.373
7 16 77.7 21.722
8 12 83.6 14.312
9 9 89.9 10.242
10 7 94.3 9.986
11 7 97.7 8.393
12 9 99.6 9.117
13 14 99.7 15.115
14 24 99.8 34.880
15 28 99.9 73.066
16 32 100.0 716.366

Table 3
gaslib-582 results.

k Iterations Unserved gas (%) Time (s)

1 4 43.3 162.917
2 4 72.0 350.705
3 7 84.6 315.970
4 11 91.6 411.532
5 16 95.9 287.466

Fig. 1. Belgian Network with interdicted components in worst case scenarios
for =k 1, 2, 3, 4.
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For a detailed derivation of the parameters in this equation, interested
readers are referred to [21]. To compensate for the dissipation of en-
ergy along the direction of flow, a gas pipeline utilizes compressors to
boost flow and pressure throughout the system. We model these com-
ponents as short pipes with zero resistance values, which create a jump
in pressure while preserving flow in the direction of the compressor’s
orientation. When the gas flows through the compressor in the opposite
direction of its orientation, the compressor is assumed to not offer any
pressure boost.

4. Problem formulation

Given the notations in Section 2, the N-k interdiction problem is
formulated as follows:

�∈
xηmax ( ),

x (3)

where �
� �

= ∑ =∈ ∪x x k{ : }e e and η(x) is the total amount of gas un-
served at all delivery points in scenario x. The elements of � correspond
to N-k contingency scenarios and are implicitly defined by the variables
in x that take value 1. The core sub-problem for the N-k problem is the
Minimal Gas Shedding (MGS) problem that defines the value of η(x) as

�

∑=
∈

x dη λ( ) min ,
i

i i
(4a)

�− = ∀ = ∈ =wπ π f f i j e x| | ( , ) : 0,i j e e e e (4b)

�− = ⩽ ∀ = ∈ =π π f i j e x0, if 0 , ( , ) : 0,i j e e (4c)

�⩽ ⩽ ⩾ ∀ = ∈ =α απ π π f i j e x, if 0 , ( , ) : 0e i j e i e e
2 2 (4d)

�

� �

∑ ∑− = − − ∀ ∈
∈ ∈

df f s λ i(1 ) ,
e i

e
e i

e i i i
( ) ( )r (4e)

�⩽ ⩽ ∀ ∈π ππ i ,i i i (4f)

� �− ⩽ ⩽ ∀ ∈ ∪f ff e .e e e (4g)

The formulation for MGS, as stated in Eq. (4), is a non-linear dis-
junctive formulation. Eq. (4b) denotes the steady-state gas flow physics
for each pipe that has not been damaged by the N-k scenario, and
Eq. (4e) enforces a mass flow balance condition at each node in the
system. The Eqs. (4c) and (4d) deactivate pressure boosting and enforce
boosting limits of a compressor with flow directed against and along the
orientation of the compressor, respectively. Finally, Eqs. (4f) and (4g)
enforce pressure and flow rate limits on each node and pipe in the
network, respectively. The above formulation is a bi-level optimization
problem where the outer maximization problem is given by Eq. (3) and
inner minimization problem is given by Eq. (4). In the next section, we
present a Mixed-Integer Non-Linear Programming (MINLP) reformula-
tion and a Mixed-Integer Second-Order Cone Programming (MISOCP)
relaxation of the MGS using binary flow direction variables ye for each
compressor and pipe in the network.

5. MISOCP Relaxation for the MGS

5.1. MINLP reformulation

To develop the relaxation for the MGS, we first reformulate the
constraints in Eqs. (4b) – (4d) with binary flow direction variables ye for
each � �∈ ∪e [22]. Given a pipe or a compressor � �= ∈ ∪e i j( , ) , ye
takes a value 1 if the mass flow is fe ≥ 0 and 0, otherwise. We remark
that if fe ≤ 0, then gas is flowing from the node j to node i. Given these
notations, Eq. (4b), for any �= ∈ =e i j x( , ) : 0e equivalently re-
formulated as

= wγ fe e e
2 (5a)

⩾ − + −π πγ π π y2 ( )e j i e i j (5b)

⩾ − + − −π πγ π π y2( 1)( )e i j e i j (5c)

⩽ − + −π πγ π π y2 ( )e j i e i j (5d)

⩽ − + − −π πγ π π y2( 1)( )e i j e i j (5e)

− − ⩽ ⩽f fy f y(1 )e e e e e (5f)

where, γe is an auxiliary variable for pipe e. Eqs. (5b) – (5e) are the
McCormick envelopes [23] for the equation = − −γ y π π(2 1)( )e e i j .
These envelopes result in an exact reformulation because it is the pro-
duct of a variable that takes a value of one or negative one, −y(2 1),e
with a continuous variable, −π π( )i j . Eq. (5f) bounds the mass flow on
the pipe using the flow direction variable ye. The only nonlinear con-
straint in the reformulation is Eq. (5a). As for the compressor con-
straints in Eqs. (4c) and (4d), a linear reformulation of the constraints
for every compressor �= ∈ =e i j x( , ) : 0e is given by:

− ⩽ − ⩽ −π π π πy π π y( ) ( )e i j i j e i j (6a)

+ − − ⩽α π α ππ y π(1 )( )e i e j e i j
2 2 (6b)

⩽ + − −α π α ππ π y(1 )( )j e i e j e i
2 2 (6c)

− − ⩽ ⩽f fy f y(1 )e e e e e (6d)

where, Eqs. (6a) and (6b) – (6c) are disjunctive reformulations of
Eqs. (4c) and (4d), respectively. Similar to pipes, Eq. (6d) bounds the
mass flow on the compressor using the flow direction variable ye. Using
Eqs. in (5) and (6), the MINLP for the inner problem is then given by

�

∑=
∈

x dη λ( ) min subject to: Eqs. (5), (6), (4e) -- (4g).
i

i i

The MINLP reformulation of the MGS is still a difficult problem to solve
to global optimality, even for small instances [22] and hence, the re-
mainder of this section is focused on developing a MISOCP relaxation of

Table 4
Generation capacity loss for the Belgian-IEEE 14 network. During normal op-
eration the power produced from all the gas-fired power plants is 39.67 MW.

k Loss of capacity (MW) Loss of capacity (%)

1 13.52 34.09
2 23.22 58.52
3 31.25 78.78
4 37.15 93.63
5 39.34 99.16
6 39.34 99.16

Table 5
Generation capacity loss for the New England-IEEE 36 network. During normal
operation the power produced from all the gas-fired power plants is 513.21
MW.

k Loss of capacity (MW) Loss of capacity (%)

1 129.63 25.26
2 138.39 26.97
3 252.03 49.11
4 319.03 62.16
5 372.38 72.56
6 379.37 73.92
7 405.72 79.06
8 427.22 83.24
9 462.14 90.05
10 485.21 94.54
11 501.92 97.80
12 511.57 99.68
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the MINLP. The MISOCP is based on the formulation introduced in [22]
and off-the-shelf commercial and open-source MISOCP solvers effec-
tively solve the inner problem to optimality for a fixed x.

Once an MISOCP relaxation is developed, off-the-shelf commercial
and open-source MISOCP solvers can be put to effective use to solve the
inner problem for a fixed x to optimality.

5.2. MISOCP relaxation

The only nonlinear constraint in the MINLP reformulation is
Eq. (5a). To obtain the MISOCP relaxation, we relax this constraint to

⩾wγ fe e e
2 (7)

which is a Second-Order Conic (SOC) constraint. Hence, the MISOCP
relaxation of the inner-problem (MGS) is given by

�

∑=
∈

x dη λ( ) min subject to:

Eqs. (5b)--(5f), (7), (6), (4e)--(4g).
i

i i

(8)

In the next section, we use the above MISOCP relaxation to develop an
iterative algorithm to compute an optimal solution to the bi-level N-k
interdiction problem for a natural gas pipeline network with the
MISOCP relaxation of the MGS.

6. Solution methodology

In this section, we present a generic cutting-plane algorithm that
works directly with the bi-level structure of the N-k problem. A number
of techniques have been proposed to convert such a bi-level max-min
problem into a single mixed-integer program (see [24,25]). Given the
recent success of algorithms that directly exploit the bi-level structure
in problems concerning electric transmission systems [7,9], we adopt
them here. The algorithm is generic and is applicable to the MINLP and
the MISOCP relaxations as long as they are solved to global optimality.
In this article, we restrict our attention to using the algorithm on the
MISOCP relaxation of the MGS problem, because it can be solved to
global optimality with off-the-shelf commercial or open-source solvers.
The algorithm generates cutting planes using solutions of the inner
problem, and adds them sequentially to the outer problem.

The algorithm constructs a sequence of piecewise linear functions
that bounds from above the total curtailment of scheduled gas delivery
given by solutions to the inner problem or its MISOCP relaxation. For
any N-k scenario, x̂ , xη (^) denotes the minimum unserved gas for that
scenario as given by (4) or its MISOCP relaxation in Eq. (8). Then, the
algorithm computes coefficients δ x(^)e for each � �∈ ∪e such that

�

� �

∑⩽ + ∀ ∈
∈ ∪

x x x xη η δ x( ) (^) (^)· .
e

e e
(9)

The linear cut in (9) is general and there are many choices for the cut
coefficients xδ (^)e . The key challenge is to choose tight values for each
coefficient that do not remove the optimal N-k scenario. For the N-k
problem in gas pipeline networks, the coefficients xδ (^)e are computed
using a combination of the inner problem solution for the N-k scenario
x̂ and the physics that governs the steady state flow of gas through the
network. Using the inequality in (9), the bi-level problem is equiva-
lently written as

	 xη( ) max ( ) subject to: (10a)

�

� �

∑⩽ + ∀ ∈
∈ ∪

x x x xη η δ x( ) (^) (^)· ^ ,
e

e e
(10b)

and the algorithm generates a subset of the cuts listed in Eq. (10b). The
pseudo-code for the cutting-plane algorithm is shown in Algorithm 1,
where the procedure for computing the cut coefficients (line 9-8) is
detailed in a forthcoming paragraph.

We now present a technique for computing the coefficients xδ (^)e in

Eq. (10b) given an N-k scenario x̂ and the solution of the MISOCP re-
laxation of the inner problem (MGS). We first present the mathematical
expression of the coefficients and then provide an intuitive justification.
The MISOCP relaxation of the inner problem, for a given N-k scenario x̂
(let ŝ denote the corresponding scenario) gives the value of the mass
flow rate, xf (^),e for every � �∈ ∖e s( ) and � �∈ ∖e s( ). For the sake of
clarity, the dependence of mass flow rates on scenario x̂ is shown ex-
plicitly. The pipes and compressors that constitute the scenario ŝ or
equivalently, x̂ , are damaged and hence do not have any gas flowing
through them. Given these flow rates, the coefficients are computed by:

= ⎧
⎨⎩

∉x xδ f e s(^) | (^)| if, ^

0 otherwise.
e e

(11)

Intuitively, setting the coefficients according to Eq. (11) imply that
when a pipe or compressor (say e) is removed from a gas network, at
most |fe| will go unserved. This statement is quantitatively true, except
in the case of the Braess paradox in natural gas networks [26]. The
Braess paradox occurs when adding one or more edges to a transport
network can reduce overall throughput under certain conditions. Be-
cause a Braess-like condition would be a sub-optimal direction for
minimizing the objective function, the paradox does not arise, and thus
the coefficient values specified in (11) lead to a valid constraint at each
iteration. The Algorithm 1 ultimately converges to an ε-optimal solution
to the MISOCP relaxation of the N-k problem.

7. Case studies

In this section, we present case studies on three networks: (i) the
Belgian gas network [27] with a total of 42 pipes and compressors that
can be interdicted, (ii) the New-England (NE) natural gas network [28]
with 192 pipes and compressors that can be interdicted, and (iii) the
gaslib-582 test network [29] with a total of 629 pipes and compressors
that can be interdicted. The Belgian and the NE case studies are sim-
plified network models of actual gas pipeline systems in Belgium and
the New England region, respectively. The k values for each run of the
N-k algorithm is varied from 1 to a value where 100% of the gas load in
the system is left unserved by the resulting ε-optimal, N-k contingency.
For the gaslib-582 test case, due to the excessive computation time, we
restrict the runs to a k value where > 95% of the gas load is left
unserved. The value of ε, the optimality tolerance in Algorithm 1, is set
to 0.01% for every run of the algorithm and all the formulations and
algorithms were implemented in the Julia programming language using
optimization layer JuMP v0.18.6 [30] and GasModels v0.3.51. Finally
Gurobi v8.0 was used to solve the MISOCP relaxation of the MGS (the
inner problem) for the cutting-plane generation algorithm on a machine
with an Intel(R) Core(TM) i7-8700 CPU 3.20GHz.

Furthermore, in order to examine the effects N-k gas contingencies
have on power systems, we use models which connect the Belgian and
the NE gas networks to the IEEE 14-bus and 36-bus test systems, re-
spectively [28]. In particular, gas-fired generators are attached to nodes
in the natural gas networks. These generators withdraw gas from the
natural gas pipeline network, and unserved gas load implies that gas-
fired power plants receive insufficient gas and operate with reduced
capacity. The loss in gas-fired generation capacity is computed using
heat rate curves that convert mass flow (kg/s) into available MW ca-
pacity. In particular, the burn-rate, i.e., the gas withdrawal di from the
gas pipeline network at node �∈i , is converted into power production
profiles pg for a generator 
∈g in the power network using a quadratic
heat rate curve

= + +d d dp β β β( ) .g i i i0 1 2
2

(12)

In Eq. (12), the units of pg is MW, and that of β0, β1, and β2 are MW, MW

1 https://github.com/lanl-ansi/GasModels.jl
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kg− ,1 and MW s2kg−2

7.1. Performance of the cutting-plane algorithm

First, we present computational results that corroborate the effec-
tiveness of the cutting-plane algorithm in computing ε-optimal
( =ε 0.01%) N-k attacks for the three test systems. Tables 1–3 show the
computation time, the percentage of scheduled gas delivery that was
curtailed, and the number of iterations taken by the cutting-plane al-
gorithm to compute the ε-optimal N-k attack for the Belgian, NE, and
gaslib-582 cases, respectively for different values of k. Fig. 1 shows the
components in the Belgian network that, when interdicted, produce the
worst case scenarios for values of k ranging from 1 through 4. Note that
the worst k-outage scenarios are a collection of nested sets. It is ob-
served from the tables that for small values of k, =k 2, the Belgian, NE,
and gaslib-582 cases result in 50%, 40%, and 72%, respectively, of
curtailed gas load with respect to the total baseline load levels without
outages. This shows the value of developing an algorithm to compute a
worst case N-k attack even for small values of k. Though the runs for
k ≥ 5 might not seem realistic, i.e., more than 4 components in the gas
network failing simultaneously is highly unlikely, these results are
shown in order to illustrate the computational limits of our algorithm
and can be used as a surrogate to show the fact that our algorithm
would scale to large instances with small values of k. Furthermore, from
the iterations column in all the three tables it is clear that the cutting-
plane algorithm is effective in computing the ε-optimal solution using
only a few iterations. We remark that the computation time of the
cutting-plane algorithm is in general proportional to the number of
iterations of the algorithm and not related to the value of k. This trend is
seen in the results for the NE test case in Table 2, though computation
time does not always increase with k as the problem is highly nonlinear
and solution time depends on initialization. Finally, from Table 3, it is
clear that despite the low number of iterations of the algorithm even in
the larger gaslib-582 case, the computation time per iteration increases
because of larger MISOCP problem size for the inner computation in the
larger test case.

7.2. Gas-fired generation capacity loss in the power grid

This section presents results that illustrate the impact that N-k gas
pipeline contingencies have on electricity transmission networks. We
use loss of generation capacity on all the gas-fired generation plants as a
measure to quantify this impact. This study is performed only on the
Belgian and the NE test cases which were connected to the IEEE 14-bus
and 36-bus test systems, respectively. The Belgian-IEEE 14 system is
commonly used in the literature for gas-electric system case studies,
and the NE-36 bus system is another larger test case. Tables 4 and 5
show lost generation capacity (absolute value (MW) and as a percen-
tage of total power produced by gas-fired generation in the baseline
scenario) when the worst case N-k occurs on the gas side. Capacity loss
is computed by converting unserved gas to power consumption (MW)
using quadratic heat rate curves for gas-fired power plants (Eq. (12)).

8. Conclusion and future work

This article presents the first systematic algorithm to compute
worst-case N-k contingencies on natural gas pipeline networks by
modeling relaxations of steady-state gas flow physics. The computa-
tional effectiveness of the algorithm, its scalability, and the potential
use of such a tool to estimate the impact of a worst-case N-k con-
tingency on the bulk-electric system were shown through extensive
computational experiments on case studies involving several widely
available test networks. Future work will focus on (i) performing a joint
N-k interdiction analysis where a total of k components can be inter-
dicted in either the power grid or gas pipeline system, where the
modeling involves power flow and steady-state gas flow physics,

respectively; and (ii) extension to a transient gas flow model to identify
N-k contingencies that occur over time.
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