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A B S T R A C T   

This paper addresses the problem of managing load under energy scarcity in islanded microgrids with multiple 
customers and distributed solar generation and battery storage. We explore an understudied, practical approach 
of scheduling customer-specific load limits that does not require direct control of appliances or a market en
vironment. We frame this as a stochastic, model-predictive control problem with forecasts of solar resource and 
electricity demand, and develop alternative solutions with two-stage stochastic programming and approximate 
dynamic programming. We test the efficacy of the alternative solutions against heuristic and deterministic 
controllers in an environment simulating the customers’ responses to load limits. We show that using forecasts to 
schedule limits can significantly improve power availability and the customers’ benefits from consumption, even 
without the controller having a full model of the customers’ responses.   

1. Introduction 

Without measures for microgrid operators to manage load or com
municate scarcity, customers in energy-constrained microgrids will 
experience suboptimal interruptions. For example, in an islanded mi
crogrid with multiple customers sharing limited photovoltaic genera
tion and battery storage capacity, high daytime loads on cloudy days 
might lead to evening interruptions of low-power / high-value loads 
such as lighting. This problem could exacerbate inequity across custo
mers, for example, if some are only able to consume electricity in 
evening hours when interruptions are more prevalent. 

We seek to improve the allocation of energy services in time by estab
lishing dynamic load limits based on forecasts that allow customers to con
sume energy over a time window in quantities up to, but not in excess of, 
the limit. This control problem is related to other flavors of microgrid 
Energy Management Systems (EMS) and connected methodologically to 
recent work on Stochastic Unit Commitment (SUC). The classic unit com
mitment problem schedules generators to minimize startup, shutdown, and 
variable fuel costs while meeting an estimate of inflexible load. The sto
chastic extension typically minimizes a measure of the expectation of costs 
over a set of uncertain scenarios while satisfying constraints [1–4]. 

Solutions to the stochastic microgrid EMS problem in the literature 
typically employ the same scenario approach as its SUC counterpart, 
but in different contexts with varying models of physical systems, 
points of control, and objectives. Generally, the microgrid has local 
intermittent renewable generation and energy storage, can be either 
grid-connected or islanded, may contain dispatchable generation, and 
may have controllable loads. If the microgrid is grid-connected, the 
main grid is treated as an unconstrained resource, but with a time- 
varying price entering the optimization problem [5–7]. In islanded or 
off-grid microgrids, dispatchable generation or flexible load [8] is used 
to balance supply and demand. 

Our system of interest can be classified as an islanded EMS where 
supply-demand balance is met by flexible demand and storage dispatch, 
and lost load is assigned a cost in the EMS optimization problem. Prior 
related studies assume load is directly controllable [9,10], or that 
customers respond to a pricing signal [7,11]. Direct load control and 
time-varying prices are promising pathways; however, they have some 
limitations. Direct load control requires ubiquitous remotely con
trollable appliances and is intrusive to customers, particularly if very 
large demand shifts are required during periods of scarcity. Time- 
varying pricing requires carefully designed price formation rules and 

https://doi.org/10.1016/j.epsr.2020.106632 
Received 4 October 2019; Received in revised form 19 April 2020; Accepted 1 August 2020    

☆ This material is based upon work supported by the U.S. National Science Foundation under Grant Nos. 1539585, CPS-1646612, and the Graduate Research 
Fellowship Program. This collaboration between authors was made possible by the California Renewable and Adaptive Energy group (CAL-RAE) and the Berkeley 
Hub for Energy Access Research (B-HEAR). 

⁎ Corresponding author. 
E-mail address: jtlee@berkeley.edu (J.T. Lee). 

Electric Power Systems Research 190 (2021) 106632

Available online 25 August 2020
0378-7796/ © 2020 Elsevier B.V. All rights reserved.

T

http://www.sciencedirect.com/science/journal/03787796
https://www.elsevier.com/locate/epsr
https://doi.org/10.1016/j.epsr.2020.106632
https://doi.org/10.1016/j.epsr.2020.106632
mailto:jtlee@berkeley.edu
https://doi.org/10.1016/j.epsr.2020.106632
http://crossmark.crossref.org/dialog/?doi=10.1016/j.epsr.2020.106632&domain=pdf


sufficiently responsive load. 
In contrast, load limits require only broadcasting a limit to custo

mers and the ability to disconnect load at the meter if the limit is ex
ceeded. Although this approach is more blunt than direct load control 
or pricing, it is simple and inexpensive to implement. In the simplest 
case, the load limit can be sent to the customer directly via a mobile 
interface, in which case they would manually adjust their consumption. 
More sophisticated smart appliances could automate the adjustment for 
the customer, but are not required. In either case, using the total load 
limit preserves privacy and a degree of customer autonomy without 
distributed automation or a structured market. Load limits are ad
vocated in [12], although that study works within the context of 
market-based solutions. 

In the framework we present in this paper, an operator is held ac
countable implicitly for unreliable service and chooses load limits that 
maximize a simplified value metric of each customer’s energy con
sumption. We show that this choice can be formulated mathematically 
as a sequential decision problem, which is well-known to have significant 
computational complexity [13]. This complexity is intensified by non- 
convexities in the model of demand subjected to load limits. 

We develop two approximations and reformulations to reduce the 
complexity of the problem. The first uses two-stage stochastic pro
gramming with assumptions about the forecast to cast the problem as a 
less complex mixed integer quadratic program (MIQP). The second uses 
approximate dynamic programming in conjunction with two-stage 
stochastic programming to reduce the problem to a sequence of smaller 
MIQPs. We compare the performance of the approaches in simulation 
against a baseline model with no control, a heuristic, and a predictive 
controller that uses only the mean forecast. 

The paper contributes a framework for developing stochastic, predictive 
models for controlling load through consumption limits under forecast un
certainty. The framework is novel in separating the decisions of the cus
tomer to respond to load limits from those of the operator to set them, 
providing a mechanism for evaluating controller performance in the face of 
model mismatch. We show how stochastic forecasts can be combined with 
approximate models of the customer response into an optimal decision 
model that can be solved with out-of-the-box numerical solvers. Our com
putational experiment results show significant benefits from using forecasts 
in a receding-horizon control framework, but more modest and variable 
benefits from using stochastic formulations in place of deterministic fore
casts, with the conclusion that model mismatch limits the additional benefit 
from stochastic approaches. The paper provides a mathematical and com
putational foundation for exploring different formulations of value and 
mechanisms to allocate scarce electricity supply. 

2. Decision problem 

We develop a method to set customer-specific load limits in a microgrid 
where multiple customers share distributed solar and battery storage with 
limited capacity. The load limit sets a maximum amount of energy that a 
customer can consume over a window of time. We assume a receding- 
horizon control (RHC) framework where a microgrid controller acts on 
behalf of the operator to compute both load limits and power injection 
setpoints at a fixed time interval, and then transmits these to customers, 
metering devices, and the distributed energy resources (DERs), as depicted 
in Figure 1. 

The essential states are the state of charge of each battery belonging 
to each customer and the status of the loads and activities that each 
customer requires electricity for. The evolution of these states are af
fected by both the decisions of the microgrid controller and the cus
tomer. We assume the microgrid controller cannot control individual 
loads directly, but that customers can be sent a load limit that is en
forced at their meter. We also assume the controller has no knowledge 
of the customer’s decision model, activities, or individual loads, so its 
decision is to set an upper bound on uncertain consumption. However, 
we assume the controller is given an exogenously determined forecast 

of solar power potential and electricity demand in the absence of 
consumption. We treat these forecasted variables as stochastic, which 
given the dynamic nature of the system, presents the controller with a 
sequential decision problem under uncertainty. 

In the following subsections, we present first a relatively simple 
model of the customer’s decision to adjust consumption given a load 
limit. The purpose of this model is both to capture model uncertainty 
from the controller’s limited information and to define performance 
metrics for evaluating the control strategy from the perspective of the 
customer. We then formulate the controller’s decision model to set load 
limits and propose specific approximate methods to make the problem 
tractable. This is the core contribution of the paper. Lastly, we briefly 
define a simple feedback controller to compute power injection set
points to balance state-of-charge between batteries. The purpose of this 
component is mainly to facilitate simulating power-sharing among 
DERs and to provide a placeholder for future work to integrate the load- 
limiting control with optimal power flow models. 

2.1. Customer decision and consumption model 

We assume customers use their loads to conduct a set of activities that 
they schedule stochastically around a daily pattern. For example, lights are 
more likely to be used at night for several hours at a time, and microwaves 
around meal times for a few minutes. Based on assumptions about appliance 
ownership and usage patterns which are qualitatively consistent with our 
field experience, we randomly generate a schedule of activities for each 
customer that they would carry out if not subjected to limits. Customers 
derive a value when activities are completed without interruption, but incur 
an interruption cost otherwise. A customer can cancel an activity before it 
begins with zero cost but also zero gain. 

When a customer is sent a load limit, we assume they cancel or interrupt 
activities and disconnect the associated loads to maximize their value of 
completing activities minus any interruption costs from activities already in 
progress. We introduce this model to emulating behavior to the first order 
and capture model error in the controller when evaluating performance. We 
considered models of thermostatically controlled loads but determined this 
complexity did not provide additional insight, and recommend future work 
to comprehensively examine the effects of different types of shiftable and 
state-dependent loads. 

Formally, we assume an activity a has a start time T ,a
s time to 

complete T ,a
c completion value va, interruption cost ca, and a power 

consumption Pa when its associated load is on. The activity has two 
states: its remaining time to completion ta

r and its status σa. The status 
evolves as a finite state machine with states: {0 = queued, 1 = in 
progress, 2 = completed, 3 = interrupted while in progress, 4 = can
celled before commencing}. We omit the formal transition rules as they 
are intuitive. Activities are initialized to =t Ta

r
a
c and = 0a . When the 

start time is reached, σa → 1 and ta
r decrements as time passes. Unless 

the activity is interrupted by either the customer or loss of power in the 

Fig. 1. Receding horizon control system  

J.T. Lee, et al.   Electric Power Systems Research 190 (2021) 106632

2



microgrid, σa → 2 when ta
r reaches zero. Statuses 2, 3, and 4 are 

terminal and the customer receives va for = 2a and pays ca for = 3a . 
At a time t, when the customer is faced with a load limit of average 

power l over ΔT in the future, the sets of relevant activities are those 
that are already in progress = =a: { | 1},a1 and those that are queued 
but will start within the time window = = < +a T t T: { | 0 }a a

s
0 . 

For each a ,0 1 the customer chooses either =u 0a to cancel (for 
a 0) or interrupt (for a 1) the activity, or =u 1a to proceed as 
planned. The energy consumed by each activity over the time window 
is P t Tmin( , )a a

r for a 1 and P t T T tmin( , max( , 0))a a
r

a
s for 

a 0. For activities that will not be completed within the window, we 
assume the customer expects no load limit in the next window and 
effectively receives the completed value for activities still in progress. 
This allows us to represent their decision =u u{ }a as an integer linear 
program to maximize their utility: 

+u v u cmax
u a

a a
a

a a
0 1 1 (1)  

+P t T T t P t T l Ts.t. min( , max( , 0)) min( , )
a

a a
r

a
s

a
a a

r

0 1

(2)  

2.2. Operator load-limit decision model with forecasts 

We assume the microgrid uses RHC with fixed time-step ΔTc over a 
horizon T. The controller decides on an action ut to take on behalf of the 
operator at time t, based on the current state xt and a probabilistic 
forecast t of exogenous disturbances wt. In our problem, xt is a vector 
of the stored energy En t,

stor in each customer n’s battery, ut is the vector of 
load limits ln,t, and wt is the solar generation potential Pn t

g
, and elec

tricity demand Pn t
l
, for each customer. We assume t is a finite set of S 

scenarios consisting of distributed generation and demand values at 
each time over the horizon for each customer. Each scenario has a 
probability of occurrence ps, which we assume to be uniformly ,S

1 but 
could be given explicitly by the forecast algorithm or tuned to hedge 
against particular outcomes. We assume the scenarios can be derived 
from historical measurements, but do not present algorithms for doing 
so in this paper. The dynamics f are given by: 

= ++E E P T E E, 0n t n t n t
c

c n t n, 1
stor

,
stor

, ,
stor max (3) 

where Pn t
c
, is the average net charge power into each customer’s battery. 

Pn t
c
, is determined implicitly by the controller’s action, the state vari

ables and disturbances across all customers, and constraints defined 
subsequently, such as the capacity of each battery En

max and conserva
tion of energy. 

A critical detail in RHC is that the operator makes the next decision 
after observing a realization of the forecast wt, the new state +x ,t 1 and 
given a new forecast +t 1; however, to make the optimal decision ut at 
time t, they have to compute what decision they would make at the next 
time-step given all possible outcomes, and so on over the horizon. This 
requires assuming how the forecast will be updated as realizations are 
observed, which we denote with the function g. The proper definition of 
g is ambiguous without additional information about the forecasting 
process, but has implications for the decision model; we discuss this in 
detail after stating the decision model in its general form. 

The objective is to maximize the expected benefit of using electricity 
in the current time period plus the expected future benefit in sub
sequent time periods. This multi-stage decision problem can be re
presented mathematically in general with (4)-(8), where ut denotes 
hypothetical actions to take at the present time t and +t t T[ , 1]
denotes time-steps over the horizon. Note that the variables defined for 
τ > t are predicted future trajectories. Similarly f and g are models and 
do not necessarily match the physical or simulated system dynamics 
exactly. Qt determines the expected benefit over the forecast horizon for 
any state and action, and is defined recursively as a sum of the expected 

present benefits b and the future benefits +Vt 1 given the new state and 
new forecast. Vτ is the maximum value from time τ assuming the op
erator acts optimally given state xτ and forecast . 

=u Q x uargmax ( , , )t
u

t t t t
t (4)  

= + + + +Q x u b x u w V x( , , ) [ ( , , ) ( , )]1 1 1 (5)  

=V x Q x u( , ) max ( , , )
u (6)  

=+x f x u w( , , )1 (7)  

=+ g x u w( , , , )1 (8)  

+V x( , ) 0t T (9)  

We assume for simplicity with (9) that the future benefit at the end 
of the horizon is zero regardless of the final battery state, but this can be 
replaced with any linear or quadratic function. We define the benefit b 
as a quadratic function of the actually used load power Pu averaged over 
a time-step. Pu is not directly controllable, but is a stochastic variable 
influenced nonlinearly by the load limit l, whose realization depends on 
the customer decision and information not available to the controller. 
To formulate the controller’s decision, we model it as (11), which is an 
overestimate of consumption because the customer is unlikely to be 
able to adjust exactly to the limit. 

=b x u w
N

P
P

P( , , ) 1 1
2t t t

n
n t
u

n
l n t

u
, ,max ,

2

(10)  

=P l Pmin( , )n t
u

n t n t
l

, , , (11)  

The appropriate choice of b in different contexts is an important 
topic that requires careful study beyond the scope of this paper. We 
select the quadratic form for the common case where there is dimin
ishing marginal value of consumption. In contrast, a linear function 
would value all consumption equally and effectively not steer the op
erator to take any actions to “keep the lights on” by reducing the usage 
of a few high power loads, which is our qualitative objective. We show 
in the results that using this form yields desired behavior despite b not 
representing any direct value. Eq.  (10) can be modified in several ways 
while preserving the same structure: it can be shaped for different rates 
of diminishing marginal value, and weighted differently for particular 
customers over times of day. These parameters can be functions of past 
load limits or consumption. Note also that b is increasing up to the 
maximum possible load, P ,n

l,max which is the power rating of their meter. 
To specify g, one must assume whether each scenario represents a 

single trajectory, or a Markov process where the possible values at each 
moment in time are independent of prior values. The former implies up 
to S possible trajectories and final states, while the latter implies ST, 
effectively leading to two different scenario trees after time +t 1, illu
strated in Figure 2. Assuming for the illustration that the scenarios are 
unique over the first time-step, the two interpretations respectively 
imply that the operator assumes either, after observing wt, that 1) they 
will know with certainty what trajectory they are on and then act op
timally with perfect information, or 2) they will again face an uncertain 
forecast with no gained information. 

Both interpretations are approximations of the optimal decision 
because the forecast itself is an approximation of reality via a finite 
number of scenarios.1 Here, we focus not on which is correct – it de
pends entirely on the details of the forecasting algorithm – but develop 
solutions for both and compare their performance in simulation. We 
show that due to having fewer trajectories, the trajectory interpretation 
can be computed with two-stage stochastic programming, while the 

1 We refer the reader to [13, Ch. 6] for additional discussion showing how the 
trajectory interpretation can in fact be cast as an approximate solution to the 
Markov interpretation. 
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Markov interpretation requires additional approximate dynamic pro
gramming techniques to solve. 

2.2.1. Two-stage stochastic programming solution with trajectory forecast 
The key insight and distinction of our model from others is that the 

operator cannot directly control load, but can only indirectly influence 
it via a non-convex, piecewise-linear constraint as in (11). Otherwise, 
the problem employs the standard two-stage stochastic model by as
suming each scenario is a distinct trajectory [5,7,9]: 

= +
= +

Q x u p b x u w b x u w( , , ) ( , , ) ( , , )t t t t
s

s t t t s
t

T

s s s,
1

1

, , ,
(12) 

where the single recourse decision uτ,s for each scenario s is a trajectory 
with a corresponding state xτ,s from time +t 1. The optimization pro
blem includes the constraints eqs. 13-(26) with variables specifed by 
customer n, scenario s, and over time τ as in (12). En t s, ,

stor is fixed at the 
initial condition En t,

stor for each scenario. Pw is wasted solar (i.e. curtailed 
when batteries are full), and P is net flow into the network. Pn

c,max is the 
maximum charge power of a battery, assumed for simplicity to be the 
same as discharge power. 

=P P P P Pn s
c

n s
g

n s
w

n s
u

n s, , , , , , , , , , (13)  

= ++E E P Tn s n s n s
c

c, 1,
stor

, ,
stor

, , (14)  

= P0
n

n s, ,
(15)  

P P0 n s
w

n s
g

, , , , (16)  

P P0 n s
u

n s
l

, , , , (17)  

P P Pn
c

n s
c

n
c,max

, ,
,max (18)  

P P Pn n s n
max

, ,
max (19)  

+

+ +

n N t t T s S
E E

n N t t T s S

[1, ], [ , 1], [1, ]
0

[1, ], [ 1, ], [1, ]
n s n, ,
stor max

(20) 

To cast the problem in a generic form for standard numerical optimi
zation solvers, we replace (11) with the equivalent set (21)-(26) using 
binary variables qn,s and the constant =M P: maxn s n t s

l
, , [14]. These con

straints, along with (17), give two disjoint cases for whether or not the 
load limit is binding in scenario s: = =q P l1 ,n s n t s

u
n t, , , , and 

= =q P P0n s n t s
u

n t s
l

, , , , , . Note that the constraints only include the de
cision ln,t at the first time-step, and that only one decision is made for all 
scenarios, reflecting that the action must be taken before a scenario is 
realized. In contrast, the operator assumes they will be taking actions 
with certainty for +t 1, meaning they can set a load limit exactly to 
the desired consumption in that scenario. In the case where the optimal 
load limit is the maximum over the forecast, i.e. =l M ,n t n, then any 
ln,t ≥ Mn is optimal, so the controller selects no load limit with =ln t, . 

q {0, 1}n s, (21)  

P ln t s
u

n t, , , (22)  

+l P q M(1 )n t n t s
u

n s n, , , , (23)  

+l P q M(1 )n t n t s
l

n s n, , , , (24)  

+P P q Mn t s
l

n t s
u

n s n, , , , , (25)  

+P l q Mn t s
l

n t n s n, , , , (26)  

This is a mixed integer quadratic program (MIQP) with NS binary 
variables, and NST( ) continous variables and constraints. This scaling 
in dimension is not to be confused with the complexity of solving the 
MIQP, which itself scales nonlinearly with the number of variables and 
constraints. 

2.2.2. Approximate dynamic programming solution with Markov forecast 
If the forecast is considered Markov, Eqs.  (4)-(8) can be solved with 

backwards recursion, which in practice requires computing and storing 
values of Vτ(x) for each possible x. Computing this if each of N batteries 
is approximated with X discrete state-of-charge regions requires 

+X( 1)N samples, which is intractable. We address this by employing 
state-space aggregation, approximating the state by the sum of energy 
stored in all batteries x̂ and sampling it uniformly at +X 1 points in
dexed by i. We denote samples of the aggregated state and value 
function x i˜ ( ) and V i˜ ( ). The continous and sampled forms are related by 
piecewise linear interpolation in (31)-(32), with weights ri satisfying 
SOS2 constraints defined for each scenario in (36)-(42).2 

=x E^ :
n

n,
stor

(27)  

=x E^ :
n

n
max max

(28)  

= ++x x P^ ^
n

n
c

1 ,
(29)  

=x i i
X

x i X˜ ( ) ^ {0, 1, , }max
(30)  

=x r x i^ ˜ ( )
i

i
(31)  

=V x r V i^ (^ ): ˜ ( )
i

i
(32) 

Given the above, we can now define the optimization problem with 
objective (33) for computing the value function V i˜ ( ) at a sample of the 
state space i at time τ, given values of the next step value function at all 
samples of the state space +V j j˜ ( ) ,1 and forecast scenarios wτ, s: 

= + +V i p b x i u w s V˜ ( ) max ( (˜ ( ), , , ) ^ )
u s

s s1,
(33) 

The constraints are the same as the previous two-stage stochastic for
mulation ∀s ∈ [1, S] and ∀n ∈ [1, N], except that only one time-step τ is 
considered (the load limit constraints (22)-(26) are defined for time τ), 
the individual state-of-charge dynamics (14) are replaced with the ag
gregate dynamics (34) and likewise for battery capacity (35), and the 
SOS2 constraints are included: 

= ++x x i T P^ ˜ ( )s c
n

n s
c

1, ,
(34)  

+x x0 ^ ^s1,
max (35)  

Fig. 2. Alternative interpretations of a 2-scenario forecast with a single battery 
over a horizon of three time-periods. 

2 SOS2 refers to “special ordered sets of type 2” constraints [14], which have a 
structure that can be exploited for better performance by some solvers. 
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=+x r x j^ ˜ ( )s
j

s j1, ,
(36)  

=+ +V r V j^ ˜ ( )s
j

s j s1, , 1,
(37)  

=r 1
j

s j,
(38)  

y 2
j

s j,
(39)  

y {0, 1}s j, (40)  

r y j X0 [0, ]s j s j, , (41)  

+ +y y j X k j X1 [0, 2], [ 2, ]s j s k, , (42) 

In general, b should be redefined on the aggregated state space, but our 
form in (10) does not directly depend on state, so we use the same b. 
Note that (33)-(42) define an optimization problem only over one time- 
step. The solution process consists of starting at time = +t T 1 with 

=+ +V j V j˜ ( ) ˜ ( ) 0,t T1 solving the above problem to determine V i˜ ( ) for 
each i ∈ {0, X}, repeating for = 1, and stopping after solving for 

= +t 1. This entails solving +X T( 1)( 1) MIQPs, each with a di
mension on the order of NS. Once +Ṽt 1 has been determined, we solve 
the problem again, but only given the initial state xt to determine the 
optimal action ut to take at time t using +Ṽt 1 as an approximation of +Vt 1. 

2.2.3. Alternative deterministic solutions 
The two controllers of primary interest are described above, but we 

also define three alternative controllers for use in the computational 
experiments. The first trivially sets no load limit, the second sets limits 
according to the piecewise-linear feedback rule (43), using only the 
aggregated state of charge (27)-(28) and no forecasts, and the third uses 
a single forecast, computed as the mean over all scenarios, without 
considering uncertainty. The single forecast formulation is actually 
equivalent to the stochastic trajectory forecast with =S 1, making the 
binary variables extraneous and reducing the problem to a QP. 

=

<
<
<

l

P x x
P x x x

P x x x
x x

0.01 0 ^ 0.1^

0.05 0.1^ ^ 0.2^

0.1 0.2^ ^ 0.3^

0.3^ ^

n t

n
l

t

n
l

t

n
l

t

t

,

,max max

,max max max

,max max max

max
(43)  

2.3. Power dispatch model 

In a microgrid with DERs, a dispatch mechanism is required to 
maintain power balance and coordinate the charge power of each in
dividual batteries. We model solar generation and batteries interfaced 
with grid-forming converters, where each group n tracks a setpoint P *n t,

inj,

of power to inject into the network and the total imbalance is shared by 
an automatic generation control described below. The primary control 
objective here, given assumptions to ignore network constraints, is to 
keep states of charge equally balanced to each other to prevent losing 
instantaneous power capacity if some were to become drained before 
others. This is an open research area, but we achieve sufficient balan
cing with a simple, centralized, proportional feedback controller with 
gain =K 2 and ΔTc the time-step between control action: 

=P
K T

E
N

E* 1 1
n t

c
n t

n
n t,

inj,
,

stor
,

stor

(44)  

Integrating more sophisticated predictive power dispatch models 
with load-limiting to account for network constraints and losses is an 
important area for future work that becomes increasingly relevant in 
larger microgrids. 

3. Microgrid simulation model 

To evaluate controller performance, we develop a simulation model 
of a distributed microgrid to capture interruption events and the evo
lution of battery states. We use a quasi-static simulation of the steady- 
state behavior of the the primary and secondary controls of the DER 
power converters, which govern power sharing and the availability of 
supply. We introduced grid frequency Δft as a state variable in the si
mulation model to maintain instantaneous power balance. The DERs act 
as synchronous interconnected areas that maintain power balance using 
classic droop and automatic generation control subject to constraints on 
the solar availability and battery charge [15]. We assume the charge 
and discharge capacity is constrained by the battery inverter rating 
P ,n

c,max the free capacity of the battery, and a linear power derating 
when the battery state-of-charge is within 10% of its limits. These dy
namic constraints are captured respectively by the three terms in the 
min  functions defining the maximum charge +Pn t

c
,
, and discharge Pn t

c
,
, : 
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The net injection Pn t,
inj of each “area” n of DERs tracks the setpoint P *n t,

inj,

with a frequency response stiffness βn subject to the charge and solar 
generation capacity constraints as well as conservation of energy given 
the loads Pn t

u
, : 

= +
=

+P P P P P f
P P

min( , max( , * ))
0

n t n t
g

n t
c

n t
c

n t n t

n
n t n t
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,
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,
,
,

,
inj,

,
inj

,
(46) 

We set the stiffness of area n as proportional to the total inverter ca
pacity: = +P P( )n n

c
n

g,max ,max where Pn
g, max is the PV inverter capa

city, and we choose = 4. The above system has either a unique so
lution for Δft or no solution; in the latter case, a blackout is implied. In 
the event of a blackout, meters disconnect all load (thus interrupting 
customer activities) until the aggregate state of charge reaches 10%, 
and the DERs come back online automatically. When there is no 
blackout, the solar generation, curtailment, and battery charge are re
covered from Δft and Pn t,

inj by minimizing curtailment, and the battery 
stored energy is updated incremented by P Tn t

c
s, . 

As shown in Fig. 1, the control system sets limits for each customer 
and a power injection setpoint for each DER every =T 4 hoursc . 
Within that window, the DERs, loads, meters, and customer activity 
states are simulated on a =T 2 minutes time-step. We assume the 
customer updates their activity schedule whenever they receive a new 
limit and that individual meters enforce load limits by disconnecting 
load if the limit is exceeded. 

4. Computational experiments 

We conducted two computational experiments with multiple trials 
to assess the efficacy and computational tractability of the proposed 
algorithms using the experimental methodology and terminology pro
posed in [16]. All modelling code and data are available on GitHub, 
including the complete implementation of the models above, all ex
perimental parameters, and additional data visualization.3 We ran the 
experiments on a personal computer using an Intel i7-7600U CPU Dual 
Core, 2.80 GHz CPU with 16 GB of memory. We used CVX version 2.1, 
build 1127, with MATLAB 2018a to develop the optimization problems 
with Gurobi 9.0.1 as the solver [17,18]. In the simulation and timing 
results, we used MATLAB compiled binaries and the Gurobi API directly 
instead of CVX to improve performance. 

3 Code: https://github.com/Energy-MAC/pscc2020-load-limiting. 
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In each trial, we simulate a microgrid of N customers by randomly 
distributing 300 W PV units and 2 kWh battery units with 1.2 kW 
charge power. We set the total solar capacity to produce the average 
unconstrained demand of 330 W, which was computed by simulating 
users’ activities, and 3 kWh of total battery capacity per kW of PV. This 
results in and average 1.5 kWp PV and 4.5 kWh of storage per user, but 
variable distributed, and ensures energy scarcity. Each customer is as
sumed to have a maximum possible load of =P 10 kWn

l,max . Customers 
are assumed for simplicity to have the same activities and loads with 
parameters given in Table 1, but multiple types are supported in the 
simulation. The tables dictating the probability of a customer sche
duling an activity to start in each hour of the day are not shown for 
space reasons, but are available in the repository. 

We used satellite-measured solar irradiance from a location on Lake 
Victoria, Uganda, spanning 2004 to 2019 at one minute resolution, to 
generate irradiance forecasts and realizations [19]. This region has 
active development of energy-scarce, isolated microgrids and exhibits 
daily variation in irradiance. In each experimental trial, we randomly 
select one year to use as realization, and draw S times with replacement 
from the remaining fifteen years for forecasts. We created sample load 
forecasts by simulating the customer load model with random activity 
schedules S times. 

4.1. Controller Efficacy 

In this experiment, we use =N 7 customers and =S 15 forecast 
scenarios with 48 hour horizons and simulate the RHC for 28 days. 
These, and the parameters defined in previous sections, comprise the 
experiment parameters. For each trial, we draw a random start day, 
random DER configuration, random customer activity schedule, and 
random forecasts and realizations as confounding variables. For these 
confounding variables, we compare each of the five controllers as in
dependent variables: no load limit, proportional feedback, deterministic 
forecast, the two-stage model, and the approximate dynamic pro
gramming model. For each of these, we simulate the RHC and define 
three key performance metrics on the outputs: the value of the quad
ratic objective function (10) applied to realized consumption averaged 
over the 4 hour decision interval, the net customer utility dervied from 
their successful completion and interruption of the loads, and the per 
unit average service availability index (ASAI), which is the fraction of 
time power was available averaged across customers (ASAI [20]). The 
objective values and customer utility are average per user per 4 hour 
time-step. These results are shown in Fig. 3, where the bar height is the 
median and the range shows the 5th and 95th percentile values across 
trials. We conducted 150 trials, observing that the coefficients of var
iation across trials for the performance metrics stabilize by 100 trials. 

The predictive controllers significantly improve customer utility and 
power availability, but they do not improve the quadratic objective 
measure they explicitly maximize. We expect this is due to model 
mismatch where the controller assumes customers adjust load exactly to 

the limits, but they in fact reduce load below the limits. This is con
sistent with Fig. 4, which shows that the predictive controllers over
estimate the objective even when accounting for forecast uncertainty. 
As expected, the no control case has the highest mean load because 
there is no curtailment. The objective values correspond closely to the 
mean load and are only slightly lower because the quadratic term is 
small, especially at normally low load, which leads us to conclude that 
the greater consumption drives the higher objective value. 

The key result is that despite the model mismatch, optimizing for 
the simple quadratic value of consumption produces an outcome that 
allows customers to respond to scarcity with lower interruption costs 
and greater utility. This may not be the outcome in some cases, for 
example if customers have very high-value and high-power, daytime 
loads, but if this is known to the microgrid operator, this can be ad
dressed with weights in the benefit function. Further, gains on the 
feedback controller could be tuned to give better performance in par
ticular cases, although it would likely be challenging to set gains that 
are effective across a wide variety of cases. 

Among the predictive controllers, the two stochastic approaches 
yield similar results to each other; however, Fig. 3 shows they tend 
towards slightly higher utility and minimally higher ASAI than the 
deterministic. The deterministic overestimates the objective relative to 
the 2-stage, which also overestimates relative to the ADP formulation if 
the forecast values are independent in time. This can be shown theo
retically and is supported empirically in Fig. 4. Preliminary analysis of 
the load limit patterns suggests the stochastic approaches impose load 
limits more of the time but at higher and less restrictive levels, as il
lustrated in [Supplementary Figure]. Essentially, they perform some 
effective hedging, but the benefits are small and the deterministic ap
proach provides satisfactory performance. 

4.2. Computational Tractability 

To test computational performance, we varied the number of cus
tomers N ∈ {5, 15}, the number of scenarios S ∈ {5, 15}, and the time- 
steps in the forecast T ∈ {12, 24, 36}, and recorded the time for each 
formulation of the decision algorithm to converge to a solution. Table 2 

Table 1 
Activity parameters (time in minutes)        

Activity Watts Min Max Compl. Int.   

Time Time Val. Cost  

Electronics 1 50 5 15 0.5 1 
Electronics 2 75 30 180 4 2 
TV 50 30 240 1 5 
Lighting 1 300 5 260 2 10 
Lighting 2 450 5 30 2 6 
Microwave 650 2 10 2 5 
Hair dryer 1800 2 17 2 5 
Clothes Washer 500 30 60 3 5 
Clothes Dryer 2500 45 60 3 5 
Dishwasher 1200 60 90 3 5 

Fig. 3. Key performance metrics across trials.  

Fig. 4. Objective ex post and ex ante values with mean load.  
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shows the median time over 20 trials with random forecasts and initial 
states. We observed that for larger products of NS approaching the 
range of 300, the solver does not reliably converge within an hour, so 
we do not show results for problems of this size. We observed that for 
these problems that do not converge, approximate solutions are reached 
relatively quickly, but that thousands of successive iterations in the 
branch-and-bound algorithm continue with minimal improvements. 

The results show that the approximate dynamic program generally 
takes longer to solve, but that the two-stage solution exhibits poor 
scaling with the forecast horizon. Both formulations are tractable for a 
real-time control scheme for products of NS up to around 100 with a 
forecast horizon of 24-36 hours. The tractability for larger products of 
NS requires more research into solver customization, appropriate so
lution tolerance, and convex relaxations. 

5. Conclusions 

This paper develops a mathematical framework for managing 
electricity consumption in energy-constrained microgrids by scheduling 
load limits to improve the availability and value of electricity service. 
We propose two techniques for incorporating stochastic forecasts into 
the decision to schedule load limits, and show how these can be mod
elled as mixed-integer programs. We find that both improve metrics of 
the value of electricity service and are tractable with an out-of-the-box 
MIQP solver for microgrids on the order of 15 customers, but that a 
deterministic approach, using only a single forecast, yields comparable 
performance improvements in our particular test case but with much 
lower computational complexity. Our modelling approach and simu
lation environment contribute a foundation for exploring different 
formulations of value and mechanisms to allocate scarce electricity 
supply. 
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