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A B S T R A C T   

We consider a linear power flow model with interval-bounded nodal power injections and limited line power 
flows. We determine the minimal number of power injections to control based on a minimal set of measure-
ments, such that the overall system is feasible for all assignments of the non-controlled power injections. For the 
important case where the possible measurements are the nodal power injections, we show that the problem can 
be solved efficiently as a mixed-integer linear program (MILP). When also line power flows are considered as 
potential measurements, we derive an iterative, greedy algorithm that provides a feasible, but potentially 
conservative solution. We apply the developed algorithms to both a simple microgrid and a modified version of 
the IEEE 118 bus test power system. We show that in both cases a sparse solution in terms of the number of 
required controllers and measurements can be obtained. Moreover, the number of required measurements can be 
reduced significantly if line flow measurements are considered additionally to nodal power injections.   

1. Introduction 

Volatile renewable energies are transforming classical power grids 
with few large generators into complex cyber-physical networks. These 
contain a large number of distributed generators and controllable loads, 
and power lines are often operated close to their limits. In this context, 
we ask: What is the smallest set of generators and/or loads that must be 
controlled based on the values of a minimal number of measurements, 
such that (s.t.) the entire system state is feasible for all possible values 
of the remaining elements? 

Being able to identify the (optimally small) set of critical elements in 
complex power grids reduces the cost and effort for their control. 
Moreover, it is an important ingredient to reduce such systems’ po-
tentially high vulnerability with respect to (w.r.t.) natural disasters or 
cyber-attacks [1], enhancing their operational resilience. An increased 
protection status could be mandated for the identified critical elements, 
to keep the number of outages and failures in this group at a minimum, 
see [2] where the hardening of power systems to minimize system 
damage in case of disasters is examined. 

Our research question is an instance of the well-known optimal 
input/output selection problem, also known as the optimal actuator/sensor 
placement problem. Starting with classical work on controllability [3] 
this problem has attracted long-term research attention, in particular, 
for linear time-invariant systems. The problem has recently become 

very active again in the study of complex networks, see, e.g., [4]. While 
most formulations of the problem are NP-Hard due to its combinatorial 
nature, finding only the minimum set of actuators is possible in poly-
nomial-time [5]. This finding is based on structural controllability 
theory [6] and can be used to develop distributed algorithms for finding 
the minimum number of controlled and measured nodes [4]. Structural 
controllability theory can also be used to analyze cyber-security aspects 
in distributed power grids [7], e.g., for evaluating the detectability and 
identifiability of hacked nodes. Another line of research aims at de-
signing control structures that minimize the control effort, using con-
trollability metrics derived from the controllability Gramian of the 
system [8]. Many of the related input/ouput selection problems are 
submodular which implies that greedy algorithms using these metrics, 
e.g., for the optimal placement of High-Voltage direct current lines in a 
simplified model of the European power transmission network, have 
provable suboptimality bounds [9]. Time-varying minimal configura-
tions of sensors and actuators can be computed with the help of semi- 
definite programming [10]. All these works are valid for linear (dyna-
mical, algebraic) systems without state or input/output restrictions. 

In this contribution, we propose an alternative, novel approach 
based on the steady-state representation of the system only, but con-
sidering constrained variables. This is an important step towards real 
applications where power injections and line flows are always subject 
to physical limits. 
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Our approach extends current work on the distributed control of 
power systems [11]. For instance, the robust optimal power flow al-
gorithm by [12] allows computing set points and droop constants for 
some generators while guaranteeing feasible grid operation for all 
power injections of other uncertain producers and consumers. While we 
use similar modeling, we focus on identifying the minimal sets of 
controllers and measurements that are required for computing such set 
points. 

The rest of the paper is organized as follows. Section 2 introduces 
the employed linear power flow model. The feasibility of a given set of 
controllers and sensors is defined in Section 3. We also give a formal 
problem statement there as well as further computationally advanta-
geous conditions for testing feasibility. In Section 4, we exploit those 
conditions for developing two efficient algorithms that minimize the 
number of controllers and sensors. In Section 5, we apply the proposed 
algorithms to find the smallest number of controllers and sensors for 1) 
a simple microgrid consisting of 4 buses and 2) a modified version of 
the IEEE 118 bus test case. Finally, concluding remarks and an outlook 
for future research are provided in Section 6. 

2. Linear power flow 

We analyze an electrical network with N electrical buses connected 
by T transmission lines under the common DC power flow assumptions  
[13]. The voltage phase angles N determine the nodal active 
power injections p N

I and the active power line flows p T
F as 

= =p B p B, ,I I F F (1) 

where the entries of ×B N N
I and ×B T N

F are defined element- 
wise as =B bjk jkI, if j ≠ k, =B bjj k jkI, and =B b ,jk jkF, with bjk the 
susceptance of the line connecting buses j and k. 

Without loss of generality, we assume that exactly one generator or 
load is connected to each bus, with an externally defined active power 
set point xi. If the sum of the set points in the grid is not balanced, a 
droop-based primary control scheme [13] adjusts power injections pI 

under adaptation of the frequency to achieve this balance, such that in 
steady state we obtain 

=p x k .I (2) 

Here, k N represents the vector of droop constants, ki ≥ 0 and 
∑iki > 0, and the frequency deviation with respect to its 
nominal value. 

This common setup implies that the measurable quantities pI, pF, 
and Δω are linearly determined by the controllable quantities x. The 
kernel of the Laplacian matrix BI contains only the constant vectors for 
connected graphs, that is, a constant shift of the phase angles has no 
impact on pI. We thus fix = 01 and delete the first column of BI to 
obtain BI. The remaining dimensions of θ are denoted by ˜. We simi-
larly reduce BF to BF. The image of BI moreover contains all vectors 
with balanced nodal injections. To handle unbalanced set points x, we 
add k as the last column. This lets us compute for all x with  ·  denoting 
zero entries 

= =
p
p

B
B

B
B B k x

·
·

· 1

·
·

· 1
[ ] .

I

F
I

F

I

F I
1

(3)  

In real systems the nodal injections pI will be limited above and 
below by the technical capabilities of the connected generator or load. 
Valid set points x might be restricted to smaller intervals than the pI, to 
leave some space for power generation scheduled by the primary con-
troller. Similarly, line power flows pF and the frequency deviation Δω 
are typically subject to upper and lower bounds. 

3. Feasible sets of controllers and measurements 

3.1. Feasibility conditions & problem statement 

The power flow model of the previous section can be abstracted as 
follows: let x N be the variables that can be set externally. is 
assumed to be a product of intervals, i.e., = × ×x x x x[ , ] [ , ]N N1 1 . 
Variables x can be partitioned into the controlled variables xc, for which 
we will design a controller in the following, and the free variables xf, 
that are left free to be determined either by other users, cooperative or 
malicious, by fixed external conditions, such as, e.g., the weather, or at 
random. The index set of the controlled variables is denoted by and 
the corresponding partitions of as c and f . We assume that the 
variables x determine the system state uniquely and that the set of 
feasible system states * can be characterized via a set of linear in-
equalities, 

= x Ax b* { : }, (4) 

where ×A K N and b K . 
Similarly, we assume a set of possible measurements y L to be 

linearly related to the system state, i.e., =y Mx with ×M L N . We 
partition these possible measurements into the monitored measurements 
ym, that are used as inputs to the control law, and the unmonitored 
variables yu, that are not required for the controller and may or may not 
be recorded in practice. The index set of the monitored variables is 
denoted by . 

The defined partitions of x and y allow to partition the matrices A 
and M along their columns or rows as well, yielding = +Ax A x A xc c f f
and = = +y M x M x M xm m

c
m

c f
m

f . 
The aim of the paper is to determine the minimal set of controllers 

and measurements that allows for the design of a control law xc(ym) 
that can guarantee a feasible system state, independently of the state of 
the free variables xf. This can be formalized as follows. 

Definition 1 (Condition. C1) Sets and are feasible if 

+
x M x

A x y A x b
: ( ) s.t. :

( ) ,
c f

m
f c f f

c c f
m

f f (5) 

where =y M xf
m

f
m

f . 

The idea behind this definition is that the control x y( )c f
m chosen for 

y f
m should be valid for the xf from which y f

m originated. Note that we 
consider only control values for the steady state of the system in this 
paper. We do not examine whether and how it is possible to get there 
from arbitrary initial positions. Moreover, in order to simplify the no-
tation of the involved sets, we have used only a part of ym as input to 
the control law x y( )c f

m . However, since = +y M x ym
c
m

c f
m one could 

easily rewrite the controller into the form xc(ym), i.e., directly using the 
measurements that are actually available to the controller. 

Since xf uniquely determines y ,f
m we can also express the control 

law as xc(xf). The formulation x y( )c f
m implies that xc will attain the 

same value for all values of xf that lead to the same measurements. We 
thus obtain the following equivalent condition. 

Definition 2 (Condition. C1
’ ) Sets and are feasible if 

+
= =

x x x
A x x A x b

x x x x M x M x

: s.t. , :
( )

( ) ( ) if .

c f c f f
’

f

c c f f f

c f c f
’

f
m

f f
m

f
’ (6)  

These definitions allow us to state the optimization task we aim to 
solve in this work. 

Problem statement. Find the set of controllers and measurements 
that solves 
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+min

s.t. and are feasible w.r.t. C or C .
,

1 1
’ (7) 

| | and | | denote the cardinality of and . The cost of placing a 
sensor is weighted by 0 ≤ γ ≤ 1 since it will typically be smaller than 
implementing a full actuator. 

One could additionally incorporate into the objective the varying 
efforts and costs for controlling certain elements or acquiring certain 
measurements. Instead of just weighting the total number of controllers 
and measurements we would then determine an individual weight for 
each element separately. While we do not follow this idea below, all 
algorithms could straightforwardly be adapted. 

3.2. Related conditions 

Verifying conditions C1 and C1
’ based on their definition requires 

checking infinitely many values of y f
m or xf, respectively. We therefore 

derive two related conditions that are testable with finite computa-
tional resources. The relation of all derived conditions is presented in  
Fig. 1. In the next section we then show how to exploit them to effi-
ciently solve our problem. 

Condition C1 requests the existence of a mapping x M: ( )c f
m

f c
yielding valid control values. One possibility is that this mapping is 
affine-linear. 

Definition 3 (Condition. C2) Condition C2 is fulfilled if 

+
×S w x

x y A x y A x b
, s.t. :

( ) ( ) ,
f f

c f
m

c c c f
m

f f (8) 

where =y M xf
m

f
m

f and = +x y Sy w( )c f
m

f
m . 

Condition C2 is obviously sufficient for C1. It is, however, not ne-
cessary as can be shown by counterexample, where piecewise linear 
control laws sometimes allow for fewer sensors and controllers. The 
condition is testable with finite efforts, as we show in Section 4. 

The conditions presented so far are continuous in the sense that 
testing their validity requires checking an infinite set of possible rea-
lizations of xf or y f

m. However, since the possible values of xf and y f
m are 

restricted to bounded polytopes, i.e., f and M ( ),f
m

f we can derive a 
necessary condition for C1

’ based only on the corners of such polytopes. 
In contrast to C2, such necessary condition will not assume the control 
law x y( )c f

m to be affine-linear. 

Definition 4 (Corner). z is an extreme point or corner of the convex 
set if there are no two distinct points z z,1 2 and λ ∈ (0, 1) such 
that = +z z z(1 )1 2. 

Denote C ( )f as the set containing the corners of f . The number of 
corners of ,f denoted as C| ( )|,f is finite, but grows exponentially with 
the number of free variables. A condition based on all corners of f
would therefore be computationally prohibitive for larger dimensions 
of f . Instead, we focus on a subset of corners only, namely those ones 
which have the maximum impact on the constraints Ax ≤ b. Denote 
such subset by C ( )A

f . Let Ai be the i-th row of A, with …i K{1, , }. 
Then, a point xf belongs to C ( )A

f if Cx ( )f f and if there exists 
…i K{1, , } such that xf is an optimal solution for 

A xmax .
C

i
x ( )

f f
f f (9) 

Remark 1. Note that the optimization problem (9) defining the 
elements of C ( )A

f can be solved analytically for row Ai as 

=x
x A
x j

, 0
, else , .j

j ij

j (10) 

The optimal values thus depend only on the sign of the corresponding 
elements of A. In many cases the optimal vectors for different rows of A 
will therefore coincide and the cardinality of C ( )A

f is even smaller 
than its maximum possible value K. 

Definition 5 (Condition. C*1 ) Condition C*1 is fulfilled if 

+
= =

C Cx x x
A x x A x b

x x x x M x M x

: ( ) s.t. , ( ):
( )

( ) ( ) if .

"

" "

A A
c f c f f f

c c f f f

c f c f f
m

f f
m

f (11)  

Conditions C /C1 1
’ straightforwardly imply C*1 since C ( )A

f f . The 
reverse is not always true, as can be shown by counterexample. 
However, we will show below that this condition can be exploited for a 
very efficient computation of approximate sets and , at least for the 
case when the set of possible measurements consists of the power set 
points at each node, i.e., when M is an identity matrix of appropriate 
dimensions, here denoted by I. For nodes with zero droop constant, e.g., 
typical loads or small-scale generators, the measurement of the power 
set points is equivalent to measuring nodal power injections. 

Minimizing the objective +| | | | with respect to condition C*1 or 
C2 will provide a lower or upper bound for the optimal solution of 
problem (7), respectively. In our experiments we found that for 
minimal sets and fulfilling C*1 it was often possible to determine 
valid affine-linear control realizations by testing C2 for such sets, i.e., 
the upper and lower bound coincided. In this case, and are op-
timal solution of (7). 

4. Algorithms 

The feasibility conditions formulated above enable us to develop 
two methods for addressing optimization task (7): 

The first, derived from condition C*,1 leads to a mixed-integer linear 
program (MILP) that finds the smallest feasible sets and , provided 
that =M I. Since C*1 is necessary for C1

’ but not sufficient, the obtained 
sets and may be too small to be feasible. While we often obtained 
feasible results anyway, the algorithm can also be used to generate a 
good initial solution for the second approach. 

The second method for solving problem (7) is designed for all pos-
sible measurement matrices M. It is a greedy procedure based on hill 
climbing (HC) and condition C2. Recalling that condition C2 is sufficient 
for C1 but not necessary, the obtained sets and may possibly be too 
large, but are guaranteed to be feasible. 

4.1. MILP-based approach 

In this section, we develop a MILP for finding the smallest feasible 
sets and based on condition C*,1 provided that =M I. The key is to 
formulate condition C*1 as a set of linear inequalities that holds for all 
choices of sets and . 

To this end, consider the binary decision variables uc ∈ {0, 1}N and 
um ∈ {0, 1}N, defined element-wise as 

= =u j u j1,
0, else

, 1,
0, else

,j jc m

for …j N{1, }. The decision variables uc and um encode the elements 
of and , respectively. Finding the smallest number of elements of 
and is thus equivalent to minimizing the cost +u uc 1 m 1. 

Let x ,i = …i K1, , , be defined element-wise as 

=x
x A
x˜

, 0
, else .j

i j ij

j

Fig. 1. Relation of the desired conditions C1 and C1
’ to the conditions C*,1 C2, 

which are testable with finite resources. 
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xi is the Ai-optimal analytical solution of (9) for the case when all 
variables are assumed to be free. Moreover, for any given set of con-
trolled variables , the elements of C ( )A

f can be identified with 
=x x 1 u( ),

i i
f c where 1 is a vector of ones of appropriate dimension 

and ∘ represents the Hadamard product. Since we assume here that 
=M I, we can further partition the free variables into monitored and 

unmonitored variables, i.e., we can write = +1 u u u ,c m u with 
uu ∈ {0, 1}N being the binary vector that encodes the elements of the 
unmonitored variables. The Aj-optimal corners of f can then be 
identified with x u ,j

u = …j K1, , . Similarly to x u ,i
m a vector of length 

N whose non-measured entries are zero, we now consider an associated 
control vector xi

c for which 

x u x x u ,i
c c c

i.e., xi
c is a vector of length N whose non-controlled entries are zero. 

Condition C*1 states that for all = …i K1, , , the control vector xi
c for 

the Ai-optimal corner x
i
f of f should be valid and that it should be 

identical to the control vector for all other corners in C ( )A
f that cannot 

be distinguished given the measurements. We thus can consider only 
the worst case of the unknown elements and write compactly 

+ +Ax A u A u b,i i
c m m u u

with Ãi
m and Au defined element-wise as, = …k K1, , ,

= =A A x A A x˜ ˜ , ˜ .kj
i

kj j
i

kj kj j
k

m, u,

Thus, the mixed-integer linear program that solves (7) when =M I
reads 

+

+ + = …
= …

+ + =

i K
i K

u u

Ax A u A u b
x u x x u
u u u 1

min

s.t. ˜ ˜ , 1, , ,
˜ , 1, , ,

.

i i

i

u u u x, , , ˜
c 1 m 1

c m m u u

c c c

c m u

ic m u c

(12) 

Remark 2. Note that, particularly in large scale applications, there may 
be several constraints, i.e., rows of A and corresponding entries of b, 
that are not violated for any realization of x. Hence, when 
optimizing (12), we only take into account the rows of A, for which a 
violation of (4) is possible, i.e., where >Ax b 0i i i . This preprocessing 
is also utilized by the greedy search proposed below. 

4.2. Greedy approach 

In this section, we first show how to check condition C2 efficiently 
via a linear program (LP) for fixed sets and . Thereafter we de-
scribe an iterative algorithm to choose and adapt these sets in order to 
find minimal feasible sets. 

For given and , condition C2 mandates to check if there exists a 
valid affine-linear control law that makes the system feasible for every 
possible value xf f . More precisely, there should exist an affine- 
linear control law defined via S and w such that for all xf f we have 

+
+

A SM A
SM

SM
x

A
I

I
w

b
x
x

1
·
·

,

A S
F l v

c f
m

f

f
m

f
m

^ ( )

f
c

c
c

(13) 

where we introduce as an indicator of how far the system is from 
being infeasible. A control law is valid if η ≤ 0. 

To tackle condition (13) for all xf f we only need to consider the 
maximum of the left hand side expression. Let = +K K^ 2| | be the 
number of rows of A S^ ( ) and =N N | |f the number of free variables. 
We can introduce an upper bound on A S x^ ( ) f via a matrix ×H ,K N^ f

whose entries fulfill 

H A x

H A x

S

S

^ ( ) ,
^ ( ) ,

ij ij j

ij ij j

f

f (14) 

for all = …i K1, , ^ and = …j N1, , f . The upper bound of A S x^ ( ) f is then 
given by H1 and condition (13) is equivalent to 

+H1 Fw l v. (15)  

Putting these results together allows us to compute the minimum 
possible value of η for given and via the following linear program 

+

= … = …

= … = …

1

H A x i K j N

H A x i K j N

H Fw l v

S

S

min

s.t. ,
^ ( ) , 1, , ^, 1, , ,
^ ( ) , 1, , ^ , 1, , .

ij ij j

ij ij j

H w S, , ,

f f

f f (16)  

The above described algorithm for testing the validity of C2 for fixed 
and can now be used as a subroutine to minimize over the sets 

and as well. To do this, we proceed iteratively from initial sets and 
adapting them one element at a time. Since we want to measure the 

optimization progress also for non-feasible combinations and , we 
extend the minimization objective to 

= + +J µ( , ) max( , 0), (17) 

where η is the feasibility indicator obtained from solving problem (16). 
μ > 0 is a weighting factor that penalizes the infeasibility of and . 
We choose μ ≫ 1 to steer the iteration quickly towards feasible solu-
tions. 

The cost function (17) is minimized via a greedy hill climbing 
procedure. In each iteration we compute the objective value for all sets 

’ or ’ that can be generated by adding one element to either or . 
We then choose the step which yields the largest improvement of the 
objective value (17). As soon as the sets of controllers and measure-
ments are feasible, we stop the iteration. 

It is well known that the solution of this greedy approach depends 
on the selection of the starting point. A natural option is to start with 
empty sets, selecting the most important controllers and measurements 
during the first iterations. Alternatively, we propose to use the 
MILP (12) formulation as an initial guess. More specifically, we solve 
the MILP (12) for =M I first. We then use the found controller set as 
a starting point for the greedy approach, while disregarding the found 
measurements. Instead, we start with an empty . This way the 
measurements resulting from general M, which potentially allow for 
more compact control systems than the identity measurements, can be 
integrated well, but the critical controllers are already identified. 

Remark 3. Since general MILP has exponential worst-case time 
complexity, this is an upper bound on the complexity of our first 
approach (12). In contrast, LP as used for our second approach (16) is 
known to have polynomial worst-case time complexity, and the hill 
climbing procedure only adds polynomial factors. However, for the 
realistic examples discussed in the next section we found the MILP 
approach to be more efficient than the hill climbing procedure. The 
latter’s computation time depends strongly on the starting point. For 
the examined medium to large problem instances, it allowed finding 
small, guaranteed to be feasible solutions for and with very 
reasonable efforts. For cases when =M I the MILP solution could often 
be verified to be feasible (and thus also optimal) by solving the small 
LP (16) only once without further adaptation of or . We thus see 
both algorithms as an important contribution for solving real control 
design problems with state constraints. 

5. Numerical examples 

The algorithms developed in 4.1 and 4.2 are now applied to find the 
minimal feasible configuration of controllers and measurements for two 
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exemplary power systems. We first demonstrate our setup and typical 
effects on a simple microgrid of 4 buses connected in a line. Subse-
quently, a modified version of the IEEE 118 bus test case is addressed. 
The experiments were performed using an i5 notebook with 8 GB of 
RAM. The algorithms were implemented in Matlab R2018b, using 
YALMIP [14] as modeling language and CPLEX 12.9 as LP and MILP 
solver. 

5.1. Simple microgrid 

Fig. 2 shows the considered microgrid consisting of three generators 
supplying a demand of 5 MW. It gives the topology of the grid together 
with the capacity limits of each transmission line and each generator/ 
load. The generator located at bus 4 provides primary reserve, initially 
with a droop of 12 MW/Hz and later with 4 MW/Hz. The maximum 
allowed frequency deviation is   ±  0.1 Hz. We first assume that all 

transmission lines have a power transfer capacity of   ±  10 MW, which 
is adequate to avoid grid limitations. In scenario (d) we add an active 
line constraint in the middle. 

In scenario (a) where only the power set point at each bus may be 
measured, it is sufficient to control the large generator located at bus 4 
for achieving feasible grid operation. The set points of the remaining 
smaller generators can be chosen freely and no additional measurement 
devices are required. 

In scenario (b) we reduce the droop of the generator at bus 4 to 4 
MW/Hz. This makes the measurement of the power injections at buses 1 
and 2 necessary. Although the power injections at buses 1 and 2 can be 
chosen arbitrarily, they must be monitored so that the power produced 
by the generator located at bus 4 can be set appropriately to balance the 
system within the given frequency tolerance. 

In scenarios (a) and (b), where =M I, the solutions of the MILP 
were feasible (and optimal) without further adaptation of and and 

Fig. 2. Minimal sets of and for a simple microgrid. The gray squares represent potential controller/measurement locations. The selected controllers and 
measurements are highlighted in red and green, respectively. Scenarios (a) and (b) have =M I, whereas line flows and frequency deviation can also be measured in 
(c) and (d). For each scenario, the resulting (non-unique) affine-linear control realization is provided below together with the behavior of the potentially active 
constraints for all xf f on the right. For scenario (c) with multiple, equivalent optimal solutions, the colored frames denote alternative optimal solutions. The 
rationale behind the scenarios is as follows: In (b) the primary control droop is reduced compared to (a). In (c) we allow for additional measurements. In (d) we 
reduce the transfer capacity of the middle link to form an additional active constraint. 
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the greedy approach, starting from empty sets and , produced the 
same results. 

In scenario (c) the measurement of the line flows and the grid fre-
quency is added to the set of potential measurements, when performing 
the greedy optimization. This allows to reduce the number of mea-
surements to only one. For this scenario the solution is not unique: one 
possibility is to take the measurement of the frequency deviation as 
controller input, yielding an adapted primary control scheme. An al-
ternative solution that is shown in the figure is to monitor the sum of 
the outputs of generators 1 and 2 by measuring the line flow between 
bus 2 and 3 for controlling the set point of the generator at bus 4. This 
situation will be very common in future active distribution grids, where 
individual small scale loads or generators are not able to violate local 
grid constraints, but their aggregated effect is important to the system. 
Since the load is fixed, measuring the line between buses 3 and 4 would 
be equally informative. The feasibility of all these solution candidates 
was verified via LP (16), obtaining valid affine-linear control realiza-
tions in all cases. 

In scenario (d), we constrain the capacity of the transmission line 
connecting buses 2 and 3 to the interval [ 1, 1] MW. This represents an 
active grid constraint if the generators at buses 1 and 2 produce at 
maximum power. The solution obtained via hill climbing optimization 
consists of additionally controlling the power injection at bus 1. Again, 
several alternative solutions are possible. 

In scenarios (a), (b), and (c), the frequency deviation represents an 
active constraint to the operation of the system. Observe in Fig. 2 how 
in each case the resulting affine-linear control law keeps the frequency 
deviation inside the feasible region for all values of the non-controlled 
injections. In scenario (d), the designed controller also ensures feasible 
system operation despite the limited power capacity of the middle line. 

While for the demonstrated example all solutions can readily be 
verified manually, it shows that the situation may become much more 
complex in larger grids. The topological location of generators and 
loads in the grid is important as well as their capacity and their 
neighborhood. An automated algorithm for selecting critical elements 
to control and/or measure is thus very beneficial for complex networks 
with distributed generation and transmission lines that are operated 
close to their technical limits. 

In scenarios (c) and (d) the use of the greedy approach is required to 
deal with M I. Using the MILP solution as an initial guess for or 
starting with empty sets led to the same optimal objective function 
value. The solutions for and did not always agree exactly, but 
could be shown to be equally optimal. 

The total solver time for all scenarios is shown in Table 1. As ex-
pected, the MILP optimization performs faster than the hill climbing 
optimization for the same instances. When computing the optimal sets 
for scenarios (a) and (b), the MILP algorithm was more than 2 times 
faster than the hill climbing with empty sets. It was also 1.2 times faster 
than the hill climbing that uses the MILP solution for as initial guess, 
which corroborates the benefits of such concatenated optimization 
procedure. 

5.2. IEEE 118 Bus test case 

We now analyze the modified version of the IEEE 118 bus test case, 

see Fig. 3. This power system is composed of 54 generators, 99 loads, 
and 186 transmission lines. The topology of the power system, the load 
values and the line and generator capacities were taken from [15]. We 
assume that each generator can be scheduled in the range of 10%-90% 
of its available capacity. In addition, we admit 10% of uncertainty for 
each load in both directions. The maximum allowed frequency devia-
tion is taken as   ±  0.2 Hz. 

We first consider the case when only the power set points may be 
measured, i.e., =M I, see Fig. 3a. We obtain an optimal set of 12 
controller and 20 measurement devices to guarantee feasible grid op-
eration. The remaining 96 injections can be left operating free and/or 
be manipulated deliberately and do not require any monitoring 
equipment. 

To obtain this result, we first use the MILP algorithm and then va-
lidate its solution via LP (16). The obtained η is smaller than zero, 
thereby proving the feasibility and optimality of the MILP solution. 

Table 1 
Total solver time, in milliseconds, for the proposed optimization algorithms 
applied to the simple microgrid.      

Scenario MILP HC (empty sets) HC ( from MILP)  

(a) 77 160 100 
(b) 78 233 135 
(c) – 277 171 
(d) – 330 176 

Fig. 3. Minimal sets of controllers and measurements for the modified IEEE 118 
bus test case. The selected controllers and measurements are highlighted in red 
and green, respectively. (a) Only the nodal power set points may be measured. 
In this scenario, only 12 controllers and 20 sensors are required to guarantee 
feasible grid operation. (b) The measurement of line power flows and grid 
frequency deviation are additionally considered as possible. In this case only 3 
sensors are required. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 

E. Mora and F. Steinke   Electric Power Systems Research 190 (2021) 106647

6



When we initialize the greedy search with empty sets, we obtain a 
feasible solution consisting of 23 controllers and 9 measurements. As 
expected, the obtained solution in this case is larger than the one pro-
vided via MILP optimization. This confirms that taking the MILP solu-
tion as initial guess is beneficial for the greedy search. 

We now add the measurements of the line flows and the frequency 
deviation into the set of potential measurements, see Fig. 3b. This yields 
in total 305 possible sensor devices. We first apply the MILP algorithm 
and then the greedy one, starting with the controllers identified via the 
MILP. As expected, the solution is much sparser than before. The total 
number of required sensors is reduced from 20 to 3. The selected line 
flows confer a large amount of information that help avoiding grid 
capacity violations. 

It is insightful to observe the progress of the hill climbing procedure: 
buses with major generators connected are selected as controlled nodes 
first. The procedure is thus initially reducing the impact of the free 
variables on the system by controlling the highest uncertain injections 
first. When enough controlled nodes were selected, the selection of 
measurements starts to be significant for the minimization of the cost. 
Selected measurements are often related to nodes connected either to 
large non-controlled generators or to high uncertain loads. Remaining 
buses with smaller injections are mostly left unobserved. 

Table 2 shows the obtained solver time for all studied cases. The 
solution for case (a) using MILP optimization was found in about 2.57 
min. Observe that the solution for case (b) was computed in about 
28 min for the concatenated execution of both algorithms, compared to 
the ca. 154 min needed by the solver when starting hill climbing with 
empty sets. A single verification step using LP (16) took less than a 
second. 

The computation time could further be improved, e.g., by testing 
not all possible set extensions in each step of the greedy search but 
using only a representative subset, selected by proximity in the graph. 
Another idea would be to add more than one element in each iteration. 
For the control design task described in this paper, however, the 
achieved computation time seemed acceptable even without these ex-
tensions. 

6. Outlook 

The theoretic framework and the algorithms developed in this work 
allow for the efficient identification of critical controllers and mea-
surements in complex power systems with uncertain producers and 

consumers. Unlike previous work, we take specific power limitations of 
lines, generators, and loads into account. This step strongly improves 
the applicability in practice, where our approach will help reducing 
control costs and efforts and increasing power systems’ resilience. 

While we have only considered active power in this work, the ap-
proach can straightforwardly be applied to linearized power flow 
models taking into account also reactive power and voltages. 
Developing a MILP formulation for condition C2 is also possible, but our 
experiments so far have not yielded satisfying run times. 
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