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This paper is focused on the day-ahead prediction of the onshore wind generation. This information is indeed
published each day, ahead of the market clearing, by European Transmission System Operators (TSOs) to help
market actors in their scheduling strategy. In that regard, our first objective is to improve the forecast perfor-
mance by efficiently capturing the complex temporal dynamics of the wind power using recurrent neural net-
works. Practically, advanced architectures of Long Short Term Memory (LSTM) networks are implemented and
compared. Secondly, in order to continuously refine the prediction tool, different techniques for recalibrating the
model during its practical utilization are analyzed. This procedure consists in adjusting the parameters of the
neural networks by taking advantage of the new information revealed over time, without the (time-consuming)
need to retrain the model from scratch using the whole available dataset. Finally, the financial savings from the
improvement of the forecast accuracy are estimated. Outcomes from the Belgian case study show that an optimal
model recalibration can significantly improve forecast reliability, thereby decreasing the balancing costs of the

system.

1. Introduction

The liberalization of the electricity sector has introduced new pre-
rogatives for Transmission System Operators (TSOs), among which the
task of facilitating the access to the market for all actors. In that regard,
TSOs must provide various information to market participants such as
the anticipated wind generation. With the increased contribution of
such weather-dependent (and thus, uncertain and intermittent) re-
newable generation, this forecasting task has recently become essential
for ensuring a reliable and cost-effective system operation.

Researchers have thus studied a variety of techniques for wind
prediction. Firstly, statistical approaches based on the inference (from
observed data) of basic statistics such as the mean, variance and au-
tocorrelation have emerged [1], [2]. However, the underlying as-
sumptions often involve that such forecasters rely on simple linear
models which are not able to capture the nonlinear characteristics (such
as the different ramp rates) of the wind. In parallel, physical models
were also developed, but they necessitate a complex mathematical
description of the environment, which is computationally intensive,
and often based on arbitrary simplifying assumptions [3]. Such models
are thus often employed for longer term forecasts. To address these
issues, machine learning approaches have recently been tested by the
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prediction community, and have progressively exhibited better per-
formances than classical methods [4-7]. This trend is mainly driven by
the ability of such techniques to accurately capture and represent
hidden characteristics of complex variables, without the need to arbi-
trarily define the model complexity. It should however be noted that
outputs of physics-based forecasts can be treated as inputs of purely
data-driven approaches in order to enrich their input feature space with
physical considerations. In addition, the flexible nature of data-driven
tools, mainly neural networks, allows to adapt their architecture to the
characteristics of the forecasting problem, thereby improving their ac-
curacy. This property has led to the advent of recurrent neural networks
(RNNs), deep learning structures that are able to build an internal re-
presentation of past events, thus propagating relevant information
through time. Their success has been fostered by the Long Short Term
Memory (LSTM) architecture, which has shown a high potential in
processing time series such as wind power [8]-[9]. However, different
LSTM-based networks can be developed, depending on how the data are
fed into the model. Our objective is thus to implement the most relevant
networks, and to compare their accuracy on a fair benchmark.

In parallel, one of the main challenges that still needs to be properly
studied relates to the recalibration of the models. Indeed, once the
forecaster is trained (using historical observations), it is then used for

Received 1 October 2019; Received in revised form 3 March 2020; Accepted 1 August 2020

Available online 05 August 2020
0378-7796/ © 2020 Elsevier B.V. All rights reserved.


http://www.sciencedirect.com/science/journal/03787796
https://www.elsevier.com/locate/epsr
https://doi.org/10.1016/j.epsr.2020.106639
https://doi.org/10.1016/j.epsr.2020.106639
https://doi.org/10.1016/j.epsr.2020.106639
http://crossmark.crossref.org/dialog/?doi=10.1016/j.epsr.2020.106639&domain=pdf

J.-F. Toubeau, et al.

actual field operation (on new data). But, at that stage, the literature is
very sparse on how the model should be updated with the new in-
formation that is revealed at each time step. In [10], the models are re-
trained from scratch (using all the historical database) on a daily basis,
but at the expense of a continuous utilization of large computational
resources. In this work, we aim at improving this naéve approach by
retraining the existing forecaster at optimal time intervals (e.g. every
day, week, season, etc.) with a sliding window that includes the re-
levant set of past observations. This interest is strongly driven by long-
term weather forecasting tools, which have demonstrated the interest of
such recalibration strategies by periodically retraining their models
using only the most recent years of data [11].

Practically, we want to quantify to which extent it may be beneficial
to locally increase the variance of the model (by dynamically over-fit-
ting to recent conditions) rather than to rely on a single static model
that performs well in average along the year but that is suboptimal for
each of its constituting sub-periods. The underlying objective is to
regularly adapt/rescale the model to any changes in long-term trends,
or to the time-varying predictability (since some time periods may be
intrinsically less variable than others). It should be noted that an al-
ternative approach to alleviate such issues consists in combining fore-
casts from multiple models simultaneously (e.g. through ensemble
learning) [12-15]. Overall, the three main contributions of the work
can be summarized as follows.

Firstly, we exploit the flexible nature of neural networks by im-
plementing three different recurrent architectures, based on Long Short
Term Memory (LSTM) cells [16]. The objective is to predict (at 11:00
a.m. in day-ahead) the expected wind generation for the 24 hours of the
next day. The three models, i.e. (i) the encoder, (ii) the decoder, and
(iii) the bidirectional decoder differ in the way they capture space-time
dependencies, which affects their predictive capabilities. In that regard,
their accuracy is not only compared to state-of-the-art techniques (such
as gradient boosting where new models are created to correct the errors
of prior models and then added together to make the desired predic-
tion), but also with the predictions performed and published by the
TSO.

Secondly, the development of a recalibration procedure is proposed.
This process allows to adjust the parameters of the neural networks by
taking advantage of the new information continuously revealed over
time (during the actual daily utilization of the forecaster), without the
time-consuming need to retrain the model over all the historical data
set.

Thirdly, the financial impact of prediction errors (on both the TSO
and wind producers) is estimated. This allows to evaluate the financial
gain of improving forecasting models, in particular by relying on effi-
cient recalibration strategies, due to the saving of balancing costs
(which are needed to compensate the wind imbalances).

The paper is organized as follows. In Section II, we develop different
LSTM architectures to capture the dynamical behavior of wind gen-
eration, and we discuss several strategies for recalibrating the model
over time. Section III focuses on the prediction accuracy of the models,
which are compared with outcomes from TSO and state-of-the-art
methods. The best model is then optimally recalibrated over time,
which allows improving the prediction quality. Section IV finally
evaluates the costs incurred by prediction errors, using actual market
data. Finally, in Section V, conclusions are exposed.

2. Methodology

This section is divided into two parts. Firstly, different LSTM-based
architectures of recurrent neural networks are presented (Section II-A).
Secondly, the methodology to identify the best recalibration policy is
discussed (Section II-B).
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Fig. 1. General representation of recurrent neural networks (RNN) with cyclical
connections that act as a dynamical memory (a), i.e. the network is unrolled
though time to seamlessly represent time dependencies (b).

2.1. Development of LSTM-based forecasting tools

This work focuses on neural networks, which are flexible tools
(theoretically able to learn any complex nonlinear functions) that
combine multiple advantages. In that respect, the complexity of the
model can be tailored to the complexity of the task (thereby avoiding
both under- and over-fitting issues), and the architecture can be
adapted to the specificities of the problem [17]. Given that wind gen-
eration is an inherently dynamic process, we consider recurrent net-
works (Fig. 1), which are purposely designed to process temporal de-
pendencies.

The general principle of recurrent neural networks (RNN) is to
generate the prediction y, based on the input information x,, for each
time step t € T of the prediction horizon of interest. Based on historical
data, the RNN is trained to minimize the error between its output y, and
the actual observation d..

The RNN is made up of different stacked layers, each one composed
of multiple neurons, which overall define the model complexity. The
recurrent architecture, which is llustrated in Fig. 1, is also characterized
by cyclical links, connecting the state of the neurons among consecutive
time steps t, thereby propagating information through time.

In recent years, RNN applications have been very successful for a
variety of problems such as speech recognition or language modeling
and translation [18]. However, RNNs are known to struggle in cap-
turing long-term dependencies, such that relevant information arising
from longer term periodicities (such as seasonal effects) can be lost. To
address this issue, LSTM neurons were developed, and rely on gating
units that regulate the flow of information that is propagated through
time. The principle of LSTM cells is depicted in Fig. 2.

In Fig. 2, we observe that the LSTM cell ¢ at layer [ at time step t is
fed by three different contributions, i.e. hi™! the output vector (of all
LSTM cells) of the layer below at the same time, h!_, the output vector
(of all LSTM cells) of the same layer at the previous time step, and C!,_,
the state of the cell c at the previous time step (which acts as a dyna-
mical memory). Overall, the LSTM neuron is composed of 3 gated units

Outputs
e
:C([;,L: :hl

| [

I
c,l,:

Fig. 2. Single-cell LSTM memory block c (pertaining to layer [ at time t).
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(input, output and forget gates) and the LSTM layer [ is thus char-
acterized by the following composite function:

fl=c(W;hi"! + Wy hl_, + by) 'e))
i = o(W hi™' + W hi_, + b) @
Cl = floCl_, + i,0tanh(W;h!™' + Wh!_, + b,) 3)
o; = (W, hi™' + W, hi_, + by) )
h! = 0,0 tanh(C}) (®)

where the operator - denotes the element-wise product, o is the logistic
sigmoid function, and i, f; and o, are the activation vectors of the input,
forget and output gates respectively, whereas C, stands for the cell
activation vector. The weight matrices W, (i.e. links between LSTM
neurons) and the bias vectors b. are the parameters of the network that
need to be optimized during the learning procedure.

In this work, three different LSTM-based architectures, which differ
by the way they process temporal information, are developed and
compared, i.e. (i) the encoder, (ii) the decoder, and (iii) the bidirec-
tional decoder.

The encoder, which is shown in Fig. 3, is a topology that sequen-
tially process the past information x_;.o, and that generate the predic-
tions yo. r at the end of the k + 1 steps of the sequence. The issue
consists thus in feeding the tool with the available (known or estimated)
information about the future x;. 1. Such information typically comes
from numerical weather forecasts, which provide estimation on future
temperatures, cloud covers or wind characteristics. It is thus essential to
include these features as input data for the prediction model. In the
encoder, it is done by providing those data at the last time step of the
input sequence, which may not be optimal.

Another option for incorporating the temporal information is to rely
on a decoder, which generates a prediction at each time step of the
horizon. This design, which is represented in Fig. 4, is traditionally used
for on-line tasks (such as sequence generation), and is thus not well
suited to take advantage of past information. Indeed, these data need to
be incorporated at the first time step of the decoder (i.e. into x,), which
may thus struggle to properly extract the relevant information from
both short- and long-range past features.

To improve on the decoder architecture, a third topology, i.e. the
bidirectional decoder, is investigated. This design aims at optimally
exploiting (at each time step) the complete contextual information. For
the prediction at time t, the network is not only fed by the past in-
formation (by exploiting the traditional recurrent connections) but also
by the available future data (such as the estimation of weather variables
at next time steps). The underlying idea is that the available informa-
tion at time ¢ + j with j > 0 (e.g. through weather forecasts) can help
explaining what will happen at time t. As we can see in Fig. 5, the
bidirectional decoder is composed of two separate hidden layers, both
of which connected to the same output layer (providing the predictions
of interest). The resulting topology treats (simultaneously) the input
sequence forwards and backwards, thereby leveraging all surrounding

context in the input sequence.
Yo.T

73<

RN - - - KRND-XRND- KRN

] - 2] ] o]

Fig. 3. General representation of the encoder architecture, where the available
future information x;. r is fully provided in xo.
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Fig. 4. General representation of the decoder architecture, where the past in-
formation x_y., is fully provided in xo.

Backward layer

@
Forward layer (RNND

Fig. 5. General representation of the bidirectional decoder.

2.2. Recalibration strategy

In general, prediction errors arises from (i) incomplete or noisy
explanatory variables (e.g. due to the chaotic nature of weather con-
ditions), and (ii) model inaccuracies (commonly referred to as func-
tional form misspecifications). Here, we ensure that all models rely on
the same information (using all available inputs), and we try to de-
termine the best parameters for each individual model (to minimize its
misspecifications).

However, when the same prediction model is used each day (with
the same fixed parameters each time), two problems inevitably arise.
Firstly, the model does not take advantage of the new information that
continuously becomes available over time (and that can be used to
improve the accuracy of the data-driven model). Secondly, the model
may be good in average, but not optimal for each sub-period of the
year. To address both these issues, a recalibration of the model is in-
vestigated, where the model can be slightly over-fitted to most recent
data (e.g. the inner dynamics of the model will differ between winter
and summer months).

As represented in Fig. 6, when identifying the best recalibration
strategy, two questions need to be answered :

e what is the frequency at which the model needs to be recalibrated,
i.e. the optimal number of days p between two recalibrations ?

e what is the size of the sliding window, i.e. the number of days r
whose information is exploited to adjust the parameters of the
forecaster ?

To determine the best values of r and p, a design of experiments is
carried out, and the outcomes are fully discussed in Section 3.3. In
particular, we show that too frequently rescaling the model is irrelevant
and counter-productive. In that regard, for identifying the extent to

»
model i — 1 is updated Tesrt time
Y
Calibration i | r days modeli |
pdays |
Calibration i + 1 [ r days [ modeli+1 |
p days

Fig. 6. Recalibration strategy: the model i — 1 is updated with the information
from the r previous days to obtain model i, which is then used for the actual
day-ahead predictions for each of the next p days. Then, the model i is updated
using data from the r past days (to obtain model i + 1), and the same procedure
is carried out over time.
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which the model needs to be modified, three strategies are investigated.
Firstly, an ideal (non-realistic) benchmark is considered, which yields
the best outcome that can be expected from the recalibration. To that
end, the model is trained on the r past days, but the p days to predict are
used as validation set. In reality, these days cannot be used as validation
(since they are not yet realized). By doing so, we ensure that the model
is recalibrated in such way that it will provide the best outcomes for the
days to predict. A second method selects the validation set in a classical
way (using 10% of the historical information), so that the model is
trained on the remaining 90% data, until convergence is achieved on
the validation set. The third model is trained with a fixed number of
epochs (i.e. we impose the number of iterations of the gradient descent
algorithm through the training sequence of r days), so that no data are
discarded for the validation set.

3. Case study

In this work, we focus on the deterministic prediction of the Belgian
onshore wind generation. Our results can thus be compared with those
of the system operator (i.e. Elia), which publishes each day (at 11.00
a.m., 1 hour before the closure of the day-ahead market) its hourly
forecasts in order to promote a more competitive and transparent
market. Indeed, a better prediction will result in better information for
market players, hence increasing the reliability of their bidding policy.
To compare models on a fair basis, our predictions are also carried out
at 11.00 a.m. for the 24 hours of the following day. Thus, the prediction
horizon of interest ranges from m = 13 to 37 hours into the future. The
prediction tool used by the TSO is not disclosed for confidentiality
reasons.

3.1. Data pre-processing

The available dataset includes the onshore wind power (aggregated
at the Belgian level) for four years, starting from 2014 to the end of
2017. These four years are separated into a training, a validation and a
test set. The training set starts on January 1, 2014, and ends on
September 30, 2016, the validation set is composed of the next three
months, and the year 2017 is used as test set.

The prediction tools are fed by input (explanatory) variables of
different types. Firstly, we use weather data (such as temperature, cloud
cover, etc.) that are expected for each hours of the next day. This in-
formation typically comes from advanced meteorological models. For
this work, we had only access to the data from a single station (located
at the center of the country). It is worth noting that the performance of
the models could be increased by leveraging space-time information
[19]-[20]. Secondly, the last measured values (typically the previous 6
to 48 hours) of wind generation are highly important to capture the
dynamics of the variable, and are thus provided to the models. In
particular, different time intervals are compared (during the inputs and
hyperparameters selection at the end of which the best model is se-
lected). Thirdly, temporal information (hours of the day, day of the
week and month of the year) is also used to better capture multi-scale
time characteristics [21]. Finally, the installed capacity of wind gen-
eration is also used as input (to capture the increase in the wind power
capacity). As a reminder, all models used in the paper are trained using
the same available information, and the differences between their in-
dividual performance is thereby only driven by their intrinsic ability to
capture the complexity of the forecasting task.

Before training the model, it is necessary to standardize the data for
two main reasons. First, different variables are typically associated with
different ranges, e.g. the scale of temperature values (in °C) is naturally
lower than the historical wind generation (in MW) by several orders of
magnitude. However, it does not mean that the latter variable is that
much more important than the first one. Such differences will lead to
more difficulty in correctly adjusting the weights of the neural network,
resulting in poor outcomes and longer simulation times. Secondly, the

Electric Power Systems Research 190 (2021) 106639

range of variables must be adapted to the activation function of the
LSTM. For instance, the hyperbolic tangent in (3) and (5) reaches sa-
turation when the input is higher than 2. Feeding the network with
higher values thereby wipes off the processing power of the network.
The scaled variables X.qeq € [0, 1] are computed as:

X - Xmin

X. =
S K e = Xonin 6)

where X, and X,,q are the minimum and maximum values of the
database for each variable X.

3.2. Comparison with state-of-art approaches

In this part, we calculate the prediction accuracy (over the test year
2017) for the three developed LSTM-based architectures, the encoder
(Enc.), decoder (Dec.) and bidirectional decoder (B.Dec.). The models
are trained using the “Adam” optimization algorithm [22]. These
models are compared to the predictions published by the Belgian TSO,
as well as to other classical methods, i.e.:

e Multi-Layer Perceptron (MLP) [23], the basic architecture of feed-
forward neural networks, containing neurons with rectifier linear
units (ReLUs) as activation function.

e eXtreme Gradient Boosting (XGBoost), a (multi-stage) ensemble
method in which new models are sequentially created to forecast the
residuals of the global model obtained at the previous stage. At each
stage, models are trained (updated) together (using a gradient des-
cent algorithm) to make the final prediction [24].

In practice, Python 3.6.0 and the Keras library (with the TensorFlow
backend) have been used for implementing neural networks, whereas
the scikit-learn library has been employed for XGBoost. The complexity
of each technique is optimized within an (hyperparameters optimiza-
tion) procedure that compares the performance of a large number of
different architectural variations of the model. This procedure is time-
consuming since it takes around 1 minute to train MLP models and 5
minutes for LSTM-based networks. The resulting optimal models can
then be used for predicting the wind power, which takes less than 1
second.

The results are represented in Table 1. The root mean square error
(RMSE) is used as error metric :

=
RMSE = \/Z thl O — dy)? -
with n = 8760 the number of predicted values (i.e. hourly data over the
2017 test set), y, the output of the prediction model and d, the actual
measured value.

Interestingly, the bidirectional decoder (B.Dec) outperforms other
LSTM-based tools, which can be explained by its tailored architecture
that empowers traditional RNN by better capturing temporal de-
pendencies. Overall, all recurrent models are more accurate than clas-
sical methods (MLP and XGBoost). The optimal complexity of the bi-
directional network is given by a single hidden layer with 32 LSTM
neurons in its two constitutive forward and backward layers (Fig. 5).
Moreover, the best results were obtained by feeding the models with 2
days of historical wind generation.

Overall, those results are very promising since they are closely
challenging the performances of the TSO, which has potentially access
to more input features (such as several meteorological stations in

Table 1

Comparison of LSTM-based models with other methodologies
Methodology MLP XGBoost Enc. Dec. B.Dec. TSO
RMSE (MW) 128 140 127 125 115 111
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Table 2
Performance of different recalibration strategies for the ideal benchmark.
RMSE (MW) r
1 day 7 days 30 days 90 days
p 1 day 102.76 102.06 101.64 104.22
7 days X 101.96 100.3 102.91
30 days X X 101.95 102.94
90 days X X X 105.5

Belgium). Indeed, our best model (i.e. bidirectional decoder B.Dec.) has
an error of 115 MW while the TSO has an error of 111 MW (over the
year 2017). In the next Section III-C, we will investigate (for the B.Dec.)
whether adjusting the model at regular intervals throughout the test
year can improve the prediction accuracy.

3.3. Performance of the recalibration

Firstly, we define the ideal benchmark for the (B.Dec) model cali-
bration. The results are shown in Table 2, where the calibration is
performed in different conditions, i.e. for a calibration performed every
p days, using the information from a number r of past days.

From Table 2, we see that recalibrating the initial model (RMSE of
115 MW) in an optimal fashion can significantly improve its accuracy
(to reach a RMSE of 100 MW, i.e. improvement of 13%), thereby sur-
passing the performance of the TSO model. Outcomes show that the
ideal frequency for recalibrating the bidirectional decoder is p = 7
days, with an historical database composed of the past r = 30 days.
These parameters will thus be used in the rest of the paper (for other
recalibration methods). The value of these parameters can be explained
by the nature of the learning procedure. Indeed, training the model on a
lower number of days (or, on a more extreme fashion, after every hour)
results in over-fitting the recalibrated model to these new observations
(thereby loosing the generalization capabilities of the prediction tool).
On the other hand, when the model is too rarely updated, we do not
take advantage of the beneficial effect of slightly adapting the model
parameters to the current conditions.

As a reminder, the stopping criterion of the ideal benchmark is
triggered by the performance on the days to predict, allowing the model
to perfectly over-fit on these days. It thereby yields an upper bound of
the gain that can be expected by the recalibration. In actual field op-
eration, these outcomes cannot be achieved. Different practical
methods are thus studied to try reaching comparable performances.

In that regard, the most straightforward strategy consists in relying
on a conventional validation set (in a similar fashion as the one used to
train the original model). This allows to dynamically regularize the
model, by avoiding that the parameters are overly adapted to the
training data. Unfortunately, this validation set decreases the amount of
data that can be used during the training phase. Here, we choose a
validation test containing 10% of the dataset. As a preliminary study,
we assess the impact of the position of the validation set within the
historical database. Practically, four cases are studied : (i) the validation
set is chosen at the beginning of the dataset (older data), (ii) in the
middle, (iii) at the end (more recent data), and (iv) randomly within the
whole training sequence. However, this sensitivity analysis shows that
modifying the position of the validation set does not influence the ac-
curacy of the prediction (with a difference of at most 0.1 MW).

Another approach for calibrating the model is to bypass the use of a
validation set (that decreases the number of data for updating the
model) by considering a fixed number of epochs (i.e. number of itera-
tions of the gradient descent algorithm). Finding the optimal number of
epochs is a challenging task since smaller values do not allow to fully
exploit the new revealed information, while large values result in over-
fitting issues. In both cases, we do not learn optimally. Fig. 7 shows the
prediction error for different number of epochs. A number between 100
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Fig. 7. Evolution of the error regarding the number of epochs.

and 500 epochs is relatively stable and introduce a RMSE close to 102
MW (i.e. improvement of 11%), which is very close to the ideal
benchmark. Evidently, it should be kept in mind that retraining the
model on a higher number of epochs will inevitably increase the si-
mulation time.

Finally, these methods are compared with a more simple (but time-
consuming) methodology where the model is retrained from scratch
every p = 7 days.

Monthly errors from all recalibrated models are summarized in
Fig. 8, where we observe that the ideal (non realistic) way for recali-
brating the model systematically improves the results (for all months of
the year). Then, we see that using a fixed number of epochs (i.e. 250 in
accordance with Fig. 7) seems to be the best strategy (outperforming all
other approaches), and leads to results close to the ideal benchmark. In
this way, retraining from scratch is less efficient than our proposed
recalibration method (that slightly over-fit to recent conditions). In-
terestingly, after recalibration, our optimal model (Epoch fixed) shows
higher accuracy than the model of the TSO.

In general, we can also note than the prediction error (quantified
through the RMSE) is slightly lower during summer months. However,
the winter period is the more critical in terms of generation adequacy,
and it is thus important to have reliable information during that time. In
that regard, it is interesting to notice that our models are significantly
better than the tool of the TSO for these important months.

4. Financial costs arising from forecast errors

In this part, we evaluate the costs that can be saved by recalibrating
the wind generation forecaster. Indeed, in case of real-time imbalance,
the TSO restores the system frequency by relying on (costly) operating
reserves. Both downward and upward reserves are needed to respec-
tively compensate excesses and shortages of wind power [25].

The costs associated with this balancing mechanism result from two
contributions, (i) the capacity allowance (€ /MW/h) that remunerates
the procurement of power margins (that can be activated by the TSO in
case of need), and (ii) the actual deployment of the requested energy (€
/MWh). However, these costs are supported by different actors. The
TSO is responsible to size and build the reserve capacity, and the re-
sulting costs (i) are transferred to the electricity bill of end-users [26].
The reserve activation costs (ii), on the other hand, are supported by
market actors who are responsible for creating the imbalance [27]. In
this way, by enhancing the forecast reliability, we decrease the (costly)
reserve capacity to be contracted by the TSO, while decreasing the
penalties incurred to wind producers, thus boosting their profitability.

In this work, we assume that the real-time system imbalance ori-
ginates only from the wind forecast error (i.e. the dispatch of other
resources strictly follows their committed day-ahead schedule, and the
failures of network components are neglected). In accordance with the
current European legislation, i.e. the System Operation Guidelines, we
consider that the TSO defines the minimum reserve capacity (required
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3 Validation set
:1 Epoch fixed
Training from scratch

June July Sept Nov Dec

Fig. 8. Comparison of the monthly evolution of each recalibration model.

its subsequent recalibrations) lead to heavy-tailed distributions of pre-
diction errors in which extreme inaccuracies are more frequently en-
countered. In that regard, even though our models are more effective in
general, they necessitate to rely on higher balancing needs to cover 99%
of the imbalances. However, we observe that recalibrating the static
model decrease these costs by 3.26 M€ (see last colum of Table 3), i.e. a
reduction of 6.3%, which stresses again the added value of this re-
training phase. From these observations, an interesting perspective is to

o
g -
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3 4 3 Ideal benchmark
g
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o
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Fig. 9. Representation of the method for sizing the reserve capacity.

to maintain the balance in the control zone) with the goal of covering
the imbalances for at least 99% of the time, taking into account historic
imbalance observations [26]. Hence, based on wind forecast errors
computed at each of the 8760 hourly time step of the year 2017, we
infer the resulting need of upward R* and downward R~ reserve ca-
pacity (as depicted in Fig. 9). Once the sizing is determined, we con-
sider the average annual price (from the Belgian market) of 10 € /MWh,
such that the annual costs C, (in €) can be simply computed according
to (R* + [R7)*10*8760.

In Fig. 9, the prediction error ¢, is defined as the difference between
the prediction y, and the actual value d;:

g=y —d ®

A positive error corresponds thus to overestimating the wind pro-
duction (such that upward reserves Rt are needed), while a negative
error underestimates the generation (resulting in the activation of
downward reserves R™). Table 3 provides the results of the different
forecasting models, i.e. the TSO model (TSO), the static bidirectional
decoder (Static), and its recalibrated version with a validation set
(Val.), from scratch (Scratch), and with a fixed number of epochs
(Epoch). Specifically, we represent the need of upward R* and down-
ward R~ reserve capacity, and their associated costs C;t and C; . The
total system costs are thus C, = C;f + C;.

We see that prediction errors can strongly differ between tools. For
instance, the TSO tends to underestimate the wind generation, leading
to high costs C,” for downward capacity. For most of our models, the
prediction errors tend to be symmetrical (around zero), which is logical
since positive and negative errors are equally penalized in the learning
procedure. However, we also observe that our LSTM-based model (and

Table 3
Annual balancing costs associated with each methodology.
RY[MW] R™[MW] CIME 1 Gy [ME ] C/[M€ ]

TSO 153.35 -374.57 13.43 32.81 46.24
Static 265.49 -318.72 23.26 27.92 51.18
Val. 326.16 -262.84 28.57 23.02 51.83
Scratch 283.81 -299.18 24.86 26.21 51.07
Epoch 291.88 -255.11 25.57 22.35 47.92

modify the model training to further penalize large errors.

Then, the financial penalties incurred to wind producers are com-
puted. In general, these balancing costs increase with the severity of the
imbalance position, and vary with respect to the direction of the error.
In particular, the costs curves (Fig. 10) are constructed (and made
publicly available) in day-ahead by the TSO based on the market offers
of the service providers. There is thus no correlation between the im-
balance prices and the real-time conditions (arising, e.g., from forecast
errors).

Two cases can occur. On the one hand, if the wind producer gen-
erates less than expected (i.e. positive error ¢,), upward reserve will be
activated, and he will pay the resulting activation price (which is higher
than the price he has received in the energy market). This penalty cost
A is calculated by (9). On the other hand, if the generation exceeds the
forecasted value (i.e. negative error ¢,), the producer will sell the sur-
plus energy at the downward activation price (which is lower than the
price that he would have received in the energy market). The resulting
opportunity loss X is calculated by (10).

A= Z (/llres+ _ A[DA)'Ez(OnlyWheng, > 0)
t=1 (9)

X = Z (A[DA _ A[res_).|g[|(0nlywhen€z <0)
t=1 (10)

with /%% and 1/~ the upward and downward reserve prices, and 1,>*
the electricity price on the day-ahead market.

The financial shortfall over the year 2017 (for each prediction tool)
is computed using the actual price-quantity offers in the Belgian reserve
market [28], and the results are given in Table 4. We see that all re-
calibrated models reduce the shortfall of the static forecaster, up to a
factor 2 for the model relying on an optimal number of epochs. This

Downward & Upward
reserves L reserves
~
Energy
"""""""""""""""""" price
—>
Reserve quantity (MW)

Fig. 10. Merit-order activation of reserves.
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Table 4
Annual energy costs for winds producers.

A [ME€ ] X [ME€] Shortfall [M€ ]
TSO 5.78 66.54 72.32
Static 13.13 78.28 91.41
Val. 19.09 30.05 49.14
Scratch 14.6 57.42 72.02
Epoch 17.82 27.29 45.11

impressive gain is explained by the merit order effect (Fig. 10), in which
large deviations are more heavily penalized. Hence, even slight im-
provements can significantly reduce the balancing fees. In addition, we
also observe that opportunity losses A~ are much higher than penalty
costs A, which arises from the fact that the price spread between the
energy price AP* and the price for the generation surplus 1/% is
usually much higher than the difference between 124 and 1/%*. Wind
producers are thus incentivized to overestimate their future generation
(and thus to pay the moderate penalty 1,%") rather than to receive the
very low 4/~ when they generate more than expected.

We conclude that relying on an (optimally-calibrated) model allows
to save 3.3 M€ (for the reserve capacity) and 45 M€ (for the reserve
activation) compared to a static model.

5. Conclusion

This paper was devoted to the day-ahead prediction of the onshore
wind power generation. Firstly, we exploited the flexible nature of re-
current neural networks to implement different LSTM-based topologies,
which all provided accurate results in regards to other state-of-the-art
approaches. Secondly, we observed that recalibrating the model during
its actual utilization can strongly improve the accuracy of predictions.
In that regard, it appears that a recalibration with a fixed (optimally-
chosen) number of epochs is a very effective solution compared to the
traditional use of a validation set. Finally, we quantified the financial
impact of prediction errors on both the TSO and wind producers. It was
observed that, due to the structure of the balancing costs, even small
prediction improvements can lead to substantial costs savings [29].
Such results are expected to be further exacerbated if one consider
smarter operations of wind turbines [30]-[31], thereby paving the way
to further research in wind forecasting.
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