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A B S T R A C T

This paper contributes to the field of inverter modelling for large-scale simulations by introducing a novel
Model-Order Reduction (MOR) method based on singular perturbation. Motivated by the timescale separation
between the fast and slow dynamics in an inverter-based power system, the proposed nonlinear MOR concept
extends on the existing zero- and first-order reduction methods by combining the low computational burden of
the former approach with the higher accuracy of the latter one. As a result, such hybrid MOR technique preserves
the slow system dynamics of the full-order model, while simultaneously capturing the impact of the removed fast
states on slow variables. Moreover, we introduce several improvements to the existing first-order MOR in order
to make it tractable and more efficient when applied to a realistic full-order inverter model. The novel hybrid
approach is applied to both grid-forming and grid-following inverter control schemes, and compared against
existing reduction methods from the literature. The results showcase a better time-domain performance of the
hybrid method during transients, while having a negligible increase in computational requirements compared to
the traditional zero-order approach.

1. Introduction and motivation

With increasing shares of inverter-interfaced renewable energy re-
sources such as photovoltaics and variable-speed wind turbines, dy-
namic power system simulations are facing new challenges [1]. One of
these challenges consists of finding the appropriate amount of detail for
individual inverter models depending on the application. For microgrid
applications there exists a commonly used inverter model that captures
both the outer and inner cascaded control loops and has been used in
various studies in the literature [2–7]. Applications include stability
analyses [2–4], comparison of different active power control algorithms
[4–6], as well as the evaluation of dynamic interactions between in-
verters and synchronous machines [7]. Nonetheless, the existing model
is too complex for use in large-scale simulations due to the large
number of dynamic variables, which motivates employing Model Order
Reduction (MOR) methods to enhance scalability.

A commonly used MOR approach in power system modeling is
singular perturbation, which is based on timescale separation of fast
and slow dynamics and assumes that the fast states reach a quasi
steady-state instantaneously [8]. Several MOR methods based on sin-
gular perturbation have recently been proposed to simplify inverter
models [9–14]. The authors in Kodra et al. [9] employ direct truncation

and compare it against reduction models based on particle swarm op-
timization. However, they focus on reducing a simplified sixth-order
inverter model that initially does not encapsulate all of the underlying
control dynamics. Similarly, the inverter models used in Mariani et al.
[10] and [11] for stability assessment of a reduced-order islanded mi-
crogrid are too simplistic, with the former study ignoring the effect of
filter dynamics and the latter neglecting the fast inner loop controllers
essential for stable converter operation. This is improved in Ra-
sheduzzaman et al. [12], where a detailed 15th-order model is con-
sidered, both in the islanded and grid-connected mode, and subse-
quently reduced to an eighth-order model by neglecting the fast
dynamics of states associated with the voltage and current measure-
ments in the RLC filter and the filter state of the Phase-Locked Loop
(PLL). Interestingly, the dynamics of the traditionally “fast” inner
control loops are preserved in the reduced model due to unconventional
parametrization of the associated PI controllers which might not be
justified in real-world applications. While the computational benefits
and steady-state tracking of the proposed low-order model are vali-
dated, the fast transients are not captured. Moreover, all aforemen-
tioned studies deal with linearized inverter models limited to an oper-
ating region close to the equilibrium, which implies that the obtained
reduced-order models might not have a satisfactory performance during
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large disturbances.
In contrast, [13] and [14] focus on large-scale, nonlinear dynamic

models of low-inertia systems. The work in Luo and Dhople [13] applies
singular perturbation and Kron reduction to the model of a 100% in-
verter-based islanded microgrid with the aim of reducing its model
order in temporal and spatial aspects, respectively. Individual inverters
are reduced to a fifth-order model by eliminating the dynamical
equations for the voltage and current controllers through means of
singular perturbation. MOR is taken a step further in this study by also
proposing third- and first-order models in the context of different ap-
plications such as design and verification of secondary and tertiary-
level controllers, long-term performance and reliability evaluation, re-
spectively. However, the inverter model used in Luo and Dhople [13]
excludes the filter capacitors and the case studies are solely confined to
small-signal disturbances in the form of load resistance step changes
(corresponding to active power mismatch), and are therefore not re-
flective of transient capabilities of the given inverter models. On the
other hand, [14] proposes a reduced-order model of a low-inertia
system comprising power converters, synchronous generators and their
interactions with the power grid (i.e., network dynamics). Using argu-
ments from singular perturbation theory, the authors obtain a tractable
model for control design and subsequently use the insights gained to
bridge the gap between grid-level objectives and device-level control by
introducing an internal model and matching controller that exploits
structural similarities between power converters and synchronous
generators. In addition, they propose a nonlinear droop control that
stabilizes the power system. Nevertheless, the converter control scheme
does not include inner controllers and PLL dynamics, and it does not
study the accuracy of the reduced model during large disturbances.

Guided by a standard practice in singular perturbation, all previous
MOR strategies exploit small parameters to identify the fast and slow
states. More precisely, the states “to be removed” are determined based
on the time constants of their respective differential equations. Such
approach is meaningful when capturing slow system dynamics, as it
preserves stability properties of the original system within the reduced-
order model [15,16]. However, it discards the dynamics of the fast
states and therefore some potentially important phenomena during
transients, as indicated by the results in Rasheduzzaman et al. [12],
Cossart et al. [17]. Nevertheless, depending on the model application,
some relevant fast dynamics might be of interest (e.g., internal PLL
dynamics during active power transients) and should not be completely
neglected. This idea is partially addressed in Cossart et al. [17] where,
instead of employing small parameters, singular perturbation is per-
formed based on modal analysis and participation factors. Such ap-
proach investigates a timescale separation between different modes in
the system and identifies the states to be removed by their contribution
to the fast modes. The authors obtain several reduced-order inverter
control designs in nonlinear form and demonstrate that even the models
of very low order suffice when analyzing steady-state performance.
However, the time-domain responses reveal a significant loss in model
accuracy when subjected to a large disturbance, independent of the
model order.

Alternatively, the work in Vorobev et al. [18] takes into account
transmission line dynamics when performing singular perturbation of
an inverter-based microgrid, justified by the fact that the line and
simplified inverter dynamics are on similar timescales. The study even
suggests that the timescale separation is not large enough to apply the
standard singular perturbation method. Therefore, a new approach
called first-order singular perturbation is introduced and demonstrated on
a small test system. As opposed to neglecting the dynamics of fast
variables altogether, this method allows for a more accurate inclusion
of possible effects that the fast states could have on slow modes.
Nevertheless, the proposed approach relies on small parameters and
uses an oversimplified, linear, fifth-order inverter model as an initial
full-order benchmark. As a result, the authors propose a reduced third-
order model that could be of interest for the purposes of small-signal

analysis, but cannot track transients under large disturbances.
This paper continues the previous line of research and extends it by

proposing a novel hybrid method for singular perturbation-based MOR.
Specifically, the presented method combines the classical approach
used in Kodra et al. [9], Mariani et al. [10], Iyer et al. [11], Ra-
sheduzzaman et al. [12], Luo and Dhople [13], Curi et al. [14], Cossart
et al. [17] (called Zero-Order Singular Perturbation (ZOSP) hereinafter)
with the first-order approach of [18] in order to achieve a trade-off
between the transient performance and model complexity. Further-
more, we introduce two additional improvements to [18]. First, we
apply the First-Order Singular Perturbation (FOSP) method directly to the
detailed nonlinear model instead of a simplified linear model, resulting
in more accurate lower-order inverter representation; and second, we
use modal analysis (i.e., participation factors) instead of small para-
meters to determine the order of the dynamic variables to be removed.
However, unlike the approach in Cossart et al. [17], where the linear-
ization and modal analysis have been conducted only once on the level
of the full-order model, we repeat modal analysis in an iterative fashion
after the removal of each dynamic state. The proposed hybrid method
enables separation of the nonlinear model at hand into three timescales,
thereby increasing flexibility in the reduction process and achieving a
better trade-off between complexity and performance. Unlike the pre-
vious studies, we evaluate the effectiveness of our model-reduction
approach on both the grid-forming and grid-following converter control
schemes, due to the differences in system dynamics in the presence of a
PLL.

The rest of the paper is structured as follows. In Section 2, the
theoretical preliminaries of singular perturbation are introduced, to-
gether with the analytical formulation of both the zero- and first-order
approach in linear and nonlinear form respectively. Furthermore, the
mathematical concepts of the proposed hybrid singular perturbation
method are described, including the iterative participation factor ana-
lysis. The state-of-the-art converter control scheme and the timescale
separation pertaining to such control and low-pass filter design are
presented and discussed in Section 3. Subsequently, Section 4 show-
cases different model orders obtained via the hybrid approach and
compares them against the traditional zero-order-reduced models in
terms of time-domain and small-signal stability performance. Finally,
Section 5 draws the main conclusions and discusses the outlook of the
study.

2. Methodology and analytical formulation

2.1. Singular perturbation principles

For better understanding of the employed MOR method, we first
introduce basic theoretical preliminaries of singular perturbation
adopted from [16]. Let us consider a singular perturbation model of a
nonlinear, time-invariant system

= =x f x x u x t x˙ ( , , ), ( ) ,s s f s s0
0 (1a)

= =x g x x u x t xϵ ˙ ( , , ), ( ) ,f s f f f0
0

(1b)

where ∈x ,s
n ∈xf

m and ∈u r are the state vectors describing the
“slow” and “fast” states and the control input vector, respectively, and f
( · ) and g( · ) are assumed to be sufficiently many times continuously
differentiable functions of their arguments. The small positive scalar

∈ >ϵ 0 in (1b) multiplies the derivatives of the fast states - representing
the small parameters - to be neglected. Let ∈ +x x( , )s f

n m0 0 be the
equilibrium state of the nonlinear singularly perturbed system (1) and

∈u r0 be a constant control input such that

=f x x u( , , ) ,s f n
0 0 0 (2a)

=g x x u( , , ) ,s f m
0 0 0 (2b)

and linearize the system around x x u( , , ),s f
0 0 0 as follows:
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= + +x A x A x B uΔ ˙ Δ Δ Δ ,s ss s sf f s (3a)

= + +x A x A x B uϵΔ ˙ Δ Δ Δ .f fs s ff f f (3b)

Here, ∈ ×A ,ss
n n ∈ ×A ,sf

n m ∈ ×A ,fs
m n ∈ ×A ,ff

m m ∈ ×B ,s
n r

∈ ×Bf
m r is the respective state-space representation, and Δ denotes a

small deviation

= − = − = −x x x x x x u u uΔ , Δ , Δs s s f f f
0 0 0 (4)

about the equilibrium x x u( , , )s f
0 0 0 . Note that for column vectors ∈x n

and ∈y m we use T T T = ∈ +x y x y( , ) [ , ] n m to denote a stacked vector.
The analysis of two-timescale properties of model (3) can be done

by disregarding the control input ( =uΔ r) and introducing a set of
coordinates in which the system appears in a distinct block-triangular
form. In this so-called actuator form, the fast block defined by the state
vector

= +η x L xΔ (ϵ)Δf s (5)

“drives” the slow block with the original state vector xs [16,
Section 1.4]. This change of variables transforms (3) into an upper-
triangular form


⎡
⎣⎢

⎤
⎦⎥

= ⎡
⎣⎢

−
+

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

x
η

A A L A
A LA

x
η

Δ ˙
ϵ ˙ ϵ

Δ ,s ss sf sf

ff sf

s

(6)

provided that the matrix ∈ ×L (ϵ) m n satisfies the algebraic equation
(see [16, Section 2 (Lemma 2.1)])

− + − =A A L L A L A L(ϵ) ϵ (ϵ) ϵ (ϵ) (ϵ) .fs ff ss sf (7)

Separating the system (3) into two lower-order subsystems of dif-
ferent timescales allows us to infer the stability of the original system by
analyzing the lower-order systems separately, which is of great prac-
tical significance for control analysis and design. In particular, as-
suming that Aff exists and Aff and − −A A A A( )ss sf ff fs

1 are Hurwitz ma-
trices, we can approximate the xϵΔ ˙ f term in (3b) using a Taylor
representation and reduce the order of the system. The remainder of
this section discusses several such approximations.

2.2. Zero-order singular perturbation

The idea of ZOSP is to completely disregard the fast state dynamics,
justified by the fact that they are occurring on a much shorter timescale
compared to the slow dynamics. In other words, the changes in the fast
variables can be seen as instantaneous from the perspective of slow
variables. The two-timescale linear system (3) can thus be rewritten as

= + +x A x A x B uΔ ˙ Δ Δ Δ ,s ss s sf f s (8a)

≈ = + +x A x A x B u0 ΥΔ ˙ Δ Δ Δ ,m f fs s ff f f (8b)

with = …Υ diag(ϵ , , ϵ )m1 denoting a diagonal matrix comprised of small
parameters. Note that unlike the formulation in (3b), where first deri-
vatives of the fast states were multiplied by a common scalar ϵ, in (8b)
each state variable has its own scaling factor reflecting the character-
istic time constant of the respective differential equation.

The zero-order model reduction is performed by transforming dif-
ferential Eq. (8b) into algebraic ones. In order to bring the system to its
final (i.e., reduced) Ordinary Differential Equation (ODE) form, the
algebraic expressions are solved for their respective variables

= − −− −x A A x A B uΔ Δ Δ ,f ff fs s ff f
1 1

(9)

and subsequently substituted into (8a), which yields

= − + −− −x A A A A x B A A B uΔ ˙ ( )Δ ( )Δ .s ss sf ff fs s s sf ff f
1 1

(10)

In comparison to the initial system (8), the formulation in (10) re-
veals that the formerly fast states are no longer present in the reduced-
order model. Nevertheless, the relations between fast and slow states
act as algebraic constraints for the remaining differential states and are

represented by submatrices Asf, Aff and Afs of the initial state space. The
state matrix of the reduced-order model is therefore defined as

− −A A A A( ),ss sf ff fs
1 under the assumption that Aff is nonsingular.

The same ZOSP approach can also be applied directly to nonlinear
systems. Similar to the linear case, the two-timescale, nonlinear ODE
system (1) can be approximated by

=x f x x u˙ ( , , ),s s f (11a)

 ≈ =x g x x uΥ ˙ ( , , ),m f s f (11b)

by assuming a quasi steady-state of the fast states. Therefore, original
ODEs are converted into a set of Differential Algebraic Equations
(DAEs), with algebraic equations given by the right-hand side of (11b).
Depending on the complexity of the newly formed algebraic equations,
it might or might not be possible to solve (11b) for the fast states and
substitute the acquired expressions into (11a) in order to obtain a re-
duced-order ODE set. Note that a pure ODE system would be favorable
for most numerical solvers, since the presence of algebraic constraints
introduces additional iterations and may significantly increase com-
putational time.

2.3. First-order singular perturbation

We demonstrate the principles of FOSP on a linear system (3) by
following the derivation provided in Vorobev et al. [18]. Unlike in the
traditional zero-order approach, where fast dynamics are completely
neglected by converting the corresponding differential equations into
algebraic ones, the first-order method removes the fast states by stating
that the first derivative of Δxf is non-zero, whereas its second derivative
is negligible. This property is especially useful in systems with several
distinctive timescales and has a potential of better capturing the impact
of fast states on slow system dynamics. Mathematically speaking, this
corresponds to a Taylor series expansion of the vector of the fast states
and hence the name first-order reduction.

Let us start from a general two-timescale representation

= + +x A x A x B uΔ ˙ Δ Δ Δ ,s ss s sf f s (12a)

= + +x A x A x B uΥΔ ˙ Δ Δ Δ ,f fs s ff f f (12b)

where, in contrast to (8), ≠xΥΔ ˙ f m. Taking the derivative of (12b)
with respect to time and equating it to zero yields

 ≈ = + +x A x A x B uΥΔ¨ Δ ˙ Δ ˙ Δ ˙ .m f fs s ff f f (13)

Assuming time-invariant control inputs ( =uΔ ˙ r) and solving (13)
for xΔ ˙ f results in

= − −x A A xΔ ˙ Δ ˙ .f ff fs s
1

(14)

Substituting the intermediate result (14) into (12b) gives the fol-
lowing expression for Δxf:

= − − −− − − −x A A A x A A x A B uΔ Υ Δ ˙ Δ Δ .f ff ff fs s ff fs s ff f
1 1 1 1

(15)

Finally, by substituting (15) into (12a) and separating the terms for
Δx and xΔ ˙ , a linear first-order ODE form is obtained:

= +x A x B u˙ Δ Δ ,s s0 0 (16a)

with the reduced-order state space (A0, B0) defined by

= + −− − − −A I A A A A A A A A: ( Υ ) ( ),sf ff ff fs ss sf ff fs0
1 1 1 1

(16b)

= + −− − − −B I A A A A B A A B: ( Υ ) ( ).sf ff ff fs s sf ff f0
1 1 1 1

(16c)

A comparison between (16) and the corresponding ZOSP formula-
tion in (10) reveals an addition of a new term + − − −I A A A A( Υ )sf ff ff fs

1 1 1 to
matrices A0 and B0. On one hand, it results in a more accurate reduced-
order model, but on the other hand leads to a model representation of
higher complexity which might increase computational time. Note that
the reduced model is only attainable and valid if the aforementioned
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inverse matrix exists.

2.4. Hybrid singular perturbation

The main idea of the proposed hybrid method is to combine ZOSP
and FOSP in systems with more than two distinctive timescales and
potentially better capture the dynamical performance during transients.
Specifically, we consider a three-timescale, nonlinear ODE system of
the form

= = =x f x u x g x u x h x u˙ ( , ), ˙ ( , ), ˙ ( , ),s f v (17)

where = ∈ + +x x x x: ( , , )s f v
n m p represents the state vector comprised of

slow states ∈x ,s
n fast states ∈xf

m and very fast states ∈x ,v
p and

f( · ), g( · ) and h( · ) are the respective functions. Based on the discussion
in Section 2.1, the dynamics of the slow states remain intact, the dy-
namics of the fast states are reduced using FOSP ( =ẍf ), and the
dynamics of the very fast states are reduced using ZOSP ( =ẋ v ), which
yields the following DAE system:

=x f x y u˙ ( , , ),s (18a)

 =
∂

∂
+

∂
∂

+
∂

∂

g x y u
x

f x y u
g x y u

x
g x y u

g x y u
x

h x y u

( , , )
( , , )

( , , )
( , , )

( , , )
( , , ),

m
s f

v (18b)

 = h x y u( , , ).p (18c)

It can be seen that the hybrid method introduces two separate sets of
algebraic constraints, namely (18b) and (18c), correlating the algebraic
variables y ≔ (xf, xv) that comprise the original fast and very fast states
to the preserved slow differential states x ≔ xs in (18a). Hence, the final
model order is n, i.e., it is reduced by +m p compared to the original
system. Note that the values of n and m do not necessarily correspond to
the values of the same parameters in Section 2.1.

By applying the hybrid approach one clearly assumes a three-
timescale separation, i.e., the fact the state dynamics can be split into
slow, fast and very fast. For systems comprising two distinctive time-
scales, such classification is traditionally done based on the small
parameters. However, a tri-level categorization is more complex and it
might not be clear how to conduct it a priori. Moreover, the goal of this
study is not only to preserve the slow variables but also to determine
the most relevant dynamics to be preserved in order to capture the
transient oscillations and overshoot. Therefore, the employed method is
not based on small parameters but rather on performing an iterative
Participation Factor Analysis (PFA).

2.5. Iterative participation factor analysis

PFA is an established method for quantifying the influence of a state
on a mode and vice versa [19]. The knowledge of timescales gained
through eigenvalue analysis, in combination with the acquired in-
formation about the coupling of states and modes, allows for classifi-
cation (i.e., separation) of state variables based on the respective
timescales. For a linear, time invariant ODE system

= +x Ax Bu˙ , (19)

the participation of state k (xk) in mode i (λi) is defined as

=P u v ,ki ki ki (20)

where uki is the ith entry of the kth left eigenvector and vki is the ith
entry of the kth right eigenvector of the state-space matrix A.

As stated in Section 1, the PFA has been used in the literature to
distinguish the fast from the slow states [17]. Note that the full-order
model is linearized only once at the beginning of the MOR process in
Cossart et al. [17]. As a result, the participation factors are computed
only once and based on their values the order of the states to be re-
moved is determined in a single step. In contrast, this work proposes an
alternative, iterative approach to PFA that involves sequential compu-
tation of participation factors as the order of the model is being re-
duced. More precisely, after removing each state, the newly obtained
nonlinear model is linearized, PFA is performed, and the next fastest
state to be removed is determined. This procedure is repeated until the
desired model order is reached.

The benefit of iterative PFA is better tracking of changes in the
model structure due to reduction, which can influence the systems
modes in subsequent reduction steps. In other words, re-linearization of
the nonlinear model at each reduction step allows to obtain a more
accurate linear model approximation. It should be noted though that, as
the model order progressively decreases, it becomes more likely that
the state matrix of a reduced model becomes singular (due to one or
more eigenvalues being zero), which of course means that the iterative
process has to be stopped and the lowest possible model order has been
reached.

3. System modeling and control implementation

3.1. Converter control scheme

The complete modeling and analysis of converter control is im-
plemented in a Synchronously-rotating Reference Frame (SRF) and in
per unit. The proposed control model depicted in Fig. 1 is based on a
state-of-the-art Voltage Source Converter (VSC) control scheme

Fig. 1. General configuration of the implemented VSC control structure.
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previously described in D’Arco et al. [3], Markovic et al. [4], Ofir et al.
[5], where the outer control loop consists of active and reactive power
controllers providing the output voltage magnitude ∥ ∥∈ ≥vc 0 and fre-
quency ∈ ≥ωc 0 references by adjusting the predefined setpoints (de-
noted by ⋆) according to a power imbalance. Assuming T=p v i:c f g and

T T=q v j i: ,c f g follows:

= + − = + −★ ★ ★ ★ω ω R p p v V R q q( ˜ ), ( ˜ ),c c c
p

c c c
d

c c
q

c c (21)

with ∈ ≥Rc
p

0 and ∈ ≥Rc
q

0 denoting the active and reactive power
droop gains, ∈p̃c and ∈q̃c representing the low-pass filtered active
and reactive power measurements given by

= − = −p ω p p q ω q q˜̇ ( ˜ ), ˜̇ ( ˜ ),c z c c c z c c (22)

and ∈ >ωz 0 being the cut-off frequency. Note that =v 0c
q . The ob-

tained reference voltage vector is passed through a virtual impedance
block ∈ ≥r( , ℓ ) ,v v 0

2 thus providing a minor cross-coupling between the
d- and q-components via a grid current measurement ∈ ≥ig 0

2 at the
converter terminal:

= − +★v v r jω i( ℓ ) .f c v c v g (23)

The output is then fed to the inner control loop consisting of cas-
caded SRF voltage and current PI controllers:

= − + + +★ ★i K v v K ξ K i jω c v( ) ,f P
v

f f I
v

F
v

g c f f (24a)

= − + + +★ ★v K i i K γ K v jω i( ) ℓ ,P
i

f f I
i

F
i

f c f fsw (24b)

with = −★ξ v v˙
f f and = −★γ i i˙ f f denoting the respective integrator

states; ∈★if
2 and ∈★vsw

2 represent the internally computed current
and voltage references, ∈vf

2 and ∈if
2 are the filter voltage and

current, ∈ >K K( , ) ,P
v

P
i

0
2 ∈ ≥K K( , )I

v
I
i

0
2 and ∈K K( , )F

v
F
i

{0,1}
2 are the

proportional, integral and feed-forward gains respectively, and super-
scripts v and i denote the voltage and current SRF controllers. A type-2
PLL is used to detect the grid frequency ∈ ≥ωs 0 at the connection
terminal and keep the VSC synchronized via =★ω ω ,c s thus operating in
a so-called grid-supporting or grid-following mode [20]:

= + + =ω ω K v K ε ε v^ , ˙ ^ ,s P
s

f
q

I
s

f
q

0 (25)

where ε denotes the integrator state, = −v v e^ ,f f
θ θc s =θ ω ω˙c c b and

=θ ω ω˙g g b. The measured filter voltage vf is transformed into an internal
SRF of the PLL ∈v(^ )f

2 and passed through a PI controller
∈ >K K( , )P

s
I
s

0
2 acting on the phase angle difference, therefore aligning

the d-axis of the internal SRF with the stationary (abc)-frame; ω0 de-
notes the nominal system frequency of 50 Hz, i.e., 1 p.u.

The electrical interface to the grid includes an RLC filter
∈ >r c( , ℓ , )f f f 0

3 and a transformer equivalent ∈ >r( , ℓ ) ,t t 0
2 modeled in

SRF defined by the angular frequency ωc:

= − − +− −i ω v v ω r jω ω i˙ ℓ ( ) ( ℓ ) ,f b f f b f f b r f
1

sw
1

(26a)

= − −−v ω c i i jω ω v˙ ( ) ,f b f f g b r f
1

(26b)

= − − +− −i ω v v ω r jω ω i˙ ℓ ( ) ( ℓ ) ,g b t f t b t t b r g
1 1 (26c)

with ∈vsw
2 and ∈vt

2 being the switching and terminal voltage. The
system base frequency is represented by ωb and equals the nominal
frequency. The complete state-space model of a single grid-following
inverter comprises 15 states of the form

=x v i i ξ γ ε θ θ p q˜ ( , , , , , , , , ˜ , ˜ ),c f
dq

f
dq

g
dq dq dq

c s c c whereas the grid-forming
inverter model disregards the two PLL states (θs, ε). More details on the
overall converter control structure and employed parametrization can
be found in Markovic et al. [4], Ofir et al. [5], Markovic et al. [6], 21].

3.2. Timescale separation

A traditional approach in singular perturbation is to employ small
parameters as an indicator of timescale separation within a dynamical
system, since these factors are reflective of the time constants of in-
dividual state variables. In order to obtain such parameters, the dif-
ferential equations describing the system dynamics must be re-
formulated such that the observed quantity is isolated on the left-hand
side of the equation in the first-order form = + …x xϵ ˙ ,i i i with ϵi ∈ Υ
representing the respective time constant of the dynamics pertaining to
the state variable xi. The values of small parameters for the grid-con-
nected inverter operating in a grid-following mode are given in Table 1,
ordered respectively from the fastest to the slowest state variable. For
mathematical validity, a small resistance =r 0.02 p. u.d is added in
series with the filter capacitor cf. It should be noted that the grid-
forming VSC experiences the same small parameters, with PLL states
(θs, ε) being omitted from the model.

In contrast, through PFA approach the modes of the system are
sorted by their natural frequency (i.e., the distance from the origin in
the complex plane), defined as R I= +ω λ λ( ) ( )k k k

2 2 . Subsequently,
the states with the highest participation in the fastest mode (or con-
jugate pair of modes) are reduced, as indicated in Table 2. Such method
suggests that the electrical states of the RLC filter within the device
model, i.e., v v( , ),f

d
f
q i i( , )g

d
g
q and i i( , )f

d
f
q respectively, contribute the most

to the fast modes and should be removed first in the given order. This is
significantly different from the results in Table 1, where the integrator
states of the SRF voltage control are prioritized over v v( , )f

d
f
q and the

dynamics of the outer control loop are faster than i i( , )g
d

g
q and i i( , )f

d
f
q .

The observed discrepancies between the two approaches indicate that
the fastest states are not necessarily in direct correlation with the fastest
modes, and removing them would not fully eliminate the less relevant
modes. Similarly, the impact of fast variables on slower system dy-
namics might not be negligible, which is directly addressed through
application of the FOSP methodology in the proposed hybrid approach.

The modal decomposition given in Table 2 shows that there are
three modes of the system whose natural frequency is two orders of
magnitude greater than the frequency of the slowest modes. Therefore,

Table 1
Small-scale factors of the inverter model.

State variables Small-scale factors Υ

Analytical expression Numerical value

ξd, ξq K K/P
v

I
v 0.0008

v v,f
d

f
q

⎜ ⎟

+

⎛
⎝

+ + ⎞
⎠

ωb
f g t

rd f g t

ℓ (ℓ ℓ )

ℓ ℓ ℓ

0.0152

p q˜ , ˜c c 1/ωz 0.0318

i i,g
d

g
q + +ω r r(ℓ ℓ )/( )b g t g t 0.0637

i i,f
d

f
q ωbℓf/rf 0.0849

γd, γq K K/P
i

I
i 0.089

ε, θs, θc 1 1

Table 2
Modal analysis of the inverter model.

Eigenvalues ωk [Hz] PF Variables ROMa

− ± j759.4 3684 598.58 0.5188 v v,f
d

f
q 13

− ± j649.4 3603 582.67 0.3258 i i,g
d

g
q 11

− ± j3530 348.2 564.52 0.5112 i i,f
d

f
q 9

− ± j32.6 194 31.31 0.5495 ξd, ξq 7
− 61.7 9.82 0.8924 θs 6
− 31.5 5.01 1 q̃c 5
− ± j10.1 29.2 4.92 0.7167 p θ˜ ,c c 4,3
− 12.6 2.01 0.8573 ε 2
− 11.3b 1.79 1 γ 0

a After the removal of the corresponding state variables.
b A conjugate pair of eigenvalues with an imaginary part equal to zero.
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these modes can be considered very fast and the state variables with the
highest participation should be removed using ZOSP. The dominant
states contributing to the aforementioned modes are v v( , ),f

d
f
q i i( , )g

d
g
q and

i i( , )f
d

f
q . The remaining modes are separated at most by one order of

magnitude and therefore are candidates for either ZOSP or FOSP. The
time-domain performance for various combinations of ZOSP/FOSP re-
duction methods applied to the remaining state variables will be ex-
amined in Section 4.1.

4. Results

4.1. Time-domain performance during transients

In order to capture and compare the dynamic behavior and per-
formance of different model orders and reduction methods during
transients, we consider the test case illustrated in Fig. 2. It comprises a
single inverter connected to a stiff grid (infinite bus) via two parallel
transmission lines developed in MATLAB. In particular, the test case re-
presents the disconnection of one of two parallel lines, effectively
modeled through the opening of switches K1 and K2. The time-domain
responses of different model orders for both grid-forming and grid-
following operation mode are presented in Fig. 3, with full and dashed
lines denoting the corresponding reductions using the zero-order and
hybrid approach, respectively. The more oscillatory behavior of the
grid-following unit is a consequence of the PLL. Additionally, in order
to quantitatively benchmark the performance of each model, their run
time and Root Mean Square Error (RMSE) in terms of active power and

voltage magnitude mismatch are computed and compared. For the
purpose of generating a statistically relevant sample, the run time is
computed as mean computational time over 100 iterations. On the
other hand, the RMSE calculation is achieved by re-running the simu-
lations for all model orders with a fixed-step solver and comparing the
mismatch between signals at each discrete time step. Moreover, the
RMSE metric is applied only to the period during transients, i.e., be-
tween the fault instance and the point at which the system reaches
steady state, with the results depicted in Figs. 4 and 5.

It is immediately noticeable from Fig. 3 that dropping the very fast
electrical states does not have much impact on the overall response.
Indeed, after removing vf and ig the performance is unchanged for both
operation modes, whereas only the very fast oscillations are not
mapped by removing if. These findings therefore justify the use of zero-
order reduction for the removal of very fast variables. Interestingly
enough, dropping the integrator states (ξd, ξq) as next in line in Table 2
has no effect on the overall performance. While the corresponding
mode is rather classified as fast than very fast, this effect might be
explained by the fact that the time constant of the underlying state
dynamics is very small (see Table 1). Moreover, as mathematical ex-
pressions for inner control loops are convoluted and nested, the elim-
ination of state variables (ξd, ξq) was not possible using FOSP and re-
sulted in numerical issues during model initialization. This is an
important aspect and a potential drawback of a FOSP application to
nonlinear systems, which has not been reported previously in Vorobev
et al. [18]. Hence, the first 8 states are all removed using ZOSP, irre-
levant of the inverter operation mode.

Going for lower-order models, we now tackle the relatively fast
states, i.e., variables that could potentially be removed either using
zero- or first-order reduction, with the use of the latter method resulting
in the proposed hybrid MOR approach. For the grid-forming mode of
operation there is a negligible difference in both the time-domain re-
sponse and computational time when removing the remaining states
with either ZOSP or FOSP. This can be seen both qualitatively in Fig. 3

Fig. 2. Test case system comprising a single-line diagram of a converter con-
nected to an infinite bus via two parallel transmission lines.

Fig. 3. Time-domain response of different model orders after line opening: (i)
grid-following control mode; (ii) grid-forming control mode; dashed lines de-
note the corresponding reduction using the hybrid approach.

Fig. 4. Run time and RMSE for different model orders of grid-forming inverter
using zero-order and hybrid approach.
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and quantitatively in Fig. 4. In both cases the fourth- and third-order
models were derived with the hybrid model by removing q̃c and p̃ ,c
respectively. In general, applying either ZOSP or FOSP to the remaining
two states does not pose a major factor, as all models experience a
rather similar trajectory response, with the higher-order models
showing initially larger deviation and oscillatory behavior. Thus, FOSP
appears to offer no measurable improvement in this case; a somewhat
understandable outcome considering that the zero-order approach al-
ready achieves a very accurate approximation of the full-order model,
as previously observed in Cossart et al. [17].

While there is a negligible difference in the transient performance of
a grid-forming inverter between the zero-order and hybrid approach,
there is a significant improvement in the run time when reducing to
fifth-order model and below. Despite an inevitable increase in RMSE,
the significant reduction in run time makes these reduced order models
appealing for large-scale system simulations. Indeed, similar model
orders have also been proposed in Kodra et al. [9], Mariani et al. [10],
Iyer et al. [11], Rasheduzzaman et al. [12], Luo and Dhople [13],
Cossart et al. [17] using ZOSP.

For the case of grid-following operation, however, the reduced-
order models below =N 7 presented in Fig. 3 show distinctly different
behavior immediately following the disturbance. Any further reduction
using ZOSP results in a lagged response and is incapable of reproducing
the overshoot response of the full-order model. Although a seventh-
order model may be sufficient for microgrid or small-scale analysis, it
may be necessary to further reduce the model order for large-scale
electro-magnetic transient simulations, particularly given the order of
synchronous generator models and the relative capacity of converters
and synchronous machines. For further reduction we consider two
cases: the first, where we continue to reduce all states using ZOSP; and
the second, where we adapt a hybrid approach by first removing θs
using FOSP and all subsequent states using ZOSP. In both cases, the
order of reduction is shown in Table 2. Namely, we see that the hybrid
model, indicated by a dashed line, outperforms its corresponding ZOSP

model as illustrated in Fig. 3. The hybrid model is better at reproducing
the fast response of the full-order model, with both the hybrid sixth-
and fifth-order models capturing the overshoot to a certain extent as
well as the initial oscillatory behavior.

For the case of grid-following operation, there is a noticeable RMSE
difference between the zero-order and the hybrid method, with ZOSP
having ≈ 33% higher RMSE in terms of active power response for the
sixth-order and below (see Fig. 5). On the other hand, the run time is
rather similar, especially for =N 6; a small difference is justified by the
more complex nature of the first-order algebraic constraints in FOSP.
Similarly to the grid-forming mode, a significant and steady reduction
in the computational run time is observed when going for lower-order
models, with sixth-order and lower being almost 50% faster than the
model orders =N 7 and =N 9. This is again particularly advantageous
when considering large system-scale simulations, where both compu-
tational time and memory allocation become a concern as the number
of individual models scales up.

4.2. Eigenvalue analysis & stability properties

Some interesting observations can be made by studying the most
critical modes of the root loci spectrum for different model orders of the
zero-order approach, depicted in Fig. 6. Understandably, removing
states associated with very fast dynamics has no impact on the slow
modes, reflected in the preserved eigenvalue spectrum close to the
imaginary axes for N ≥ 7. Nevertheless, dropping the dynamics of the
outer control loop (i.e., q̃c and p̃c respectively) and PLL (i.e., θs) has a
massive impact on the slow modes. In particular, the most critical pair
of eigenvalues is significantly shifted to the left, whereas other slow
modes now become more critical. This “movement” is indicated by the
dashed lines in Fig. 6. Such massive changes in the root loci spectrum
might also justify the changes in the transient performance and drastic
increase in RMSE when going for N < 7, especially in the case of a grid-
following inverter due to the presence of a PLL.

These conclusions are substantiated by the stability maps provided
in Fig. 7, defining a stable region in the −R Rc

p
c
q plane. Different lines

indicate a change in the boundary of the stable region for the corre-
sponding model order. It should be noted that for lower orders (N ≤ 6),
the whole region of interest is stable and the lines are therefore not
graphically illustrated. These results are in direct correlation with
Fig. 6. More precisely, the mismatch between the slow modes of the
full- and reduced-order models is mapped to the accuracy of the ap-
proximation of the stable region boundary, with a massive shift in the
critical modes for =N 6 reflected by a very large stable region. Such
change is not surprising, considering that the removed states affect the
dynamics of active and reactive power control, and the stability region
of interest is analyzed in the −R Rc

p
c
q plane. It however highlights that

both ZOSP and FOSP might not be applicable to stability studies when

Fig. 5. Run time and RMSE for different model orders of grid-following inverter
using zero-order and hybrid approach.

Fig. 6. Root loci spectrum of interest for different model orders using zero-
order reduction of a grid-following inverter.
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reaching lower-order inverter models (especially with the use of PFA),
which was not reported in Vorobev et al. [18] as this study dealt with a
very low full-order model.

Furthermore, the discrepancies in the approximation of the stability
region suggest that different modeling approaches and model orders
should be employed when dealing with small-signal analysis compared
to the simulations of large-signal disturbances (e.g., line openings and
short circuits). In particular, while PFA seems promising in terms of
defining the most relevant states for preserving the transient response
of the original model, it does not always respect the timescales of the
system and could potentially violate the necessary stability conditions
for singular perturbation theory. On the other hand, the traditionally
used small parameters might fail to capture the fast transients of the
full-order model. Therefore, alternative metrics such as controllability
and observability of the modes and their respective residues could be
employed in determining the optimal reduced model order.

5. Conclusion

This paper presents a hybrid model-order reduction method, which
takes advantage of different timescales in a dynamical model and can
be applied to nonlinear systems. In particular, it combines the low
computational burden of the traditional zero-order singular perturba-
tion with the higher accuracy of the first-order approach. In order to
determine the order of the state removal, the conventional method
based on small parameters is replaced by an iterative participation
factor analysis. The novel hybrid approach is applied to both grid-
forming and grid-following inverter control schemes, and compared
against the traditional zero-order reduction. While the improvement in
the performance of the lower-order models of the grid-forming inverter
is insignificant, the results for the grid-following operation mode
showcase a better time-domain performance during transients, while
having only a negligible increase in computational requirements.

Future work will focus on the performance of the hybrid reduction
method in a large-scale network with a high penetration of inverter-
interfaced generation. The slower dynamics of conventional generation
as well as the very fast dynamics of transmission lines are expected to

have a significant influence on the acceptable model order. The mix of
different system dynamics can be effectively tackled by the proposed
reduction technique and presents an interesting path for future studies.
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