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This paper presents a study on the synthesis of a position-phase optimized reconfigurable linear array
antenna with uniform amplitude distributions. The objective is to produce a pencil/flat-top beam pair.
In this position-phase method, a pencil beam is duly generated with zero degree phases and phases
are varied between �180� and 180� to produce a flat-top beam keeping position of the elements and
amplitude excitations common to both pencil and flat-top beams. The amplitude distribution of the ele-
ments is kept uniform. The phases as well as position of the elements are optimized by Teaching Learning
Based Optimization (TLBO), modified Quantum Particle Swarm Optimization (QPSO) and Symbiotic
Organisms Search (SOS) algorithms to produce the beam pair. The simulations are done for two Sets of
elements and a null placement is included in one of the Sets. The results obtained using these algorithms
are duly compared with each other and it is found that SOS algorithm performed in par with TLBO algo-
rithm in the generation of the radiation pattern parameters and better over TLBO and QPSO in statistical
values.
� 2019 Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Recent applications in wireless communications systems,
namely, radar, satellite and cellular mobile systems show the
extensive utilization of reconfigurable antenna arrays. The interest
shown in the usage of these arrays in turn reveals the necessity of
reduced size, cost effectiveness, etc. These arrays are referred to as
the group of elements that are capable of generating dual beams
using one or two common parameters while differing in the other
parameters. These beams/multiple radiation patterns are in fact
generated with the help of a single power divider network. The
design and implementation of the feeding network is made simpler
when only one excitation is different.

Usually, in these arrays, phase is treated as the differing param-
eter. One beam is generated using zero degree phases for all the
elements and the other beam is generated with phases varying
between �180� and 180�. However, both the beams share a com-
mon amplitude distribution. These amplitude and phase distribu-
tions are generated by many methods and algorithms. Few
methods are reported here from the literature. Durr et al. (2000)
described the design of multiple radiation pattern array using
Modified Woodward Lawson method by switching between vari-
ous phase distributions while maintaining same pre-established
amplitude excitations. Gies and Rahmat-samii (2003) successfully
synthesized dual pattern antenna array using excitations that are
generated directly by Particle Swarm Optimization (PSO) algo-
rithm. Other algorithms/methods that successfully generated the
dual patterns are multi-agent Genetic Algorithms (GA) (Baskar
et al., 2004), floating point GA (Mahanti et al., 2007a), GA with
fixed dynamic range ratio (Mahanti et al., 2007b), forward-
backward matrix pencil method (Liu et al., 2010), factorization of
pattern synthesis (Buttazzoni & Vescovo, 2012), etc. There are
instances where the position (Elkamshoushi & Wagih, 2011;
Vaitheeswaran, 2008) of the elements are perturbed in generating
these dual beams. Chen et al. (2008) reported the synthesis of
unequally spaced arrays using modified Differential Evolution
algorithm. There are instances where non-conventional methods
(Yang et al., 2017, 2018) are also in use, especially in large arrays.
Literature also shows that evolutionary algorithms have shown
better performance than other methods because of their popula-
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tion based probabilistic searches with the capability of escaping
from local minima.

Many a times, problem of interference affects the radiation pat-
tern. It becomes essential to include a provision for null placement
during the design of an array. Even the literature throws a good
amount of light on inclusion of null (Shore 1984; Steyskal et al.,
1986; Karaboga et al., 2004; Guney & Onay, 2007; Guney &
Basbug, 2008) placement parameter during the design of antenna
arrays. Majority of the methods used in the past again sought the
support of evolutionary algorithms.

In this paper, a linear antenna array is made to generate a flat-
top/pencil beam pair. The amplitudes of all the elements are kept
to unity. The position of the elements and the phase excitations
are generated using evolutionary algorithms. The phase excitation
is kept zero for generation of pencil beam and the phase is varied
between �180� and 180� to generate the flat-top beam. Both the
beams share the common amplitudes as well as positions of the
elements. To undergo the above process, TLBO (Rao et al., 2011,
2015, Tsiflikiotis et al., 2017, Murty et al., 2014), modified QPSO
(Sun et al., 2004; Patidar et al., 2017) and SOS (Cheng & Prayogo,
2014; Duman, 2017) algorithms are used. The reason for the usage
of these algorithms are because of their success in many recent
applications (Rao et al., 2015; Tsiflikiotis et al., 2017; Murty
et al., 2014; Patidar et al., 2017; Duman, 2017; Muralidharan
et al., 2017; Abdullahi and Ngadi, 2016).

The parameters that are used in this paper are Side Lobe Level
(SLL), Half Power Beam Width (HPBW) in pencil beam and Ripple
(flat-top portion) and SLL in flat-top beam in Set 1. In Set 2, the
same parameters are used as in Set 1 along with the inclusion of
a single null in pencil beam. The desired values for all the param-
eters are shown in Tables 1 and 2.
2. Theory

A linear array comprising of 2N isotropic antenna elements
shown in Fig. 1 is taken into consideration. It is duly made up of
variable phase and distance shifters. The far field pattern FP gener-
ated using these elements is given using the following equation.

FP hð Þ ¼
XN
m¼1

2cmcos
2p
k

dmsinh
� �

ejpm ð1Þ

where cm and pm refers to the amplitude and phase excitations of
the mth element respectively, dm is the distance between the posi-
tion of the mth element and the array center. h refers to the angle
measured from broadside and k is the wavelength and is assumed
unity here. The normalized absolute power pattern (Elliott, 1981)
is given by

Normalized absolute powerpattern ¼ FP hð Þj j
FP hð Þj jmax

ð2Þ

The cost function that is minimized in this problem in Set 1 is
given by
Table 1
Simulated results for Pencil beam and flat-top beam radiation patterns (Set 1).

Patterns Parameters Desired Va

Pencil beam SLL in dB �20 dB
HPBW 6�
Directivity in dB –

Flat-top beam SLL in dB � 20 dB
Ripple in dB (�12� � h � 12�) 1 dB

Fitness values
Processing time in seconds
CF ¼
X2
i¼1

wiðCFiÞ2 þ
X2
j¼1

wjðCFjÞ2 ð3Þ

The first term in the RHS of the above equation deals with the
pencil beam and is written as below:

CFi ¼
Cp
i �Cp

i;d; if Cp
i > Cp

i;d

0; if Cp
i � Cp

i;d

(
ð4Þ

where i ¼ 1 and 2 refers to the parameters, namely, SLL in dB and
HPBW in degrees.

The second term in the RHS of Eq. (3) is for the flat-top pattern
and is written as below:

CFj ¼
C f
j � C f

j;d; if C f
j > C f

j;d

0; if C f
j � C f

j;d

8<
: ð5Þ

where j ¼ 1 and 2 refers to the parameters, namely, SLL in dB and
the ripple in the flat-top/sector pattern (�12� � h � 12�) in dB.

The terms Cid and Cjd represents the expected/desired values
and Ci and Cj represents the obtained values for each parameter
given in the above equations for cost functions. The superscript p
and f denotes the pencil and flat-top beam pattern parameters.
The weights wi and wj are substituted with unity for all the values
of i and j. For Set 2, an additional parameter null is added along
with pencil beam parameters in Set 1. The desired values of all
the parameters that are used in the cost function are given in
Tables 1 and 2.

3. Teaching learning based algorithm

TLBO algorithm (Rao et al., 2011, 2015) is based on the effect of
the teacher on the performance of the learners in a class. The out-
put performance is treated in terms of results/grades. The learner’s
outcome is always influenced by the quality of the teacher. A good
teacher will usually assist in betterness of the results or grades of
the learners. The overall process of this algorithm is divided into
two phases, namely the teacher phase referring to the learning
from the teacher and the other phase, namely, the learner phase
referring to learning from the learners.

In the teacher phase, at any iteration m; let Mm be the mean of
the marks of all the students and Tm refers to the teacher. This tea-
cher will move the mean towards its own level, and hence the
updated mean will be Mu. The output is correspondingly updated
as follows:

Diff Mm ¼ ranm Mu � TF�Mmð Þ ð6Þ
where ran refers to a random number lying between 0 and 1, TF is
the teaching factor which decides to change the mean and its value
can lie between 1 and 2. This Diff Mm changes the solution accord-
ing to the following equation

xnew;m ¼ xold;m þ Diff Mm ð7Þ
lues Obtained values

TLBO QPSO SOS

�20.0936 �19.9232 �20.0214
6� 6� 6�
10.872 10.807 10.999
�20.0372 �19.9219 �20.0281
0.99293 1.382 0.99133
0 0.1579 0
1916 1005 351



Table 2
Simulated results for Pencil beam and flat-top beam radiation pattern (Set 2).

Patterns Parameters Desired Values Obtained values

TLBO QPSO SOS

Pencil beam SLL in dB �20 dB �20.2631 �19.9643 �20.4489
HPBW 6� 6� 6� 6�
Null in dB (h = �65�) �50 dB �51.0187 �50.9052 �55.3485
Directivity in dB – 10.917 10.936 10.938

Flat-top beam SLL in dB �20 dB �20.1292 �19.9872 �20.0263
Ripple in dB (�12� �h � 12�) 1 dB 0.98711 1.0998 0.98556

Fitness values 0 0.0114 0
Processing time in seconds 7841 4084 2158

Fig. 1. A pencil/flat-top beam reconfigurable linear antenna array.
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In the second phase, namely, the learner phase, the learner
learns from the others in a random manner with the support of
various forms of communications and he also learns more if he
receives more knowledge from the others than the one from him-
self. The modification in the learner is given by the following Set of
equations. If Pn is the population size and f is the objective
function,

form ¼ 1 : Pn

Two learners xa and xb, where a–b are selected randomly

if f ðxaÞ < f ðxbÞ

xnew;m ¼ xold;m þ ranmðxa � xbÞ ð8Þ

else

xnew;m ¼ xold;m þ ranmðxb � xaÞ ð9Þ

endif

endfor

Accept xnew if it gives a better value.
The overall process of this algorithm is given in the following

pseudo steps.
Step 1: The problem and its associated parameters are specified
along with initialization of the population size, iterations, vari-
ables number and the limits of the values of the variables. The
population size refers to the group of learners and is 130 for
Set 1 and 520 for Set 2.
Step 2: The population is initialized randomly. The variables
refers to the design variables used in the fitness functions.
Step 3: In the teacher phase, the best solution (13 element phase
excitations and 13 elements positions) will act as a teacher for
that particular iteration. The teacher will try to move the mean
from the currently obtained mean towards the best solution,
which from now onwards will act as the new mean.
The current solution is updated based on the equation (7). Treat
the current solution as the best solution if the fitness values is
better than the previous one.
Step 4: In the Learner phase, Learners improve their knowledge
with the support of their neighbouring learners. Eqs. (8) and (9)
holds for this phase.

Stop when the number of maximum iterations is reached,
otherwise start from Step 3.

The terms ran and TF affect this algorithm’s performance. How-
ever, they are not explicitly given or initialized in the simulations
and in fact, they are generated randomly in the algorithm itself.
Thus this algorithm is easier when compared to many of the
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algorithms in the past because of its zero requirement of any tun-
ing parameter.

4. Modified Quantum Particle Swarm Optimization

QPSO (Sun et al., 2004), a version of PSO utilizes quantum
mechanics principles to govern the movement of the particles.
Here the particle’s state is represented by a wave function instead
of the positions and velocities as in PSO. Moreover, the dynamic
nature of the particle is highly divergent than that of traditional
PSO. Comparing the parameters used in this algorithm (Sun,
et al., 2004), there are modifications done in this paper which is
shown in the following steps.

Step 1: The population (130 for Set 1 and 520 for Set 2) is initial-
ized randomly and the personal best pb as well as the global
best gb values (13 element phase excitations and 13 elements
positions) along with the maximum number of iterations are
also initialized. D is the number of variables and ps is the pop-
ulation size.
Step 2: Evaluate the fitness values of all the particles.
Step 3: If the current one is better than the pb, then the pb value
is replaced with the current obtained value. This value is
designed as the pb.
Step 4: The above procedure is followed for the overall popula-
tion and the best fitness value obtained after comparison is cho-
sen as the gb.
Step 5: The overall mean best of all the particles is obtained
using

mbest ¼ 1
ps

Xps
i¼1

b � pbþ 1� bð Þgbð Þ ð10Þ

where b ¼ randðps;DÞ. To quote the modifications done in this algo-
rithm, the mbest here now includes both the terms pb and gb along
with a random factor b.

Step 6: The particle’s vector local focus (for thewth dimension of
the ith particle) in the kth generation is obtained using

xkiw ¼ ðran1k
iw � pbiw þ ran2k

iw � gbiwÞ=ðran1k
iw þ ran2k

iwÞ ð11Þ

Step 7: Considering u¼ rand 1;Dð Þ and

/¼ /max �/minð Þ � me� i
me� 1

þ /min

where / is the contraction and expansion coefficient for controlling
the convergence speed. The positions of the ith particle is given by

Xk
iw ¼ xkiw þ �1ð Þceil 0:5þran3kiwð Þ�/� log 1

uð Þ�abs mb�Xk
iwð Þ ð12Þ

If Xk
iw < Xk

mn; then

Xk
iw ¼ rand Xk

mn � X
k

mn

� �
þ Xk

mn ð13Þ

If Xk
iw > Xk

mn; then

Xk
iw ¼ rand Xk

mn � X
k

mn

� �
þ Xk

mn ð14Þ

In this paper, the values of /min ¼ 0:4 and /max ¼ 0:7 are used
and ran1; ran2; ran3 are random numbers that are equal to
randð1;D). The Eqs. (13) and (14) are used to stop the particles
from exploding when they by chance move out of the required lim-
its used. Stop the process when the maximum number of iterations
are reached or repeat from Step 2 again till the maximum number
of iterations are over.

5. Symbiotic organisms search algorithm

SOS algorithm (Cheng & Prayogo, 2014) depends on the nature
of the organisms relying on one another for their existence. It is
also described as a relationship between any two distinct species.
Usually, the relationships found are mutualism between the two
organisms in which both mutually benefit, commensalism in which
one organism gets benefited and the other one unaffected and
finally parasitism, in which one gets benefited and the other gets
harmed.

This algorithm begins with a randomly generated initial popu-
lation referring to as ecosystem (130 for Set 1 and 520 for Set 2).
Each organism (13 element phase excitations and 13 elements
positions) with a fitness value is treated as a candidate solution
to the problem chosen. This is followed by the mutualism phase
which is described as follows.

An organism Xm is matched to another organism Xn in an
ecosystem. New candidate solutions for both these organisms are
calculated depending on the following equations.

Xnnew ¼ Xn þ rand 0;1ð Þ � ðXbest �MV � B1Þ ð15Þ

Xmnew ¼ Xm þ rand 0;1ð Þ � ðXbest �MV � B2Þ ð16Þ
and MV ¼ ðXn þ XmÞ=2 is the Mutual vector, rand refers to a Set of
random numbers and B1 and B2 refers to the benefit factors. The
mutual vector is used to increase the survival of the organisms.
The organisms are checked for fitness values and their values are
updated only, if they are better than the values with which they
started this phase.

Similar to the above phase is the commensalism phase, but the
difference being Xn attempts to benefit whereas Xm gets unaffected
from the interaction between these two organisms. The following
equation is used during the interaction process.

Xnnew ¼ Xn þ rand �1;1ð Þ � ðXbest � XmÞ ð17Þ
This phase is followed by the parasitism phase, in which an arti-

ficial parasite called a Parasite Vector is created by duplicating Xn

and modifying the randomly selected dimensions. Now, this Para-
site Vector as well as Xn are evaluated to measure their fitness val-
ues. The one with the better fitness value will stay further. This
algorithm is stopped when the maximum number of iterations is
reached.

6. Simulation results

To undergo the complete process involved in generation of radi-
ation patterns, the following process is adapted for simulation pur-
poses. Simulations are done using Matlab software.

Here, 26 elements are chosen for consideration with even sym-
metry option in Set 1. Therefore, it requires only 13 element phase
excitations and 13 elements positions which can be flipped and
substituted for remaining 13 elements. The phases are varied
between �180� and 180� and the position of the elements are var-
ied between 0.25k and 0.65k. Moreover, amplitude distribution
used here is a uniform one with the value equal to unity. The pop-
ulation size is 130. All the TLBO, modified QPSO and SOS algo-
rithms are used here to provide the necessary excitations and
positions.

To investigate the performance of these algorithms with a dif-
ferent population size, Set 2 is considered. Here, an additional
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parameter, null (h = �65�) is taken along with other parameters in
pencil beam as in Set 1. 26 elements are taken into consideration
with a population size of 520 and the above procedure is again
adopted here and the positions of the elements are varied between
0.20k and 0.70k. This range chosen is different from the Set 1 in
order to reduce the extra burden that the algorithms may encoun-
ter while dealing with an additional null placement parameter.

Number of iterations used is 2000 with a total of 10 runs for all
the algorithms for both the Sets 1 and 2. This is to make sure that
the initial random generation population does not affect the final
result. Simulations are done using Matlab software and are run
on Intel Core 2 Duo CPU 3 GHz processor and 4 GB RAM in the win-
dows 7 operating system. Figs. 2 and 3 show the dual beam pat-
terns for Set 1 and 2.

6.1. Analysis for Set 1

Table 1 shows the values of the parameters obtained using both
the algorithms. The values obtained show that the TLBO and SOS
algorithm have produced successfully all the parameter values
within the desired limits. However, the same is not the case with
the modified QPSO, which failed to produce the expected values
except the half power beam width. This is sufficient to conclude
that TLBO and SOS have performed better than modified QPSO. Fit-
ness values also prove the same. The fitness value of TLBO and SOS
is 0, which is well required and again better when compared with
the fitness value of QPSO shown in the Table. Again to quote, nec-
essary care is taken here to run these algorithms 10 number of runs
in order to avoid any sort of influence the initial seeds produce on
the fitness values. Moreover, these algorithms are able to produce
the required outputs with the population size just five times the
number of variables used.

However, a look at the Table 1 shows that SOS has excelled bet-
ter than all the others in terms of the time taken. It took just 351 s
and this time is very less compared to the time taken by the other
algorithms and this is sufficient enough to prove that SOS has
excelled itself over the remaining algorithms in overall perfor-
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Fig. 2. Dual beam radiati
mance. In addition to the parameters discussed in the fitness func-
tions, directivity is also calculated for the pencil beam. Here also,
SOS succeeded in producing the best value.

6.2. Analysis for Set 2

The results for the Set 2 are available in Table 2. A similar anal-
ysis is done on the simulation results obtained using Set 2 which
includes a null parameter in addition to other parameters which
are used in Set 1. Here also, TLBO and SOS algorithms have success-
fully produced all the values of the parameters well within the
desired value limits. In addition to the parameters discussed in
the fitness functions, directivity is also calculated for the pencil
beam. Here, SOS succeeded in producing the best value. Again,
the fitness value obtained using TLBO and SOS is 0 which is supe-
rior when compared with the value produced by modified QPSO.
Similar to Set 1, a look at the Table 2 shows that the time taken
by SOS is 2158 s, which is very less when compared to the time
taken by the remaining algorithms. Here also, SOS excels over
the algorithms. Because of its success, the values of the positions
and the phases generated by this algorithm that helped in generat-
ing these output results for both Sets 1 and 2 are shown in Table 3.
The performance of this algorithm is quite similar to the Set 1 and
it is able to produce the expected output with different size of the
population also.

As both TLBO and SOS algorithms have successfully produced
the expected results, the comparison is now done on the statistical
parameters. Table 4 shows the statistical parameters for the best
run and Table 5 shows the statistical details of 10 individual runs
for all the three algorithms.

Fig. 4 shows the plot drawn between fitness values and number
of iterations. It is evident from the Fig. 4 that TLBO and SOS have
produced 0 fitness values for the generations of radiation patterns
using both the Sets 1 and 2. It is also found that the convergence
speed of the SOS algorithm is better than that of the other algo-
rithms. Table 4 shows that the mean of the fitness values produced
in the best run by SOS is better than the one produced by the TLBO
0 20 40 60 80
rees ---> 
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on pattern for Set 1.
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Fig. 3. Dual beam radiation pattern for Set 2.

Table 3
Position and phase distributions obtained using SOS algorithm.

Element Numbers Set 1 Set 2

Positions in k Phases Positions in k Phases

± 1 ±0.2500 �169.8912� ±0.2490 87.9822�
±2 ±0.5013 �54.1008� ±0.5197 62.1234�
±3 ±0.7519 �179.2458� ±0.8559 178.6482�
±4 ±1.1354 �81.6372� ±1.1041 81.4050�
±5 ±1.4926 �73.4940� ±1.4765 171.8388�
±6 ±1.9397 �61.9272� ±1.7460 174.3642�
±7 ±2.1907 �51.7302� ±2.1425 167.6340�
±8 ±2.5186 �36.3312� ±2.3425 �159.8634�
±9 ±2.9154 �37.3338� ±2.7396 �170.7822�
±10 ±3.2764 �0.0965� ±3.1475 �145.3410�
±11 ±3.8756 30.3750� ±3.7244 �103.9752�
±12 ±4.4625 68.7456� ±4.4244 �56.0826�
±13 ±5.1125 92.8620� ±5.1234 �40.8906�

Table 4
Statistical parameters.

Parameters for the best run TLBO QPSO SOS

Set 1
Fitness value 0 0.1579 0
Mean 6.794 2.108 1.284
Standard deviation 25.35 15.48 12.73
Median 0.0253 0.1579 0
Max fitness value 371.5 272.2 289.5

Set 2
Fitness value 0 0.01138 0
Mean 14.95 3.237 14.56
Standard deviation 40.59 23.32 48.5
Median 0.03865 0.01466 0
Max fitness value 422.9 460.1 377

Table 5
Statistical Details of 10 individual runs for all the three algorithms.

Parameters for the 10 runs TLBO QPSO SOS

Set 1
Worst fitness value 33.2051 49.3623 19.9097
Best Fitness value 0 0.1579 0
Mean of the fitness values of 10 runs 12.5965 16.4831 5.4665

Set 2
Worst fitness value 1.4242 35.0938 1.5763
Best Fitness value 0 0.01138 0
Mean of the fitness values of 10 runs 0.3745 13.4622 0.3201
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algorithm for both the sets. Even the other statistical parameters
also are in favour of the same.

As 10 runs are done for the algorithms to produce the results to
avoid any influence on the initial random values chosen by the
algorithms, Table 5 details presents the following details regarding
their statistical values. Here also, the mean fitness value and other
values are in favour of the SOS algorithm. The worst fitness value
for TLBO algorithm in Set 2 is very close to the one produced by
SOS algorithm. Overall, it is concluded that SOS showed its supre-
macy over the other algorithms in the statistical parameters and it
is in par with TLBO algorithm in producing the expected radiation
pattern parameter results.
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7. Conclusions

This paper presented a design of reconfigurable flat-top/pencil
dual beam patterns in uniform linear antenna array. The amplitude
distributions and element positions of the antenna elements are
kept constant for both the beams. Phase excitations are kept to
zero for the pencil beam and they are varied between �180� and
180� for the generation of flat-top beam. TLBO, modified QPSO
and SOS algorithms were successfully used for generating the ele-
ment positions and phase excitations. These algorithms competed
with each other in bringing various parameters like side lobe level,
ripple value, half power beam width as well as null placement well
within the expected value. Both TLBO and SOS algorithms were
successful in producing the radiation pattern parameters, and in
terms of the statistical parameters, SOS proved to be better than
TLBO algorithm. This work can be extended to include other
parameters, namely, multiple nulls, more independent nulls, etc.,
and also to other geometries of antenna arrays.
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