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The primary purpose of this research is to move a 5-DoF Aideepen ROT3U robotic arm in real-time based
on the surface Electromyography (sEMG) signal obtained from a wireless Myo gesture armband to distin-
guish seven hand movements. The pattern recognition system is employed to analyze these gestures and
consists of three main parts: segmentation, feature extraction, and classification. Overlap technique is
chosen for segmenting portion of the signal. Six-time domain features, namely, Mean Absolute Value
(MAV), Waveform Length (WL), Root Mean Square (RMS), Autoregressive Coefficients (AR), Zero
Crossings (ZC), Slope Sign Changes (SSC) are extracted from each segment. While the Support Vector
Machines (SVM), Linear Discriminant Analysis (LDA), and K-Nearest Neighbor (K-NN) classifiers are
employed in the classification of the seven hand movements. Moreover, a comparison between their per-
formance is carried out to obtain optimum accuracy. The proposed system is tested on datasets extracted
from six healthy subjects and the results showed that the SVM achieved higher system accuracy with
95.26% compared to LDA with an accuracy of 92.58%, and 86.41% accuracy achieved by K-NN.
� 2019 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The electrical signal produced through contraction or relaxation
of the muscles ruled by the nervous system is called the Elec-
tromyography (EMG) signal. This signal depends on the physiolog-
ical and anatomical characteristic of muscles and is considered to
be a complex signal. The surface electromyography (sEMG) is
EMG signals that collect the electrical signals of the muscle activity
by placing the electrodes on the surface of the skin. Fig. 1 shows
the surface electromyography (sEMG) signals that start with the
low amplitude and changes with muscle contraction activity
(Gheab and Saleem, 2008).

Hand gesture recognition systems usually depend on either
visual based detection or internal sensor detection. Visual-based
gesture recognition perceived gestures remotely without wearable
devices using almost camera. These types of systems typically suf-
fer from many drawbacks such as sensitivity to light, changing dis-
tance, hand motion modeling complexity, and position. On the
other hand, hand gesture recognition systems based on internal
sensor detection (e.g., sEMG signal) which depend on muscle con-
traction of the hand are more reliable and efficient, thus, it is con-
sidered to be one of the distinguishable methods (Bisi et al., 2018).
Detection of sEMG signals is useful and improve the essential
methodologies in many applications. Such applications are becom-
ing increasingly in demand, such as biomedical engineering (Wang
et al., 2017), robotics arm and automation control systems
(Gonzalo and Holgado-Terriza Juan, 2015; Pham et al., 2017).

The measurements and precise representations of the sEMG sig-
nals depend on the characteristics of the electrodes and their rela-
tionship with the skin of the forearm or shoulder and are affected
by the amplifier design and the transition of the sEMG signals from
analog to digital format (Day, 2002). A raw sEMG signal has the
maximum voltage of (0–2) mV, and a range of frequency approxi-
mately between (0–1000) Hz. Nonetheless, the vital frequency that
contains useful information lies between (20–500) Hz
(Ghapanchizadeh et al., 2017). The sEMG signals can be acquired
by positioning surface electrodes on the arm or the shoulder.

Two main types of electrodes acquire EMG signals, these are
needle electrodes (inside the skin) and surface electrodes, with
no significant variance between them (ULKIR et al., 2017). There
are two types of surface electrodes, namely, gelled and dry sEMG
electrodes. Gelled sEMG electrodes contained a gelled electrolytic
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Fig. 1. Estimating the sEMG signal for forearm muscle via a surface electrode
(Gheab and Saleem, 2008).
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material as an interface between electrodes and the skin. Because
of the presence of hair follicles and irregularities in the skin, it is
necessary to use gel for conducting with electrodes to reduce the
impedance and obtain consistent recordings. The dry electrodes
like bar or pin do not require a gel for interfacing and also possible
to be in the form of an array (Kilby et al., 2016). Furthermore, there
is an additional category of surface electrodes, i.e., wired elec-
trodes, like Myoware muscle sensor and wireless electrodes such
as a Myo gesture control armband, which is dry electrodes. They
differ in features and more specifically in the sampling rate. All
these types of electrodes are considered as data acquisition
equipment.

The data acquisition represents the first stage in detecting
sEMG signals and recording them, processing them by removing
noise and unwanted parts of the signal. The pattern recognition
represents the backbone of sEMG signals analysis and processing.
To move the assisting devices, such as robotic arms or prosthetic
limbs, the pattern recognition system is mostly used to obtain ges-
tures of the muscle activity. It consists of three main stages: seg-
mentation, feature extraction selection, and classification (Naik
et al., 2016; Samuel et al., 2018; ULKIR et al., 2017).

In the segmentation stage, the sEMG signals are segmented into
slices (windows) or time-slots to extract features for each window,
during the muscles’ activity. There are two significant points in the
segmentation stage, namely, the length of the segment and seg-
ment schema; they need to be specified accurately since accuracy
is affected by them.

The feature extraction stage is when suitable features are
selected to extract information from each window of the sEMG sig-
nals. The characteristics of sEMG signals can be categorized by
Time Domain (TD), Frequency Domain (FD), and Time-Frequency
domain (TF). TD features extraction is easy to implement and does
not require a high computational cost. TD features, such as WL,
MAV, AR, SSC, ZC, and RMS are extracted from the data that rarely
related to the amplitude and frequency of the raw sEMG signals. In
contrast, FD features are extracted widely using Power Spectral
Density (PSD). The FD features include median frequency, mean
power, peak frequency, maximum amplitude and variance of the
central frequency. The TF features which depends on TF domain
like Wavelet Transform (WT) and Short Time Fourier Transform
(STFT) require higher computational cost and are more complex
compared to TD features (Ali, 2013; Altın and Er, 2016; Asogbon
et al., 2018).

The most appropriate classifier algorithm is chosen in the clas-
sification stage. The classifier will determine the intended move-
ment depending on the feature-class sets previously defined. The
classifiers are applied to distinguish different sets of features.
Many techniques are used for the classification purpose, including
well-known algorithms, such as LDA, SVM, K-NN, Artificial Neural
Networks (ANN), and fuzzy logic (FL) (Nazmi et al., 2016).
In sEMG signals, there are many applications such as an anthro-
pomorphic prosthetic hand (Wang et al., 2017), an anthropomor-
phic robot hand (Yang et al., 2009), Control of Home Devices
(Gonzalo and Holgado-Terriza Juan, 2015). In addition, there are
many applications in the robotic field such as (Murillo et al.,
2016; Fukuda et al., 2003; Yoshikawa et al., 2007).

Many studies have been conducted in the literature for the
study and analysis of the sEMG signal, most of them depend on
wired sEMG electrode as an acquisition system with the high sam-
pling rate (De et al., 2010; Chowdhury et al., 2013). Such custom
acquisition system design faces high signal noise and difficulties
in selecting suitable placement and the electrode internal distance.
The current work-study depends on Myo gesture armband which
is a low-cost generic design, wearable, multi-channels with built-
in filters to reduce noises.

Other studies used Myo gesture armband with custom design
classifiers such as Fuzzy, ANN, and Neuro-Fuzzy approaches
(Ahsan et al., 2011; Khezri et al., 2007; ULKIR et al., 2017). The
SVM classifier used in this study has a similar performance to that
of the Neuro-Fuzzy one and outperforms the fuzzy and ANN clas-
sifiers. The system proposed in (Krishnan et al., 2017) used the Lin-
ear SVM classifier with the frequency domain features to classify
five hand gestures. In this study, the same classifier is adopted,
but with Gaussian kernel and TD features that has a low computa-
tional cost and easy to implement, more especially in real time.

The primary motivation of this study is to replace the wired
electrodes used for sEMG signal with the wireless Myo gesture
armband for the aim of moving a 5-DoF Aideepen ROT3U robotic
arm in real-time. This replacement will add more free and comfort-
able for hand movement of the subject. Also, the Myo armband is
generally less expensive than other sEMG sensors. The Myo might
be a practical substitution for progressively costly gadgets utilized
beforehand.

The contribution of the paper is present the best parameters of
the pattern recognition system to distinguish seven hand gestures
(wrist right, wrist left, wrist up, wrist down, fist, resting hand, and
open hand), which give high system performance in order to move
the robotic arm in real-time. The parameters such as the number of
channels and window size affect the system accuracy and delay
time, the effective features extraction used, and suitable classifiers
to such type of datasets.

The structure of this paper is as follows: Section 2 describes the
background and some theoretical principles of data acquisition and
pattern recognition system. Section 3 explains the suggested sEMG
signal based methodology to move a 5-DoF Aideepen ROT3U
robotic arm in real-time. The experiments in offline mode and
online mode are presented in Section 4. Section 5 explores the sim-
ulation results and the comparisons between the performance of
the different classifiers. Finally, the paper is concluded in Section 6.
2. Theoretical Background

The Myo gesture control armband is a wireless wearable tech-
nology designed by Thalmic Labs in 2014 with five gestures of
the hand. It has three parts: gyroscope, accelerometer, and magne-
tometer. Each part contains the three axes of x, y, z, and all these
parts represent the Inertial Measurement Unit (IMU). The Myo ges-
ture armband includes two battery cells in different locations; each
cell has a capacity of 260 mA/hr and an operating voltage range of
1.7 to 3.3 V. The sampling frequency of Myo gesture control arm-
band is 200 Hz (Mahmoud Abduo and Galster, 2015; Mannion,
2016). It is mainly used for medical purposes, automation systems
applications, and to control robotic arms and Unmanned Arial
vehicles (UAV). Moreover, this product is supported by the SDK
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kit, which enables communication between Myo gesture armband
and other software applications, such as MATLAB.

In the segmentation section, there are many approaches used to
cut off the sEMG signals, such as adjacent and overlap schemes.
The segmentation scheme adopted in this paper is the overlapping
scheme. This type of segmentation divides the sEMG signals
into regular time slot windows which overlap with each other.
Classification Decision (CD) in the overlap technique can be
calculated as:

CD ¼ 1
2
Ta þ 1

2
Tnew þ s ð1Þ

where Ta represents window length, Tnewrepresents window incre-
ment and s represents processing time (Ali, 2013; Nazmi et al.,
2016). Furthermore, in this research, six TD features are extracted
for each window, these are, RMS, MAV, SSC, ZC, AR, and WL.

In the following, the symbols f k represents the sEMG signal in
each segment, and N is the number of samples of the sEMG signal.
The informative data that each feature represents is as follows (Ali,
2013; Huang et al., 2016):

1- Root Mean Square (RMS): It has frequency related features,
which is the square root of the mean square of the segment.
The mathematical representation of RMS is,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffir

RMS ¼ 1

N

XN

K¼1
f 2k ð2Þ
2- Mean Absolute Value (MAV): It has amplitude related fea-
tures, which is found by calculating the mean absolute value
of the segment. The mathematical representation of MAV is,
MAV ¼ 1
N

XN�1

K¼1
jf kj ð3Þ
3- Slope Sign Changes (SSC): It has frequency related features,
which detect changes in the slope sign of the sEMG signal
and count them. The mathematical representation of SSC is
as expressed as,

X

SSC ¼ n�1

k¼2
jðf k�f k�1Þðf k � f kþ1Þj ð4Þ
4- Waveform Length (WL): It has amplitude related features,
which represents the cumulative length of the sEMG wave-
form over the time segment. The mathematical representa-
tion of WL is given as,

X

WL ¼ N�1

k¼1
f kþ1 � f k
�� �� ð5Þ
5- Zero Crossings (ZC): It has frequency related features, which
represents counts of how much signal amplitude crosses
the zero amplitude over time segment. It is measuring the
frequency shift and shows the number of signal sign varia-
tions. The mathematical representation of ZC is as follows,

X

ZC ¼ N�1

k¼1
sngðf kf kþ1Þ \ jf k � f kþ1j � a ð6Þ
�

sngðxÞ ¼ 1 if x � a

0 otherwise
where a is a threshold.

6- Auto Regression (AR): This represents the linear combination
of previous windows plus the error term. The mathematical
representation of AR is,
xn ¼
Xp

k¼1
akf n�k þ en ð7Þ

where n = 0, 1. . . N � 1, ak is the AR model coefficient, p is the AR
model order, en is the residual white noise.

The present study adopts three types of well-known classifier
algorithms, these are, SVM, LDA, and K-NN. The K-NN process
begins at the test point and increases its region until it includes
K training samples and applies the majority vote of these samples
to identify the test point. The research has shown that no optimal
number of neighbors fit all kinds of datasets because each dataset
has its requirements (Dougherty, 2013). The SVM is a linear model
used to implement non-linear classification boundaries. The sup-
port vector classification deduces a computationally efficient path
of learning ‘good’ splitting hyperplanes in dimensional feature
space, whereby ‘good’ hyperplanes could distinguish between
new sample classes. In many real-life applications, there are non-
separable cases of data when both classes are overlapping. In such
a situation, it becomes impossible to split the data with linear sep-
aration. Therefore, the SVM maps the data by applying a nonlinear
transformation by a suitable selection of basis functions into a
higher-dimensional feature space, where the situation becomes
linear. There are many kernel functions in the SVM algorithm such
as the linear, Radial Basis Function (RBF), polynomial and sigmoid
functions (Ali, 2013; Dougherty, 2013). The LDA is Statistical clas-
sifier where a new observation should be assigned to mutually
exclusive categories. The objective of the LDA, like the SVM tech-
nique, is to find a hyperplane that can split the data points into dif-
ferent classes. This hyperplane can be obtained by finding a model
which enlarges the distance between the mean of the classes and
reduce the variance within the class under the assumption of nor-
mal data distribution. The key point of the successful system is
how to choose the appropriate features to support the classifier.

The accuracy of the system depends on the number of correct
predictions of the classifier divided by the number of total predic-
tions, measured in percentage (Ali, 2013).

Accuracy ¼ No: of correct predection
Total No:of predection

� 100 ð8Þ

where the number of correct predictions is the correct output from
the compression of predictions class with class testing, while the
total prediction is all the expected movements from the classifier.
3. Methodology and hardware components

The system which was designed consists of three main parts:
data acquisition, pattern recognition algorithm, and the driven
robotic arm. Fig. 2 shows all parts of the proposed system.

3.1. Data acquisition and synchronization

The Myo gesture control armband is used as data acquisition
equipment for recording the sEMG signals. It is wireless sEMG elec-
trodes (sensors) that surround the forearm and detect the electrical
signals of muscle activities. It consists of eight sEMG stainless steel
medical sensors where each sensor represents one channel. It has
advantages over other conventional sEMG sensors because no
cables are required, free movement, easy to wear, relatively cheap,
small in size, and lightweight. Fig. 3 presents the Myo gesture
armband.

Eight datasets were recorded of seven gestures for six healthy
subjects. Each gesture in the dataset holds for five seconds and
starts with a rest hand gesture, thus, the length of each dataset is
35 s. The total dataset recording for each subject is 280 s. The data-
set divided into a training set and testing set using a cross-
validation technique. In the cross-validation, the original dataset



Fig. 2. Block diagram of the overall proposed system.

Fig. 3. Myo gesture armband.
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is randomly partitioned into k equal sized sub-datasets. A single
sub-dataset is retained as the validation data for testing the model,
and the remaining sub-datasets are used as training sets. For
implementing cross-validation, the recorded datasets partitioned
into eight sub-datasets. The information about six healthy subjects
in this study is given in Table 1.

Usually, the collected sEMG signals are normally noisy due to
ambient noise, motion artifact, inherent noise in electronics equip-
Table 1
Information about the volunteered subjects.

No. of Subject Gender Length (cm)

Subject 1 Male 185
Subject 2 Male 190
Subject 3 Female 165
Subject 4 Female 165
Subject 5 Male 178
Subject 6 Female 165
ment, and inherent instability of the sEMG signal. The ambient
noise is originated due to the radiation of electromagnetic devices,
while the motion artifact noise is caused by the interface between
the electrode and the skin. The noise generated by electronic
devices, as a result, is called the inherent noise. The intrinsic insta-
bility occurs due to the motor units firing rate effects on the sEMG
signals. When using the Myo gesture armband, practically the
noise ratio in sEMG signals is low and does not affect the sEMG
Weight (Kg) Age (year) Hand side

128 47 Right
97 44 Right
72 43 Right
80 37 Right
100 36 Right
63 25 Right
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data. Normally, the sEMG signal voltage is minimal, about (0–2)
mV, the Myo gesture armband amplifies the sEMG signals so that
they can be easily handled.
3.2. Pattern recognition system

The pattern recognition system consists of three stages, as illus-
trated in Fig. 2. It is used to analyze and process the sEMG signals
to distinguish seven hand gestures, namely, wrist right, wrist left,
wrist up, wrist down, fist, open hand, and rest hand, as shown in
Fig. 4
Table 3
The results of the SVM gaussian and linear models.

Subject SVM linear model (%) SVM RBF model (%)
3.2.1. Segmentation
The window length of sEMG signals plays a vital role in classi-

fication accuracy and the required time to process sEMG signals
in online-mode. When the window length is relatively small, the
classification accuracy will be low, because the information is
highly distorted. As a consequence, it is difficult to extract useful
information from each window. In contrast, if the window length
gradually increases, the delay time will also increase, as well as
the classification accuracy, to a certain degree, beyond that there
will be no increase in the system accuracy. Therefore, a trade-off
between the accuracy and delay time should be balanced to guar-
antee high accuracy and low delay time. In this work, the overlap
segmentation technique is adopted in this study and practically
selected window size 240 ms and window increment 120 ms were
used for each dataset.
Subject1 89.6 96.3
Subject2 89.8 95.05
Subject3 91.5 95.57
Subject4 89.3 95.3
Subject5 91.2 95.72
Subject6 87.5 93.66
Average 89.82 95.27
3.2.2. Feature extraction
After segmentation of the sEMG signals into windows of equal

size, specific features that are extracted from each window of
sEMG signals are selected. These features types will guarantee a
high accuracy of separation gestures. Information cannot be
obtained for features from individual samples of the sEMG signals.
Fig. 4. Seven hand gestures

Table 2
Feature efficiency (%) for each subject of the SVM classifier.

No. of Subject RMS MAV W

Subject1 96.12 96.55 9
Subject2 93.16 93.08 9
Subject3 95.80 95.57 9
Subject4 94.21 93.41 9
Subject5 95.53 95.59 9
Subject6 93.56 93.48 9
Average 94.73 94.61 9
In this paper, the time domain features, i.e., MAV, RMS, WL, AR,
ZC, and SSC are selected due to their ease of implementation and
do not need high computational resources. These features are
extracted from each window for each channel of the sEMG signals,
resulting in a matrix of features. The number of the rows of the
matrix represents the total number of windows of the sEMG data,
while the number of columns represents the total number of the
features for all channels. Table 2 explains feature effectiveness in
each channel for each subject of the SVM classifier. The less useful
features are preferably deleted to decrease the computational time,
especially in real-time. ZC and SSC features have less effect on the
classification accuracy, based on that, it is removed from the real-
time implementation.

3.2.3. Classification
Three types of classifiers are used in the study, these are, SVM,

LDA, and K-NN with K = 7 for comparison to obtain the highest sys-
tem accuracy among them. The two models of the SVM classifier
are implemented; linear and the RBF(Gaussian) models in order
to guess the nature of the feature space data. Table 3 shows the
results of the models.

From the results in Table 3, the performance of the RBF is better
than the linear for SVM classifier, and thus it was concluded that
the nature of the data obtained from volunteers is non-linear sep-
of the proposed system.

L AR(4) ZC SSC

4.20 72.67 48.67 35.78
0.24 66.78 50.74 41.71
2.06 61.86 40.53 29.97
2.14 64.63 45.96 38.22
3.47 66.93 45.71 34.16
1.50 56.22 41.24 31.29
2.29 64.85 45.48 35.18



Fig. 5. The manner of wearing Myo gesture armband.
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arated. Therefore, the RBF kernel of the SVM classifier was adopted
in this study. The RBF function is given as in equation (9) below:

Kðxn; xiÞ ¼ expð�c xn � xij jj j2 þ CÞ ð9Þ

where K xn; xið Þ; xn; xi, c; C represent kernel function, support vector
data, feature data, gamma, cost of the penalty respectively. To
obtain the high system accuracy by SVM classifier, the hyperparam-
eters (c, C) prefer to be optimum. The iterative method grid search
was used to achieve optimum values, where the optimal hyperpa-
rameters output of grid search method was C = 9 and gamma = 12.5
(Achirul Nanda et al., 2018).

LDA is a statistical classifier where a new observation should be
assigned to mutually exclusive categories. The objective of LDA,
like SVM technique, is to find a hyperplane that can split the data
points fall in different classes. The Linear discriminant analyses
based on the Bayes classification rule.

P Ckð jXÞ ¼ PðCkÞP xð jCkÞ
PðxÞ ð10Þ

where P Ckð jXÞ is the probability density function for the test vector
within k class,PðCkÞ is the previous probability for class k and usu-
ally presumed to be equal for all classes, and P xð Þ is the probability
density function of the training space and is also assumed to be
equal for all classes (Zhang et al., 2013).

The K-NN classifier determines the class of (x) test data point
based on the nearest training points (K) to it and classifies it to
the classes that have the most probability. The K-NN process
begins at the test point and increases a region until it includes
(K) training samples and applies the majority vote on these sam-
ples to identify the test point (x). The probability density function
P(X;Cj), for the characteristic data X, presented class Cj is defined
as follows:

P X;Cj
� � ¼ X

di2KNN
Sim X;dið Þ:yðdi; CjÞ ð11Þ

where Cj represents training classes, and X represents the feature
vector of the test data. Also, a di is one of the neighbors in the train-
ing set, y (di, Cj)2{0,1} means if di belongs to category Cj, and
Sim(X;di) is the similarity function for X and di (Kim et al., 2011).

The prediction of the classifier would be applied in the next
stage as commands to move the robotic arm. If any channel has
low efficiency and has little effect on the overall accuracy of the
system, it can be removed to gain reduce the computational time,
thus, speeding up the system response especially in real-time
mode, as in the case of channel 2. Table 4 shows that channel
two has a little effect on the accuracy of different subjects as com-
pared with other channels. Where the dataset for each subject rep-
resents all gestures for each channel, which are (wrist right, wrist
left, wrist up, wrist down, fist, open hand, and rest hand as shown
in Fig. 4) which is repeated eight times.
Table 4
Accuracy results of the six extracted feature per channel with SVM classifier.

No. of Subject Ch1 Ch2 Ch3 C

Subject1 63.02 45.97 62.58 7
Subject2 52.94 39.13 41.84 5
Subject3 58.04 37.18 47.64 4
Subject4 60.22 40.84 52.17 5
Subject5 64.40 64.47 48.31 5
Subject6 54.60 51.75 46.85 5
Average 58.87 46.56 49.90 5
4. System modes

The system works in two modes: offline mode and online mode
(real-time). The offline mode is developed for calculating system
accuracy and improving system performance, while the online
mode is used for moving the robotic arm in real time. These two
modes have been implemented through the MATLAB R2017
program.

4.1. Offline mode

The Myo gesture armband should be worn in the same manner
at every time it is used to record the datasets to guarantee the
placements of its sensors in the same position. To avoid random
readings, this point must be considered during data recording. In
this study, the Myo armband is worn on the right forearm, as
shown in Fig. 5.

Myo gesture armband is used in this study to collect raw sEMG
signals from all channels during muscle contraction activity. The
information acquired by Myo armband is transmitted to the com-
puter via Bluetooth for analysis and processing in MATLAB R2017
environment. The duration of the recording dataset is 280s. The
window size in the dataset is 240 ms with 120 ms overlapping.
The number of features extracted for each set for all channels is
72, which equals to the number of Myo channels (eight channels)
multiplied by the number of features (six features: RMS, MAV, SSC,
ZC, WL, and AR with order = 4) per window (segment).

Three vectors are calculated in addition to the dataset; the first
vector is a feature vector composed of six features extracted from
each window for each channel. While the second vector is a class
vector representing the movements of the dataset.

Finally, the third vector is an index vector representing the
index of starting the movement in the dataset. Proper synchroniza-
tion between class vector and index vector improves movement
classification accuracy. For the best synchronization, the pro-
grammable model was developed to improve the accuracy of the
system.

The accuracy of the system is calculated as in equation (8). The
accuracy of the system using this procedure with the K-NN classi-
fier was 86.41%, while it was 92.58% with LDA classifier, and
95.26% with SVM classifier.
h4 Ch5 Ch6 Ch7 Ch8

3.38 71.75 55.21 56.07 56.40
7.15 47.75 57.33 55.57 57.34
5.22 48.71 46.12 52.95 68.44
6.06 58.51 51.67 51.88 67.45
1.25 65.45 69.84 37.47 59.57
3.54 61.71 45.82 42.85 62.43
6.1 58.98 54.33 49.47 61.94
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4.2. Online mode

In the real-time mode, the 5-DoF Aideepen ROT3U robotic arm,
Due Arduino microcontroller, HP laptop computer, and Myo ges-
ture armband comprise the hardware components of the entire
system. The Aideepen ROT3U robotic arm has a rotation angle of
180 degrees, a height of 42 cm (holder closed), clamp the maxi-
mum opening of 4.5 cm, and widest distance of the holder of
10 cm. It consists of five servo motors type MG 996R; each servo
motor has an operating voltage of 4.8 V to 7.2 V, with running cur-
rent of 500 mA–900 mA (6 V), operating speed: 0.17 60�/s (4.8 V),
0.14 60�/s (6 V), and torque: 9.4 kgf-cm (4.8 V), 11 kgf-cm (6 V).
Due Arduino specifications are: operating voltage: 3.3 V, digital I/
O pins: 54 (of which 12 provide PWM output), analogue input pins:
12, DC current for 5 V pin: 800 mA, flash memory: 512 KB all avail-
able for the user applications, SRAM: 96 KB (two banks: 64 KB and
32 KB), and clock speed: 84 MHz. HP laptop computer specifica-
tions are Processor: Core i5–2.3 GHz, RAM: 8 GB. Fig. 6 shows the
Due Arduino and the robotic arm.

To move the robotic arm like a human arm movement, the data
collected by Myo armband transmits to the computer via Blue-
tooth. The pattern recognition algorithm processes these data to
predict the intended movements. The output of pattern recognition
is a vector of anticipated movements; each value in this vector rep-
resents one gesture. The majority vote is applied to this vector to
guarantee a smooth movement of the robotic arm. Majority vote
produces final movements that have been predicted most fre-
quently by the classifier.

The response time of the robotic arm movement as a result of
moving a human arm gesture is an essential factor in the success
measurement of the system. To improve the system response,
delay time should be reduced. There are many types of delay time
in the system, such as Bluetooth transfer delay, the computational
time of pattern recognition, and Arduino processing time. Blue-
tooth transfer delay could not be reduced, because it is a standard
protocol used by the manufacturing company of Myo gesture arm-
band. The computational time of pattern recognition can be
reduced depending on offline mode results; therefore, it is possible
to delete factors that do not significantly affect accuracies, such as
channel 2, and the ZC and SSC features.

The clock speed of Arduino (microcontroller) plays an essential
role in processing time, therefore, to improve the response time of
the system, it is better to select a high clock speed for Arduino.
Early experiments used UNO Arduino, which has a clock speed of
Fig. 6. Due Arduino microcontroller and 5-DoF
16 MHz. Then it was replaced by DUE Arduino that has a clock
speed of 84 MHz to reduce delay time and also to improve the
response time of the robotic arm. In this mode, the testing set
acquired from the Myo armband is directly cut off into segments,
and the feature testing is calculated for these segments. Further-
more, in the classification stage, the classifier expects the predicted
vector. The majority vote is applied and passes each value from it
to the Arduino, which is connected by a serial port to the computer
to move the robotic arm.

5. Results and discussion

This section discusses the results of experiments and factors
that affect the accuracy of the system. The influential factors are
the length of the window, type of the features selected and classi-
fier, and the number of influencing channels in the Myo armband.

5.1. Experiment one: effect of window length on system accuracy

The length of the sEMG signal segment affects the accuracy of
the classification and the delay time of the system, as explained
previously in the segmentation section. In this experiment the
window size changes from 100 to 750 ms. During the duration
between (100–500) ms, the accuracy of classification increases sig-
nificantly, but during the period between (500–750) ms, increasing
window size does not lead to a noticeable increase in accuracy. The
window size of the system should be kept below 300 ms of the
sample rate because of considerations of the real-time constraint,
where the output response time should not exceed this period
which represents the time of the processing of classification deci-
sions (Englehart and Hudgins, 2003; Hargrove et al., 2007). The
best results were obtained when the window size is 240 ms
through a trade-off between system accuracy and delay time.
Fig. 7 shows the relationship between system accuracy and win-
dow length.

5.2. Experiment two: effect of extracting feature selection on system
accuracy

Feature selection is essential to extract information from sEMG
signals because the classifier can distinguish between movements
based on the extracted information of these features. In this exper-
iment, the average accuracy of the system was 95.26%, 92.58%, and
86.41% for SVM, LDA, and K-NN respectively, for six features
Aideepen ROT3U aluminum robotic arm.



Fig. 7. Effects of the window length on system accuracy with three classifiers.

Table 6
Accuracy of the system after the removal of the ZC and SSC features, and Channel two
for each subject.

No. of Subject SVM + TD LDA + TD K-NN + TD

Subject 1 96.08 90.58 91.25
Subject 2 95.60 93.20 88.36
Subject 3 94.25 92.67 86.51
Subject 4 95.44 93.85 85.86
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extracted and eight channels for six subjects. By observing offline
results in Table 2, the RMS feature had a high effect on the accuracy
of the system, but the ZC and SSC features had little impact on the
system’s accuracy. Therefore, these features can be removed from
the feature vector set to reduce computational cost and hence min-
imizing processing time. Thus, online mode depended mainly on
four features: AR, WL, RMS, and MAV.
Subject 5 92.15 90.98 84.93
Subject 6 93.33 87.15 86.06
Average 94.48 91.41 87.16
5.3. Experiment three: effect of the number of channels on system
accuracy

Some of the Myo armband sensors will be positioned on mus-
cles that have a little electrical activity which will impact on the
value of information collected from that sensor. Therefore, by
observing offline results, it was apparent that channel two had
the poorest impact on the accuracy of the system for most subjects.
Therefore, to minimize the computational cost, this channel can be
removed from the pattern recognition system. Thus, in the online
mode, seven channels instead of eight channels are considered.
Tables 5 and 6 explain the accuracy of the system before and after
removal of the ZC and SSC features, and channel 2.

Fig. 8 shows the confusion matrix while training the SVM clas-
sifier on the subject data when extract RMS, MAV, WL, AR(4) fea-
ture set for seven channels (1,3,4,5,6,7,8). From examining the
confusion matrix in Fig. 8, the gestures (Up and Right) and (Open
and Fist) have the highest error rate. In general, the other gestures
have a little correlation between them as illustrated in the figure
below.

The comparison of the results of this study in offline mode with
other studies is shown in Table 7. Each study in Table 7 has its
environmental conditions and differs in many aspects with the
others, such as the number and type of subjects, data acquisition
Table 5
Accuracy of the system before the removal of the ZC and SSC features, and Channel
two for each subject.

No. of Subject SVM + TD LDA + TD K-NN + TD

Subject 1 96.3 91.7 92.1
Subject 2 95.05 93.49 86.29
Subject 3 95.57 94.0 82.36
Subject 4 95.29 94.38 84.09
Subject 5 95.72 94.05 89.9
Subject 6 93.65 87.82 84.52
Average 95.26 92.58 86.41

Fig. 8. A Confusion matrix of seven gestures classified.
approach, the extent of overlap and convergence between classi-
fied movements as well as the main differences listed in Table 7
such as feature selection and classifier type. From Table 7, it can
be noticed that the SVM classifier with different features domains
achieved the best results as well as Neuro-Fuzzy classifier.



Table 7
Performance comparison with other studies in offline mode.

No. Gestures Sample
Rate

Win_size
(samples)

Features Extractions Classifier Accuracy (%) Refs.

1 5 200 Hz 50 SSI, Max. frequency, Min. frequency,
Mean Power, Mean Frequency,

SVM 92.4 (Krishnan et al., 2017)

2 17 200 Hz 50 MAV, WL, ZC, and SSC SVM 96.8 (Phinyomark et al., 2018)
1000 Hz 250 99.1

3 6 1000 Hz 200 MAV, SSC, ZC, AR + WT Neuro-Fuzzy 96.0 (Khezri et al., 2007)
4 16 200 Hz Disjoint Wavelet - level4 ANN 89.0 (Luh et al., 2016)
5 5 200 Hz 00 MAV, RMS, VAR, STD, Feedforward Neural

Networks (FNN)
54.0 (Morales and Cepeda, 2017)

SVM 92.0
6 9 200 Hz 200 WL, MAV, WAMP, SSC, ZC, Cardinality(CARD) LDA 91.95 (Mendez et al., 2017)

2 KHz 94.18
7 5 200 Hz 50 Dynamic time warping (DTW) K-NN, K = 5 86.0 (Benalcazar et al., 2017)
8 7 200 Hz 48 MAV, RMS, WL, AR(4), ZC, SSC SVM 95.26 This Study

LDA 92.58
K-NN (K = 7) 86.41
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6. Conclusion

A model proposed in this paper is to move the robotic arm (5-
DoF) in real-time depends on recognizing human forearm gestures
based on sEMG signals collected by wireless Myo gesture armband.
The wireless Myo gesture armband added more flexibility and free
movement for the system and processes the sEMG signals effi-
ciently. Also, an excellent result was obtained in recognizing pat-
terns using a combination of the overlap segmentation
technique, (WL, AR, MAV, and RMS) extract features for each seg-
ment and the SVM classifier. Also, the experiment has shown that
the size of the window plays an influential role in the accuracy of
the system. It can be concluded that the best results were achieved
with the SVM and LDA classifiers, while the K-NN classifier
achieved acceptable results.

For future research in this field, a recommendation would be to
collect more data of volunteers of able and disable-bodied is neces-
sary to draw a robust conclusion about the accuracy of the system.
Also, adding one of the control design methods such as (Abdul-
Adheem and Ibraheem, 2016; Ibraheem and Abdul-Adheem,
2016) to add more smoothness to the robotic arm movement.
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