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Background and Objective: The currently active COVID-19 pandemic has increased, among others, pub- 

lic interest in the computational techniques enabling the study of disease-spreading processes. Thus far, 

numerous approaches have been used to study the development of epidemics, with special attention 

paid to the identification of crucial elements that can strengthen or weaken the dynamics of the pro- 

cess. The main thread of this research is associated with the use of the ordinary differential equations 

method. There also exist several approaches based on the analysis of flows in the Cellular Automata (CA) 

approach. 

Methods: In this paper, we propose a new approach to disease-spread modeling. We start by creating 

a network that reproduces contacts between individuals in a community. This assumption makes the 

presented model significantly different from the ones currently dominant in the field. It also changes 

the approach to the act of infection. Usually, some parameters that describe the rate of new infections 

by taking into account those infected in the previous time slot are considered. With our model, we can 

individualize this process, considering each contact individually. 

Results: The typical output from calculations of a similar type are epidemic curves. In our model, ex- 

cept of presenting the average curves, we show the deviations or ranges for particular results obtained 

in different simulation runs, which usually lead to significantly different results. This observation is the 

effect of the probabilistic character of the infection process, which can impact, in different runs, indi- 

viduals with different significance to the community. We can also easily present the effects of different 

types of intervention. The effects are studied for different methods used to create the graph representing 

a community, which can correspond to different social bonds. 

Conclusions: We see the potential usefulness of the proposition in the detailed study of epidemic de- 

velopment for specific environments and communities. The ease of entering new parameters enables the 

analysis of several specific scenarios for different contagious diseases. 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

The recent pandemic related to the worldwide expansion of

he COVID-19 coronavirus redirected the attention of scientists and

ntire societies to techniques that can be helpful when analyz-

ng and predicting the spread of diseases in communities. Viruses

re always present in our environment, and this presence is usu-

lly uninteresting. For example, we are so familiar with most in-

uenza virus mutations that the epidemics caused by them are

idely considered mainly in economic discussions. Only occasion-

lly, when some particularly aggressive mutations emerge or dur-

ng pandemics caused by some coronaviruses (SARS, MERS), is the

ublic alerted about the potential danger. 
E-mail address: tomasz.gwizdalla@uni.lodz.pl 
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With the knowledge about possible directions of disease trans-

er and the number of people at risk, the identification of the most

ulnerable groups is crucial. In 1927, Kermack and MacKendrick

ublished their paper [1] , which is now considered the first ap-

roach to the mathematical modeling of epidemic processes. They

ntroduced the crucial concepts by classifying members of a pop-

lation, when considering an illness, as susceptible and infected

nd tried to find the relationships between these classes with the

elp of differential calculus. This division is also used today, and

he number of applications using, based on their approach, ordi-

ary differential equations (ODE) continues to increase. We want

o emphasize a topic that is difficult to address when using the

DE approach - the inclusion of stochastic effects. Indeed, there

re different models in which some external force, either a peri-

dic, e.g., seasonality [2] , or purely stochastic [3] , here for the SIS
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model, force, assuming the susceptibility of an individual recover-

ing from a disease, is used. 

In our approach, we follow another approach that is related to

the analysis of the distribution of particular groups in real human

communities. This approach is often related to the Cellular Au-

tomata model. The typical approach can be found, e.g., in Sirak-

oulis’ paper [4] . In the model, the population is distributed over

a two-dimensional space, and this space is, as is typical for CA,

divided into squares. The spread of disease is modeled by the de-

terministic rules describing the transitions between states. Many

investigations use similar models, e.g., the famous model proposed

by Ferguson’s group [5] conducts much more soft division to gen-

erate the areas. We pay special attention to this model since it was

later widely used to study the possibilities of preventing disease.

In [6,7] , the expected results of different intervention procedures

during the influenza epidemic in Asia and the United States, re-

spectively, are shown. The same model has recently been applied

to the COVID-19 [8] pandemic. Great Britain and the United States

were the areas of application, but according to authors’ remarks,

every high-income country can be studied with this model. 

A similar approach using CA can also be observed in [9] , where

the transfer between cells is the main factor supporting the spread

of disease. The exchange of people is also a crucial feature of the

model presented by Holko [10] . The results are here reproduced for

the whole area of Poland, divided into 36 × 36 squares, showing

the possible spread of the influenza epidemic. In our earlier paper

[11] , we showed, taking into account the same area of inhabitance

as in this paper, that the model requires special attention, primar-

ily due to the existence of so-called size effects. 

Although similar to the approaches based on cellular automata,

our approach is different, mainly due to the change in the defini-

tion of the topology of interpersonal links. We do not consider the

aggregate number of individuals in a particular state and a par-

ticular area, but we create direct links between them. Thus, we

can regard our model as an agent-based model. After defining the

topology and the set of features characterizing agents, we can in-

dividualize their behavior. In the paper, we use the Barabasi-Albert

(BA) model of the creation of a community graph [12,13] . This ap-

proach currently seems to be the most popular among the numer-

ous attempts to model communities, dated from the seminal pa-

per on random graphs by Erdos and Renyi [14] . The main prop-

erty of the BA model is that it leads to a power-law distribution

of nodes according to their degree (the scale-free property), which

is typical of communities. Therefore, several real-world networks

can be described by a BA model, e.g., a world wide web network,

an actor or scientific collaboration, or even the E. Coli metabolism

[15,16] . Several authors have already proposed the use of the BA

network [17–20] , but their models concentrate on other problems.

For simplicity, we do not introduce the differences in the behavior

of agents. 

There are also papers where some of the concepts used in our

paper were considered. Ramos [21] studied the case of grouping

on some form of a two-dimensional grid. Balcan [22] studied the

role of hubs, well known from complex network theory, in out-

break prevention by their identification and vaccination. Hellewell

[23] studied the graph of direct links, where a negative binomial

distribution determined the probability of the creation of links. 

Among the papers related to the current COVID-19 pandemic,

we want to pay attention especially to these documents that can

be used in our calculations or give some additional ideas for dis-

ease analysis. We mention here the reports concerning the incu-

bation time [24–26] and the ones that present information about

important parameters, such as the basic reproduction number R 0 
[27,28] . Boldog’s paper [27] also draws interesting conclusions con-

cerning the potential risks for particular countries when taking

into account their connections with China. 
a  
This paper is organized as follows: In the next section, we

resent a model emphasizing two revealed problems - the con-

truction of a graph describing a society and the procedure of the

ransfer of illness. We also justify the idea of division into groups

ased on some, generally arbitrary, factor. In the section devoted to

he presentation of results, we concentrate on the epidemic curves,

hich are presented in two forms, i.e., the number of new cases

nd the number of recovered persons (in the absence of the mor-

ality rate), and on the analysis of intervention, considered as the

inimization of the number of contacts between neighbors in the

etwork. We also show the effect of using different procedures on

he possibility of people in different groups becoming sick. 

. Model 

The most popular way to model the disease-spreading process

s the method of Kermack [1] , which is based on individuals be-

ng assigned to one of several groups. In their original paper, the

uthors did not use the contemporary terminology, but later, the

cronym SIR began to be used. 

In the SIR model, the members of a population can be classified

s belonging to one of three groups concerning a disease: suscep-

ible (S) - those who can become ill; infective (I) - those who can

nfect others; and recovered (R), those who are permanently im-

une. The set of ordinary differential Eq. (1) determines the num-

er (or fraction) of individuals in a particular state and at a partic-

lar time. 

dS(t) 

dt 
= −aS(t) I(t) 

dI(t) 

dt 
= aS(t) I(t) − bI(t) (1)

dR (t) 

dt 
= bI(t) 

In the above formula, S, I , and R are the numbers of people in

he respective phases of illness, a is the contact rate, and b is the

nverse of the infectious period. 

This approach was later extended by including a fourth phase -

xposed (E) - between phases S and I. This fourth phase describes

he fraction of the population in the latent (incubation) phase of an

llness. This addition enables us to include more realistic processes

hen considering the majority of infectious diseases. The set of

DEs now takes the form: 

dS(t) 

dt 
= μ(N(t) − S(t)) − β

I(t) 

N(t) 
S 

dE(t) 

dt 
= β

I(t) 

N(t) 
S − (μ + δ) E(t) 

dI(t) 

dt 
= δE(t) − (μ + γ ) I(t) (2)

dR (t) 

dt 
= γ I(t) − μR (t) 

Some parameters in formula 2 are the same as in 1 : β is the

ontact rate, and γ is the inverse of the infectious period. Ad-

itionally, we have to consider N ( t ) - the total number of peo-

le in a community, satisfying the condition N(t) = S(t) + E(t) +
(t) + R (t) = const - and some new parameters, such as δ, which

s the inverse of the latent period, and μ, i.e., the mortality (and

lso birth) rate. The equality of mortality and birth rates is cer-

ainly the condition enabling us to consider a constant N ( t ). We

hould emphasize that both of the above sets of equations are ex-

mplary since their detailed forms depend strongly on the system’s

ssumptions, but they present the idea of the calculations. The pre-

ented models also offer many opportunities to be modified or ex-

anded. We can mention here, e.g., SEIS, where no immunity is

ssumed after a disease is passed on, or SEIJR, where an additional
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 phase (isolated individuals with treatment) is placed between the

 and R phases. 

This continuous approach enables easy calculation of one of the

ost interesting values describing the potential effect of an out-

reak, i.e., the basic reproduction number, which is a simple func-

ion of the ODE parameters: 

 0 = 

δ

μ + δ

β

μ + γ
(3) 

.1. Modeling the community graph 

Although continuous models based on the ODEs give many in-

eresting and practical results, it is well known [3] that there exists

 large stochastic effect in the epidemic process. Therefore, we pro-

ose considering epidemics in a more individual manner. We start

rom two assumptions: 

• every infection is a result of the interaction between infected

and susceptible, 
• we have to find the network of interpersonal connections ini-

tially and then model the spread of an illness. 

The second of these two points distinguishes our proposition

rom some of the abovementioned approaches, being based mainly

n the Cellular Automata methodology, where the particular cells

n a two-dimensional lattice correspond to different sections, cov-

ring the whole real area under investigation, for example, certain

arts of cities or countries (see, e.g., [10,20] ). We instead numeri-

ally follow a scheme in which the possibility of every individual

nteraction is considered separately. The fundamental idea of the

A model is the observation regarding the growth of the network.

nstead of creating links between the existing nodes, the preferen-

ial character of this growth is assumed, which governs the cre-

tion of a graph corresponding to a community network. In con-

lusion, the individuals are added to the existing graph one after

he other, and during this process, the straightforward formula: 

 (k ) = 

k i ∑ 

k j 
(4) 

s used when determining the probability of linking a new node to

n existing node indexed by i. k i here is the degree of node i , and

he summation in the denominator runs over all existing nodes. 

We present the results for the two cases of graph modeling.

he first one is the pure BA model, as it is well known from the

eminal papers. However, we propose a modified approach, which

s related to the fact that every individual is a member of dif-

erent groups. As a group, we understand here different subsets

f a community described by some common interest or features.

ood examples include the place of residence or the workplace.

ven if we do not consider someone connected in the sense of

 typical social network, we can more easily meet him/her in a

ocal store or the company hallway. This is why we decided to

odify the probability given by formula 4 , trying to take into ac-

ount the mentioned effects. The solution that imposes itself is to

hange the relative probabilities of acceptance for links connecting

odes/individuals belonging to the same group when compared to

hose from other groups. However, no clear evidence exists regard-

ng how we can introduce these changes. It could strongly depend

n several additional details, for example, an individual living in

 block of flats and shopping at the supermarket can accidentally

eet many more unknown people than a resident of a cottage in

he suburbs, who shops only at a local store. Since we have to ag-

regate all these possibilities, we decided to use the mechanism

here the probability of connecting nodes is tripled for nodes be-

onging to the same group, while for different groups, it is divided
y 2. 

 same group (k ) = min (1 , 3 ∗ k i ∑ 

k j 
) 

P di f f erent groups (k ) = 0 . 5 ∗ k i ∑ 

k j 
(5) 

his procedure has a different significance in different phases of

he creation of a graph of connections. In the early phase, the val-

es of probabilities (4) are relatively large; thus, almost all nodes

n the same group are connected (probability is close to 1), and

he decreased probability for different groups starts to play an im-

ortant role just after the initialization. The later added nodes usu-

lly have smaller degrees; hence, both formulas 5 have compara-

le significance. The choice of particular multipliers (3 and 0.5)

n Eq. (5) has no particular background. We want to clearly dis-

inguish between the case where belonging to some environment

trongly influences an individual’s ability to be connected with an-

ther person and that where no particular preferences are possible.

n this paper, we use three types of graphs describing communi-

ies: 

• the pure BA graph; 
• a graph based on assignment to one of four groups with com-

pletely artificial sizes; 
• a graph based on assignment to one of 16 groups with sizes

based on the inhabitance of particular areas of a selected

medium-sized city in Poland. 

We create the four groups mentioned in the second of the

bove points to introduce the visible differences in their sizes. The

dea is to observe the effects of the proposed division in the sim-

lified case, and the percentages of people in successive groups

re {0.1, 0.2, 0.3, 0.4}. The second division is based on a real

nalysis of our city - Łód ́z (Lodz). Easily accessible information

29] shows that we can approximate the city’s symmetric shape as

 square with an edge length close to 16 km. The number of inhab-

tants in Lodz can be estimated to be approximately 70 0 0 0 0. The

arge square is further divided into 16 smaller squares (4 rows by

 columns). For this approach, we can establish the number of in-

abitants in particular parts of the city. The results of this division

re schematically presented in Fig. 1 (a). The shades correspond to

he number of inhabitants in a particular area, and the numbers

nside the squares are the populations of groups in thousands. 

To show in more detail the distribution of people in the studied

ase, we also added Fig. 1 (b), where a similar division is shown for

he system of 16 × 16 = 256 smaller groups. 

It is a fundamental assumption that this community is isolated;

hus, we do not have the chance for potential secondary outbreaks,

lthough it is not difficult to introduce this effect. 

The modification of the probability distribution in creating the

onnection is shown in Fig. 2 . We show the distributions for the

hree types of graphs mentioned above when creating them for

0 0 0 0 individuals. We can observe that the algorithm creates less

han 10 −4 of pairs with a probability greater than 0.01. The differ-

nces are visible, but it may seem that they are not able to produce

 significant effect on the spreading process. There is also no sig-

ificant difference between distributions for different divisions (4

roups or 16 groups). 

.2. Modeling the disease transfer 

The process of disease transfer is, in reality, difficult to describe

n the language of mathematical formulas. When considering the

irect contact results, we have to take into account many details,

uch as the duration of contact or the distance between individu-

ls. Indeed, there are also many features of medical origin, such as
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Fig. 1. The number of inhabitants of Lodz, corresponding to the number of people in particular groups when dividing into 16 (a) or 256 (b) groups. 

Fig. 2. Comparison of the connection probability distributions 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

The list of parameters used in the modeling process. 

Number Parameter 

Acceptable set of values 

Influenza COVID-19 

1 Size of sample {7000, 70000} 

2 Mode of graph creation {pure BA, modified BA} 

3 Probability of meeting 0.1 

4 Probability of infection 0.25 

5 Number of days in exposed (E) state 2 0 

6 Number of days in infected (I) state 4 14 

7 Number of groups {4, 16} 

8 Index of group where outbreak starts {0, 3, 10} 

9 Choice of patient 0 {the hub in the group} 

10 Day of intervention {no intervention, 10} 
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the individual immune system or blood group [30] . Due to these

problems, a much more simplified approach is typically used. For

example, in Schimit’s paper [31] , the probability of infection de-

pends on the number of infected neighbors ( ν): p(ν) = (1 − e −kν ) .

In our approach, we consider the process of possible infection sep-

arately during every step and for every possible pair of neighbors. 

There are two probabilities that are the basis of our model: 

• p M 

- probability of meeting (contact), 
• p I - probability of infection. 

The first value ( p M 

) is related to the social reasons for infection

- without contact with a pathogen, we cannot become ill. There-

fore, we have to define the value that describes the probability that

two individuals can meet during the time corresponding to one

time step. Thus, p M 

is the value that describes the possibility of a

situation when contact is long enough to enable the transmission

of illness. The second value ( p I ) is related to the medical-related

processes of infection and should, in general, correspond to the

characteristics of the pathogen causing the disease. In the simplifi-

cation, to meet the current paper’s needs, this value is the prob-

ability of transferring an illness during a meeting, which occurs

with probability p M 

. In general, this value can undoubtedly corre-

spond to many processes related to the pathogen transfer between

two individuals. As a result, this method enables distinguishing the

influence of processes of different origin on the result of simula-

tion. By changing p M 

, we can introduce, e.g., the effect of a quar-

antine, and by changing p I , we can distinguish different diseases. It

is very important to mention here that p I does not change during

the simulation run. This change would be a good model for the re-
ction of a pathogen to the environmental conditions, such as the

emperature, humidity, or UV radiation level. 

The crucial problem when studying the expansion of an epi-

emic is to parametrize the SEIR model by introducing into the

alculations the realistic times at which an individual stays in the

xposed ( t E ) and Infectious ( t I ) states. In this paper, we show the

esults for two pairs of times, making it possible to distinguish be-

ween the two types of infections. As a first case, we choose the

imes typical for influenza ( t E = 2 , t I = 4 ), following the cases stud-

ed in [10,32] . For the second case, we choose times that best re-

emble the COVID-19 data. Since there exist some preliminary data

25,26,33] , we decide to set ( t E = 0 , t I = 14 ). 

Finally, the scheme of disease transfer is as follows: 

• We start from exactly one “patient 0”. 
• The location of this patient varies between simulation runs, but

it is always unambiguously defined. Usually, “patient 0” is the

hub of the selected group, and sometimes it is a less connected

node. The detailed information about him/her is always given

when describing a particular result. 
• One time step is equivalent to one day. 
• During the day, an individual is in group I - infectious - if

he/she can transfer the disease to every one of his/her con-

nected individuals with total probability p T = p M 

∗ p I . 
• After the infection time, every individual stays recovered (R)

and does not return to the susceptible group (S). 
• The mortality and birth rates are assumed to be 0. 

In Table 1 , we present a summary of the simulation parameters.

hree fields in the table need further explanation. Unless stated

therwise, the outbreak starts in the so-called hub in the most

opulous group. In the concept of social networks, hubs are those

odes that are characterized by the highest degree. This means

hat the selection of the initial point of the outbreak is not ran-

om but is assigned to the node with a relatively high possibility

f spreading the disease. 
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We also decide to propose the model of intervention in the

orm of the separation of individuals. The main idea of prevention

orced by authorities during the COVID-19 outbreak is to keep peo-

le at home. Certainly, for most of the population, it is not possible

o completely resign from leaving places of isolation; hence, they

ignificantly decrease the number and intensity of outside contacts.

e model this by decreasing the p M 

factor. If we force an inter-

ention, every day after its start, p M 

is halved ( p M,t+1 = 0 . 5 ∗ p M,t -

 enumerates the time steps) until it reaches a value lower by one

rder of magnitude compared to the starting value p M 

= 0 . 1 . For

he initial calculations, we assume that intervention, if it occurs,

tarts on the 10th day. 

. Results 

In this section, we present the results of calculations made for

he model presented above. We start the analysis from the infor-

ation on the size of graphs used in particular simulations. Two

alues are chosen, i.e., 70 0 0 and 70 0 0 0, with several reasons jus-

ifying these choices. First, we can expect the existence of a size

ffect. The size effect is typical for dynamical system simulations

nd manifests itself in the dependence of results on the size of

he sample. We have observed this effect for disease spreading

11] models, and we can also expect its existence for these cal-

ulations. The choice of particular values is done to achieve easy

caling and comparison with the number of nodes in the subse-

uent sections of Fig. 1 . All the values presented there are de-

ermined on the basis of the number of Lodz inhabitants, which

s approximately 70 0 0 0 0; thus, the real number of 3700 persons

n the upper-left section corresponds to 37 or 370 for 70 0 0 and

0 0 0 0, respectively. A smaller number of nodes can also make the

alculations faster and, therefore, enable collecting more extensive

tatistics. The most time-consuming process is the creation of the

etwork - its time complexity is O ( n 2 ). 

In Fig. 3 and 4 , we show the epidemic curves and the cumula-

ive epidemic curves for selected cases described by the parame-

ers listed in Table 1 . In Fig. 3 , we show the daily number of new

ases. In Fig. 4 , as cumulative data, we consider all individuals who

assed the infectious state (I). For simplicity, we call them recov-

red in the figure. The results presented in the plots are averaged

ver ten runs for every set of parameters. This procedure makes

ll curves smoother, and all statistical effects disappear; we will

eturn to them later. We prepare both figures in the same style.

aving the data for two illnesses and two cases related to reduc-

ng the contact probability (denoted as a form of intervention),

e show them in such a way that the upper plots correspond to

he influenza-related data and the lower ones to the COVID-19 re-

ated data. The left plots show the results without any interven-

ion, while the right ones correspond to the inclusion of the social

istancing effect by decreasing the p M 

parameter. 

The pure epidemic curves ( Fig. 3 ) show that every factor in-

luded in the simulation parameters can influence the course of

pidemics. Since we show percentages, we can directly compare

ll curves. The most visible differences can be observed for the

nfluenza-related data. As one can expect, when starting the dis-

ase in the hub of the most populated group (described as a hub),

e obtain the highest rate of total infected persons. This result is,

owever, obtained for the particular division into four groups. With

his division, the increase in connection probability plays such a

ignificant role that it causes a large increase in the number of per-

ons with illness. Interestingly, the same case but considered for

he pure BA model or for a larger number of groups (16) does not

ause this significant effect. It can also be observed that the max-

mum of epidemics takes place earlier than for the corresponding

arger number of groups for the smaller groups. This effect is visi-

le for all pairs of curves prepared for the same set of parameters
ut different sizes. It is also essential that the difference in max-

mum percentages for different parameters can differ by approxi-

ately an order of magnitude, and epidemics can last a long time.

ndeed, it never expires, as is known for influenza, certainly with

ifferent intensities. 

When looking at the plots for influenza with intervention, we

an estimate the progress of influenza when we assume that the

estrictions, similar to those introduced during COVID-19, are im-

lemented on the 10th day from the time of outbreak. We can ex-

ect that in approximately three weeks (10 days after implement-

ng social distancing), the disease will disappear. Indeed, we can

onsider this situation as a thought experiment, since no govern-

ent would impose restrictions due to the seasonal flu. 

We can compare our flu-related observations from both figures

 3 and 4 ). The second figure enables us to easily compare the total

umbers of people passing on the flu. As one can see, the final

umber of recovered persons and the outbreak’s dynamics vary

ith the choice of model. When trying to compare the results

ith the real-world data, we can use, for example, the information

rovided by the Polish National Institute of Hygiene. The data for

oland, with just under 40 million citizens, show that, for different

ears, the percentage of influenza cases is estimated to be between

 and 15 percent (see http://www.old.pzh.gov.pl/oldpage/epimeld/

rypa/Ryc _ 3.jpg) . We observe that our size-dependent results are

n the appropriate range. 

When looking at the COVID-19-related data in the lower plot of

ig. 3 , we notice that the differences here are visibly less impor-

ant. As we observed earlier, the maxima of the curves for smaller

izes occur slightly earlier than for the corresponding curves for

arger sizes. This difference is, however, visibly smaller. The longer

nfectious time causes the disease to be more aggressive and faster.

or almost all cases, after approximately three months, the disease

isappears. The number of people spreading the disease can be

een in Fig. 4 . The final number of ill persons reaches a value in

he interval [57%, 73%]. This result is certainly unacceptable, espe-

ially taking into account the fact that the real mortality index for

OVID-19 is reported to be approximately 5%. 

The influence of intervention on the tenth day is shown in

ig. 3 (d). The crucial observation is that the disease distinctly

ecreases its intensity after several dozens of days. This profile

s similar to the curves obtained, for example, in some West-

rn European countries (see, e.g., https://www.worldometers.info/

oronavirus for the Netherlands or Spain). The disease stays sig-

ificantly weaker after approximately two months from the first

nfection. Indeed, these systems are not closed ones. 

We can show that the size effect is present in this particular

ype of calculation. Except for the data for COVID-19 parameters

ithout intervention, every other case strongly depends on com-

unity size. The most straightforward way to notice this effect is

o observe the curves drawn with the same line type but different

olors. This means that the spread of disease depends strongly not

nly on the relative ratio of connections inside and outside groups

ut also on the absolute number of links. Some extended calcu-

ations may be needed, especially to describe the influenza-type

pidemic. 

The interesting effect that we can observe is the change in

haracteristics with the increase in the number of groups. We

an see that the total number of ill persons for the division into

our groups is usually higher than for the pure BA model and

ater decreases when dividing the community into 16 groups. In

ig. 4 , this relation is observed, e.g., when comparing the plots for

ize = 70 0 0 , initialized in the hub of a large group, and 3 mod-

ls described as BA, 4gr, and 16gr. We think that the reason for

his property is the fact that we strongly support the creation of

inks inside groups (see Eq. (5) ). Thus, if there is a small number

f relatively numerous groups, the average number of links could

http://www.old.pzh.gov.pl/oldpage/epimeld/grypa/Ryc_3.jpg)
https://www.worldometers.info/coronavirus
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Fig. 3. The course of epidemic curves (new cases) for the sets of parameters selected among those described in Table 1 . The image is organized as follows: Among the four 

plots, the two upper plots (a and b) show the results for the influenza epidemic ( t E = 2 , t I = 4 ); the two lower plots (c and d), for COVID-19 ( t E = 0 , t I = 14 ); the two left 

plots (a and c) correspond to the situation without any intervention; and the two right plots (b and d), to the intervention of social type with, as described in the text, the 

limitation of contacts by the change in the parameter p M . Every plot contains 10 curves for different scenarios and conditions of modeling. The color of the line corresponds 

to the size of the sample: black presents data for 70 0 0 nodes in a graph, while red, for 70 0 0 0 nodes. The style of the curve distinguishes the method used for graph creation: 

solid line - pure BA model (BA), dashed line - 4 groups (4gr), and dotted line - 16 groups (16gr). We also show some plots describing when patient 0 is the one with the 

greatest number of links (hub) in the most populous group and some others where the hub is in the less populated group. The abbreviations in parentheses correspond to 

the description of curves shown in the first plot. 
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increase, strengthening the effect of disease transfer. We should

emphasize the magnitude of these changes, which can make some

results even ten times greater than others. 

We also tested the significance of the choice of the first infected

individual. To prevent the plot from being unreadable, we limited

the number of different cases to just two. For the first one, for

which most of the calculations are made, “patient 0” is in the most
opulous group. For three selected individuals, described as “hub

ther group”, he/she is also a hub but located in the less populated

roup. The difference in the final number of ill persons can be,

hen analyzing this feature, approximately up to 30% higher than

hen starting from the more populated subgroup. 

Considering once more the effect of intervention (see plots (b)

nd (d) in Fig. 3 and 4 ), we can observe that, with intervention in-



T. Gwizdałła / Computer Methods and Programs in Biomedicine 197 (2020) 105715 7 

Fig. 4. The course of cumulative epidemic curves for the same sets of parameters as in Fig. 3 . The organization of the image is the same as in Fig. 3 . 
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luded, the duration of the epidemic does not strongly depend on

he parameters of the model. Some dispersion certainly exists but

s not significant. To show some characteristics, we sampled the

elected averaged values for particular simulation types in Table 2 .

e choose to present three points in time: 

• the time when the cumulative curve changes its character from

convex to concave: t inflection 

• the time when the cumulative function reaches 0.99 of its max-

imal value: t 0.99 

• the time when the cumulative function reaches 0.999 of its
maximal value: t 0.999 
For all types of simulation (a-d), the data are averaged over

he whole set of parameters, and averages (along with standard

eviations) are shown. The results show that for the virus with

he longer infectious period, the duration is shorter (but certainly

auses many more cases) than for those with shorter times t E and

 I . We must pay attention to the fact that the results here are

trongly correlated with the model used. The size effect is ob-

ervable and characterized by a stronger influence of intervention

or larger samples, and the division into 16 groups prevents the

pread of disease. These data also give us information about the

nal phase of an epidemic. The most important result is shown in

lot (d). Even with a fast, radical, and widely accepted mechanism

f intervention, we can still expect that after ten weeks, approx-
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Table 2 

The averaged data of the characteristic times in days (time steps). 

Type of simulation t inflection t 0.99 t 0.999 

Influenza without intervention (plot a) 49.8 ± 15 144.7 ± 36 160.7 ± 36 

Influenza with intervention (plot b) 13.6 ± 1 24.8 ± 2 28.2 ± 3 

COVID-19 without intervention (plot c) 49.8 ± 5.3 92.7 ± 10 113.2 ± 12 

COVID-19 with intervention (plot d) 23.8 ± 0.4 53.8 ± 7.6 69.8 ± 8 

Fig. 5. The effect of the delay of intervention. Plot (a) is prepared for data used for influenza ( t E = 2 , t I = 4 ); plot (b), for COVID-19-related parameters ( t E = 0 , t I = 14 ). We 

perform the calculations for a sample size equal to 70 0 0 and with the start of the outbreak in the hub of the most populous group. Then, we prepare plots for three cases: 

pure BA model, four groups, and 16 groups. The descriptions are the same as in the earlier figure, i.e., BA, 4gr, and 16gr, respectively. The bars correspond to the range 

obtained during different runs for particular parameters. 
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imately 1 person in every 10 0 0 0 0 (1 per mil due to t 0.999 being

approximately 1 percent the total number of ill persons) can get

sick. 

One of the most important questions when analyzing an epi-

demic is the significance of early intervention. The assumed start

time of interventions above was ten days. This is a very short pe-

riod and, for COVID-19, is within the estimations of the incubation

period. Hence, we decided to perform calculations assuming differ-

ent values of delay. The results, averaged over 25 runs, are shown

in Fig. 5 . 

The results confirm that stochastic effects are much more im-

portant for influenza-like diseases. The differences in the values

of recovered persons depend very strongly on the graph creation

method following the order mentioned by analyzing the epidemic

curves. The introduction of groups leads initially to the worsening

of results (increase in the number of infected persons) before im-

provement occurs (fewer ill persons when divided into 16 groups).

However, the dispersion of results is so significant here than in ev-

ery set of 25 runs, and a run exists in which the disease is not

transferred to other individuals. 

The more important conclusion comes from plot (b) of Fig. 5 .

Although the results for the pure BA model and those of the sam-

ple divided into 4 groups are almost indistinguishable on the log-

arithmic scale, these results differ by a factor of 2-3 in the same

manner as in Fig. 4 . The very important observation, however, is

that if the assumption about much stronger links in groups is re-

alistic, by decreasing the frequency of contact between people, we

can reduce the number of infected persons by up to an order of
agnitude. This effect can lead to the conclusion that greater so-

ial segregation can slow down or even stop epidemics. In this

ase, the stochastic effects are much stronger than for the case of

 smaller number of groups, which can decrease this ratio by an-

ther two orders of magnitude. 

Finally, we present the effect of taking into account the stronger

inks inside groups related to the real-space separation. As we

rote earlier, the percentage of individuals in groups, when di-

ided into 16 groups, correspond to the inhabitance of 16 parts of

odz. The plots in Fig. 6 show the percentage of people in succes-

ive areas selected from the city’s total area. The outbreak starts,

s usual in our calculations, in the most numerous cell. In the case

onsidered, it is the cell in the third row and third column (see

ig. 1 ). One may observe that the grouping causes a larger distinc-

ion between the characteristics obtained for different areas. In the

uburbs, the rate of sickness is significantly lower, except for cases

here it is passed to a local hub (see lowest-right squares in plots

d) and (h)). It is essential to mention here that there exists no

reference for choice, as for links in the community graph, regard-

ng the individuals from neighboring squares. When isolated, peo-

le in less urbanized areas have an approximately ten times lower

robability of getting sick. 

We also emphasize an interesting effect observed when com-

aring some of the plots. In Fig. 6 , we have four pairs of plots pre-

ared for the same disease and intervention option but for differ-

nt divisions. They are as follows: (a,c), (b,d), (e,g), and (f,h). Al-

hough the plots in pairs are usually different, one pair is visibly

imilar. A difference in the scale certainly exists. We can show that
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Fig. 6. The percentage of sick persons in particular areas of Lodz (see Fig. 1 ). Plots (a-d) present the situation for an influenza-type epidemic; plots (e-h) - for COVID-19. 

Particular plots correspond to the different simulation conditions: a, b, e, and f are for the pure BA model; c, d, g, and h are for the division into 16 groups (gr16); a, c, e, 

and g are without intervention; and b, d, f, and h are with intervention. 
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air (e,g), corresponding to the COVID-19 parameters without in-

ervention, results in the same pattern of illness in particular ar-

as. Since the corresponding plots (f and h) with intervention are

xplicitly different, we can say that for this aggressive disease, an

ccurate description of the relations inside the community graph

s more important for the correct prediction of the possible course

f the disease. 

. Conclusions 

Every epidemic has two components: a social one and a medi-

al one. We presented a model that integrates both components by

onsidering the spread of disease as the effect of individual acts.

hese acts correspond to the direct transfer of pathogens between

wo individuals in a community network, modeled with the popu-

ar social network modeling. The study shows the influence of the

ommunity structure (the structure of links concerning affiliation

o particular groups). These results show the great significance of

he knowledge related to a society’s observations when anticipat-

ng the potential course of an epidemic. 

The formulation of the model enables easy calculation of one of

he basic values related to its progression - the basic reproduction

umber, R 0 . Following the formula given in [34] , i.e., R 0 = kbD, we

an easily adapt the notions used in our paper. Because D is the

uration of infectiousness, it corresponds to t I . b is the probability

f transmission by contact and equals p I . The determination of k -

he number of contacts of infectious persons per unit time - needs

ome explanation. It can be calculated by analyzing the average

ode degree of the constructed graph < k N > . These calculations

re not presented in this paper, but the estimation gives an interval

dependent on the size and model) from 6 to 8.4. This allows us to

alculate k = < k N > ∗p M 

. Finally, the values of R 0 can be estimated

s being between 0.6 and 0.84 for influenza and between 2.1 and

.94 for COVID-19. 

The above value corresponds very well to the summary given

or COVID-19 in Boldog’s paper [27] . We can also easily calculate

he effective reproductive number ( R ). Usually, it is obtained by the

ultiplication of R 0 by the number of individuals in the S state.

ere, we can add the multiplication by the p M 

parameter; as a re-

ult, we can observe the effect of the intervention on R and esti-

ate the time at which R passes the critical value R = 1 . 

In our opinion, the very important property of the proposed

odel is its natural way of including the stochastic character of the

isease-spreading process. Applying the random approach to every
ossible contact, we can estimate not only the average profiles of

pidemic curves but also the range in which the real number of

ll persons can lie. We can try to find the crucial nodes/individuals

hose identification will allow us to reduce the range of an epi-

emic. We can also try to estimate the possible result of this iden-

ification. Importantly, by individualizing the features of agents, we

an also individualize the transfer of illness between them. 

The model enables the easy introduction of different forms of

ntervention as well as new potential outbreaks. Considering in-

ervention, we show the results of its typical form - isolation and

uarantine. There is, however, a very simple way to introduce dif-

erent procedures, i.e., vaccination, but other forms, as shown in

35] , can be enlisted for the model. When entering a new illness,

e have to change the attribute of the selected, either intentionally

r randomly, individual. 

Another important piece of information that can be estimated

rom the presented model is the one about the anticipated epi-

emic duration. By trying to recognize the inflection point (time),

e can determine the time at which the disease can be signif-

cantly impaired. In our calculations, these values are limited to

ne per one thousand total ill persons and reaches a value approx-

mately three times greater than the time between outbreak and

nflection. 
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