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ABSTRACT 

Regulation of Immune Cell Activation and Function 
by the nBMP2 Protein and 

the CD5 Co-Receptor 

Claudia Mercedes Téllez Freitas 
Department of Microbiology & Molecular Biology, BYU 

Doctor of Philosophy 

According to the centers for disease control and prevention (CDC) and the world health 
organization (WHO), heart disease and immune related diseases such as diabetes and cancer are 
among the leading causes of death around the world. Thus, the regulation of the function of 
immune cell plays a key role in health and disease. Calcium (Ca2+) ions play a critical role in 
immune cell activation, function and in a robust immune response. Defects in Ca2+ signaling 
influences the development of cardiac disease, Alzheimer disease, immune cell metabolism, 
muscle dysfunction, and cancer. Each immune cell is unique in its activation and function, 
making it relevant to understand how activation of each type of immune cell is regulated. Here 
we describe the role of the nBMP2 protein in macrophage activation and function and the role of 
the CD5 co-receptor in helper T cell activation and function.  

The nuclear bone morphogenetic protein 2 (nBMP2) is the nuclear variant of the bone 
morphogenetic protein 2 (BMP2), a growth factor important in heart development, neurogenesis, 
bone, cartilage and muscle development. To better understand the function of nBMP2, transgenic 
nBMP2 mutant mice were generated. These mice have a slow muscle relaxation and cognitive 
deficit caused in part by abnormal Ca2+ mobilization. Mutant nBMP2 mice also have an impaired 
secondary immune response to systemic bacterial challenge. Here we have further characterized 
macrophage activation and function from mutant nBMP2 mice before and after bacterial 
infection. We describe how nBMP2 influences the Ca2+ mobilization response and phagocytosis 
in macrophages, revealing a novel role of the nBMP2 protein in immune cell regulation. 

CD5 is a surface marker on T cells, thymocytes, and the B1 subset of B cells. CD5 is 
known to play an important role during thymic development of T cells. CD5 functions as a 
negative regulator of T cell receptor (TCR) signaling and fine tunes the TCR signaling response. 
Here we describe our characterization of CD5 regulation of Ca2+ signaling in naïve helper T 
cells. We also outline our findings examining how CD5-induced changes in helper T cell 
activation influence other biological processes such as immune cell metabolism, the diversity of 
the gut microbiome, and cognitive function and behavior. Thus, this work elucidates the 
influence of the CD5 co-receptor on the functional outcomes in multiple systems when CD5 is 
altered. 

Keywords: nBMP2, bone morphogenetic protein, CD5, co-receptor, calcium (Ca2+), metabolism, 
behavior, TCR, T cell receptor, microbiome, macrophage, T helper cells 
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CHAPTER 1:  Calcium Signaling Role in the Immune Response 

1.1 Introduction 

The immune system protects the host from foreign pathogens and includes cells from 

both the innate and adaptive immune systems working together. While innate cells (e.g. 

macrophages) recognize and are activated by conserved pathogen associated molecular patterns 

(PAMPs) on infectious agents and help trigger a primary immune response, cells from the 

adaptive immune system (e.g. T and B lymphocytes) recognize and are activated by pathogen 

specific peptides1,2. These innate and adaptive systems are dependent on one another; in fact, it is 

normally the innate immune cells that initially activate cells of the adaptive immune system3. 

Phagocytes such as macrophages and dendritic cells are antigen presenting cells (APC) that carry 

out phagocytosis of foreign pathogens and play an important role in lymphocyte activation (e.g. 

T cells)4. T cells recognize foreign peptides presented by major histocompatibility complexes 

(MHC) on APCs via the T cell receptor (TCR), a protein complex that play an important role in 

signal transduction and leads to T cell activation2,4. Calcium (Ca2+) signaling is a key second 

messenger that is involved in transmitting these activation signals and is essential for immune 

cell function and differentiation5. 

1.2 Activation of Immune Cells 

Immune cells are activated upon recognition of foreign pathogens and can also be 

activated by altered self-proteins such as those found in cancer cells. Phagocytic cells such as 

macrophages and dendritic cells are first responders that act as sentinels to recognize their 

environment via surface receptors known as pattern-recognition receptors (PRRs), which 

recognize PAMPs on the surface of pathogens1. Upon PRR binding to a PAMP, that macrophage 

and dendritic cells are activated and intracellular signals trigger pathogen engulfment and pro-
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inflammatory and antimicrobial responses. This is accomplished by secreting molecules such as 

cytokines and chemokines, processing and presenting antigen to T cells, and upregulating 

costimulatory molecules, all of which play an important role in the activation of the adaptive 

immune response3,6. 

The adaptive immune system includes T and B cells which expresses a diverse repertoire 

of receptors that play an important role in the recognition of self and non-self-peptides2,7. For T 

cell activation to occur, innate cells such as APCs engulf, process, and present the antigen-

peptide. When this peptide is recognized by the TCR as foreign, together with co-stimulatory 

signals, the adaptive immune response is initiated. This starts with an increase in T cell 

intracellular Ca2+, metabolic changes, and cytokine production that results in a T cell initiated 

immune response4,5,8. Deficiencies in innate and adaptive immune cells are known to increase 

susceptibility to infection, autoimmunity and cancer9. For instance, diabetes mellitus, a metabolic 

disorder, has been associated with dysregulation of innate immunity (neutrophil function), 

humoral immunity, and an aberrant T cell response10-12. Hence, proper activation and interactions 

of the innate and adaptive immune cells are key for an efficient immune surveillance (Fig. 1A). 

Defective pathogen recognition, intracellular signaling, or metabolic function result in defective 

immune surveillance (Fig. 1B). 
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Figure 1. Schematic representation of normal and defective immune response. 
A. In a normal immune response, innate immune cells (e.g. macrophages or dendritic cells) recognize
foreign pathogens and engulf them. They then process and present antigen to T cells. Upon activation
lymphocytes proliferate and differentiate and provide protection via antibodies and cytokines. B.
Defective immune responses downregulate innate and adaptive immune responses to foreign pathogens.
Defects may be due to ineffective phagocytosis, deficiencies of co-stimulatory signals, calcium signaling
defects, and altered metabolism resulting in impaired antibody and cytokine production.

1.3 Calcium Signaling 

Calcium (Ca2+) is a universal second messenger involved in many aspects of cellular life 

such as cell activation, motility, and cell death13. Mobilization of a cellular Ca2+ signal involves 

multiple intracellular proteins and channels important in Ca2+ regulation; for example, the 

calcium release activated calcium channel (CRAC) on the surface of the cell and adenosine 

triphosphate (ATP)-driven pumps, and exchanger channels found in intracellular organelles such 

as the mitochondria, endoplasmic reticulum (ER), and nucleus all play a critical role in 

regulating the Ca2+ signal to initiate gene transcription specifically tailored to the pathogen (Fig. 

2)13.
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Figure 2. Schematic representation of the main structures involved in calcium homeostasis. 
This model shows an overview of the calcium transporter system within the cell (endoplasmic reticulum, 
mitochondria and nucleus). 

Intracellular Ca2+ levels are important in both the innate and adaptive immune response14. 

As cells are stimulated, intracellular Ca2+ levels play an important role in immune cells fate, as it 

influences their activation and function15.  The importance of Ca2+ signaling in T cells and 

macrophages will be discussed more in depth separately in this chapter. 

1.4 Macrophage Ca2+ Signaling 

Macrophages are immune cells that engulf pathogens and apoptotic or dead cells and 

activate the adaptive immune system by processing and presenting MHC bound peptides to T 

cells. In macrophages, there has been less characterization of the Ca2+ pathway compared to T 

cells16,17. However, it is known that Ca2+ is important for macrophage activation. It has been 
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suggested that the actin cytoskeleton has a central role in mediating both the physical interaction 

of the macrophage with the T cell, and the subsequent signaling pathways leading to T cell 

activation18.  

In macrophages, engagement of the Fc receptors result in a robust influx of Ca2+ from the 

extracellular space19. In a similar manner to T cells, Ca2+ influx is due to store operated Ca2+ 

entry (SOCE) that is activated by a reduction of Ca2+ in the ER stores and activation of the 

CRAC channel via STIM1 (Fig.3)20. It has been shown that murine macrophages lacking Stim1 

expression had severely compromised FcγR II/III mediated Ca2+ influx and they seemed to be 

impaired in a number of in vivo models of autoantibody and immune complex induced 

macrophage function21.  

Ca2+ signaling also appears to play an important role in Fc-receptor mediated 

phagocytosis and cell migration22,23. In order for phagocytosis to initiate, pathogens, dead cells, 

or foreign particles need to be opsonized by antibodies, complement, fibronectin, and mannose-

binding lectin and bind to opsonic receptors such as the FcγR found in the membrane of the 

phagocyte, and that appears to be regulated by Ca2+  24-26. It is not clear what the pathways 

involved are, however there have been studies suggesting that intracellular Ca2+ elevations 

during phagocytosis might regulate other function within the phagocyte such as cytoskeletal 

rearrangements, endolysosomal fusion and the oxidative burst24,25,27. 
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Figure 3. Phagocytic receptors involved in Ca2+ signaling. 
Initiation of signal transduction in macrophages occurs upon activation of Fc receptors, increasing the 
intracellular Ca2+ concentration in the cytoplasm24,25,27,28 

1.5 nBMP2 

Bone morphogenetic protein 2 (BMP2) is a secreted growth factor that modulates many 

essential physiological and developmental processes through extracellular signaling. The 

Bridgewater lab identified a novel nuclear variant of BMP2, nuclear BMP2 (nBMP2), which is 

translated from an alternative start codon downstream of the signal peptide sequence, eliminating 

the N-terminal signal peptide that targets the protein to the secretory pathway, instead allowing 

cytoplasmic translation and subsequent translocation to the nucleus by means of a bipartite 

nuclear localization signal (NLS) (Fig.4)29. 
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Figure 4. The nBMP2 is translated from a downstream alternative start codon. 
The signal peptide sequence (in light gray), in the alternative initiation codon allows translation in the 
cytosol rather than in the ER, with subsequent nuclear localization directed by a bipartite NLS. The three 
amino acids (RKR) were changed to alanines (AAA) to prevent nuclear localization of nBMP2 in the 
mutant mouse model (nBmp2NLStm). Figure reprinted from “The BMP2 nuclear variant, nBMP2, is 
expressed in mouse hippocampus and impacts memory” by Cordner RS et al, 201730 
 

In order to better understand the function of  nBMP2 in the nucleus, the Bridgewater lab 

generated a gene-targeted mutant mouse model (nBmp2NLStm) in which the RKR sequence was 

replaced with AAA, thereby inhibiting the translocation of nBMP2 to the nucleus (Fig. 4)31. 

Mice with this nBMP2 dysfunction (the nBmp2NLStm mutant) showed altered functions of 

skeletal muscle, neurological function and immune response in mice over 6 months of age (Fig. 

5)30-32. Dysfunction in the skeletal muscle was demonstrated by a significant increase in the time 

required for relaxation following a stimulated twitch contraction (Fig. 5A)31. Muscle relaxation 

after contraction is mediated by the active transport of Ca2+ from the cytoplasm to the 

sarcoplasmic reticulum by sarco/endoplasmic reticulum Ca2+ ATPase (SERCA), and enzyme 

activity assays revealed that SERCA activity in skeletal muscle from nBmp2NLStm mice was 



8 
 

reduced to approximately 80% of wild type31. These results suggest that nBMP2 plays a role in 

the establishment or maintenance of intracellular Ca2+ transport pathways in skeletal muscle. 

Figure 5. nBmp2NLStm mice have altered functions related to Ca2+ mobilization  
A. Mutant mice have defective muscle relaxation contraction. Figure reprinted from “A Novel Bone 
Morphogenetic Protein 2 Mutant Mouse, nBmp2NLStm, Displays Impaired Intracellular Ca2+ Handling in 
Skeletal Muscle” by Bridgewater L., et al, 201331 B. Long-term potentiation (a form of synaptic plasticity 
dependent on Ca2+ signaling) was defective in mutant mice. Figure reprinted from “The BMP2 nuclear 
variant, nBMP2, is expressed in mouse hippocampus and impacts memory” by Cordner RS et al, 201730 
C. Mutant mice had a higher mortality than wild type when challenged to a secondary infection Figure 
reprinted from “Targeted Mutation of Nuclear Bone Morphogenetic Protein 2 Impairs Secondary Immune 
Response in a Mouse Model” by Olsen DS., et al, 201532 
 

Neurological function was also affected in nBMP2 mutant mice. Immunohistochemistry 

assays in the hippocampus revealed that nBMP2 was not preset in the nuclei of CA1 neurons30. 

The nBMP2 mutant mice also presented significant cognitive deficits related to hippocampal 

dysfunction and its electrophysiological measurement suggested a dysregulation in the Ca2+ 

transport (Fig. 5B)30. 

Similarly, nBMP2 mutant mice had an impaired secondary immune response to bacterial 

infection (Staphylococcus aureus)32. The mutant mice had smaller spleens than WT and 

histological analysis of splenic cells after secondary infection suggested mutant spleens had 

fewer hemosiderin-laden macrophages than wild type spleens. We hypothesized that mutant 

macrophages had a decreased ability to engulf damaged red blood cells, and we found that the 
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mutant mice did have a deficiency in phagocytosis function this was due to an impaired Ca2+ 

mobilization response (Fig. 5C)32. 

1.6 T cell Ca2+ Signaling 

T cells are important because they help orchestrate the immune response and provide 

essential cell mediated cytotoxicity33,34. Engagement of the TCR to the peptide and major 

histocompatibility complex (pMHC) determines the magnitude of the response and the fate of 

the T cell35. This interaction triggers the Ca2+ signaling pathway, important in T cell activation 

and the immune response5,36. 

Figure 6. T cell Ca2+ signaling cascade. 
TCR-pMHC engagement initiates a signaling cascade that leads to T cell activation, differentiation, 
proliferation and function. The major steps involving Ca2+ signaling are shown. 
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Normally in naïve T cells, the intracellular Ca2+ concentration is maintained lower than 

the extracellular Ca2+ concentration and as a T cell is activated upon interaction of the TCR-

pMHC, intracellular Ca2+ levels increase5.  This Ca2+ increase is the result of a cascade of 

phosphorylation events by kinases such as ZAP70, LCK, PLCγ1 and others kinases, cleavage of 

IP3 and diacylglycerol (DAG), and binding of IP3 to IP3R on the ER (Figure 6)37,38. Binding of 

IP3 to the IP3R causes Ca2+ to exit from the ER into the cytoplasm, followed by recognition of 

Ca2+ depletion in the ER by stromal interaction molecule 1 (STIM 1). STIM 1 then activates the 

CRAC channel on the cell surface and causes a large influx of Ca2+ from outside the cell. The 

Ca2+ then binds to cytoplasmic binding proteins such as calmodulin and then calcineurin, traffics 

to the nucleus and activates transcription factors such as nuclear factor of activated T cells 

(NFAT), nuclear factor-κB (NF-κB), or cyclic-AMP-responsive-element-binding protein 

(CREB)5. Thus, Ca2+ signaling patterns, amplitude and duration each play an important role in 

regulating T cell activation and effector functions18,37-39. 

1.7 CD5 T cell co-receptor 

CD5 is a transmembrane glycoprotein that functions as a co-receptor that regulates the 

intensity of the TCR-pMHC interaction.  CD5 expression in T cells in set during thymic 

development and it is linked to the TCR signal strength (high avidity) interaction to self-peptide 

MHC (self-pMHC)40.  The higher the TCR affinity for self-pMHC, the higher the CD5 

expression levels in T cells. TCRs play a critical role in CD4+ T cell activation and function. 

Previous studies have reported CD5 has a costimulatory function, as CD5 high (CD5hi) 

expression levels in T cells increase  intracellular Ca2+, inositol triphosphate, interleukin-2 (IL-2) 

secretion, and IL-2R expression, which are associated with higher phosphorylation of TCRζ at 
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baseline and ERK upon activation and enhance TCR-mediated activation and T cell 

proliferation41,42. 

1.7.1 CD5lo (LLO118) and CD5hi (LLO56) 

To further examine CD5 expression levels in helper T cell function, our lab uses two 

transgenic mouse lines LLO118 and LLO56 with TCRs specific for the same immune dominant 

epitope of Listeria monocytogenes (LLO190-205)43. LLO118 and LLO56 T cells have similar 

TCRs (Vα2; Vβ2), but they differ by 15 amino acids found mainly in the CDR3 region of their 

TCR sequences. They also differ in their in vivo immune responses (LLO118 has a better 

primary response and LLO56 has a better secondary response) and in their CD5 expression 

levels [LLO118 has low levels of CD5 (CD5lo) and LLO56 has high levels of CD5 (CD5hi)]42,43. 

While much has been learned about Ca2+ signaling in lymphocytes and its relationship to T cell 

activation and function, there are still many questions regarding how Ca2+ signaling is important 

in helper T cell memory formation, and how Ca2+ mobilization can affect other biological 

processes such as metabolism, behavior and even gut microbiota diversity. 

1.8 Summary of Research Chapters 

Chapter 2 is a published research paper in which we characterize the role of nBMP2 in 

the Ca2+ response of bone marrow derived (BMD) macrophages and splenic macrophages from 

nBMP2 mutant mice before and after bacterial infection. We show that nBMP2 is in the nuclei of 

WT BMD and splenic macrophages, while the nBMP2 protein is significantly decreased in the 

nuclei of mutant nBMP2 macrophages. We also analyzed the Ca2+ mobilization response and its 

effect on macrophage engulfment. Our findings suggest that the Ca2+ mobilization response and 

engulfment levels in BMD macrophages are similar before bacterial infection. However, after a 

secondary bacterial challenge, splenic macrophages from mutant nBMP2 mice exhibited a 
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dysregulated Ca2+ response and decreased levels of engulfment. These observations suggest that 

nBMP2 plays an important role in macrophage activation and function. It also highlights the 

importance of further addressing the mechanisms of nBMP2 function in other cells in the future. 

Chapter 3 is a published review paper describing the importance of the CD5 co-receptor 

in Ca2+ signal transduction of the TCR-pMHC interaction in T cells upon activation. Co-

receptors are surface molecules found on T cells that play an important role in sustaining or 

limiting the strength of the signals that modulate the effects of the TCR-pMHC interaction. Here 

we compare the function of the CD5 co-receptor with PD-1 and CTLA-4, two well studied co-

receptors with similar regulatory functions. CD5 expression levels in T cells correlates with the 

Ca2+ mobilization response in T cells, suggesting that CD5 could be a novel checkpoint used to 

modulate T cell function and metabolism. Metabolism can be altered by Ca2+ mobilization, 

which also could help in the modulation of T cell inflammatory responses with many potential 

effects on health and disease.  

Chapter 4 is a published research paper that characterizes calcium mobilization levels in 

helper T cells with different CD5 expression levels. CD5 is a co-receptor that plays an important 

role in regulating T cell signaling and fate during thymocyte education, and its surface 

expression on mature single positive thymocytes correlates with the TCR signal strength for 

positive selecting self-ligands. CD5 also plays a role in T cell function after thymic development 

is complete. Peripheral T cells with higher CD5 expression respond better to foreign antigen than 

those with lower CD5 expression and CD5 high T cells are enriched in memory populations. In 

our study, we examined the role of CD5 expression and calcium mobilization in the primary 

response of T cells using two Listeria monocytogenes specific T helper cells (LLO118 and 

LLO56). These T cells recognize the same immunodominant epitope (LLO190-205) of L. 
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monocytogenes and have divergent primary and secondary responses as well as different levels 

of CD5 expression. We characterized the role of CD5 expression and calcium influx in these 

CD5 high and CD5 low T cells over the course of 8 days. We found significantly different 

calcium signaling levels in naïve and day 3 post-stimulation LLO56 and LLO118 T helper cells. 

To further investigate the role CD5 expression plays in calcium mobilization, we measured the 

calcium influx in T cells from LLO118-CD5 knockout mice versus those from LLO56-CD5 

knockout mice. We found that CD5 expression is important in regulating calcium mobilization in 

the CD5 high naïve LLO56 T cells during the initial response to antigen, and as CD5 levels 

decrease over time, its role in regulating calcium also decreases. 

Chapter 5 describes how CD5, a co-receptor that influences Ca2+ regulation, has an effect 

in T cell metabolism. We hypothesized that CD5 deficient T cells have different bioenergetic 

demands that affect metabolic pathways key to T cell activation and function. We evaluated the 

effects of the CD5 co-receptor on metabolism by measuring the metabolic profiles of CD5KO 

and wild type T cells. Our preliminary data suggests that CD5KO T cells have higher 

mitochondrial respiration than wild type T cells and we are examining the mitochondrial mass in 

CD5KO naïve T cells. Thus, CD5 may play an important role in metabolic programing in T cells 

and could potentially be useful in modulating the T cell response in the tumor 

microenvironment.   

Chapter 6 describes our efforts to understand how the CD5 co-receptor, a T cell response 

modulator, influences mice cognitive behavior and gut microbiota diversity. The immune system 

and the gut microbiota often work in synergy, and previous work has shown that alterations in T 

cell metabolism can influence behavior and microbial diversity44. Here we outline our work to 

examine the influence of CD5 on behavior and gut microbial diversity. For this study we 
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compared wild type mice (CD5WT) and the CD5 co-receptor knock-out (CD5KO). We found 

significant differences between CD5KO and CD5WT mice in marble burying rates, elevated plus 

maze behavior, and open field activity. These behavioral test results suggest CD5 deficient mice 

have altered cognitive function and higher levels of fear and anxiety-like behavior. We also 

quantified the gut microbiota diversity of these mice (CD5KO vs. CD5WT) and found 

significant differences in microbiota populations. Thus, our data suggests that the CD5 co-

receptor plays a critical role in mice cognitive behavior and gut microbiota. 

Chapter 7 is the final chapter, here we summarize the main findings for nBMP2 and CD5. 

We also propose future research plans to further characterize the importance of nBMP2 in the 

Ca2+ signaling pathway and to examine the influence of CD5 in the regulation of cognitive 

function, metabolism, and diversity of the gut microbiota.  

1.9 Summary of Appendices 

 Appendix I contains an abstract published in the Journal of Immunology regarding the 

influence of the CD5 co-receptor in T cells metabolism and in cognitive behavior. The work for 

this abstract was presented as an oral and poster presentation in the annual conference of The 

American Association of Immunologist in Austin, TX in May of 2018.  

Appendix II has a list of the presentations done during the time of my PhD. 

Finally, Appendix III contains a compilation of the work I published during my 

dissertation (both as a first author and as a co-author). 
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CHAPTER 2: The Nuclear Variant of Bone Morphogenetic Protein 2 (nBMP2) is Expressed in 

Macrophages and Alters Calcium Response 

The content of this chapter was published in Scientific Reports. Tellez Freitas, C. M. et al. “The 

nuclear variant of bone morphogenetic protein 2 (nBMP2) is expressed in macrophages and 

alters calcium response.” Scientific Reports 9, 934, doi:10.1038/s41598-018-37329-5 (2019). 

It has been formatted for this dissertation, but it is otherwise unchanged. 

Abstract 

We previously identified a nuclear variant of bone morphogenetic protein 2 (BMP2), 

named nBMP2, that is translated from an alternative start codon. Decreased nuclear localization 

of nBMP2 in the nBmp2NLStm mouse model leads to muscular, neurological, and immune 

phenotypes—all of which are consistent with aberrant intracellular calcium (Ca2+) response. Ca2+

response in these mice, however, has yet to be measured directly. Because a prior study 

suggested impairment of macrophage function in nBmp2NLStm mutant mice, bone marrow 

derived (BMD) macrophages and splenic macrophages were isolated from wild type and 

nBmp2NLStm mutant mice. Immunocytochemistry revealed that nuclei of both BMD and 

splenic macrophages from wild type mice contain nBMP2, while the protein is decreased in 

nuclei of nBmp2NLStm mutant macrophages. Live-cell Ca2+ imaging and engulfment assays 

revealed that Ca2+ response and phagocytosis in response to bacterial supernatant are similar in 

BMD macrophages isolated from naïve (uninfected) nBmp2NLStm mutant mice and wild type 

mice, but are deficient in splenic macrophages isolated from mutant mice after secondary 

systemic infection with Staphylococcus aureus, suggesting progressive impairment as 

macrophages respond to infection. This direct evidence of impaired Ca2+ handling in nBMP2 

mutant macrophages supports the hypothesis that nBMP2 plays a role in Ca2+ response. 
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2.1 Introduction 

Our group has reported the existence of a nuclear variant of the growth factor bone 

morphogenetic protein 2 (BMP2), designated nBMP2 45. This variant protein is produced by 

translation from an alternative downstream start codon that eliminates the N-terminal 

endoplasmic reticulum signal peptide, thus preventing the protein’s delivery to the secretory 

pathway. Instead, nBMP2 is translated in the cytoplasm and translocated to the nucleus by means 

of an embedded bipartite nuclear localization signal (NLS)45. Using immunohistochemistry, we 

have detected nBMP2 in skeletal muscle nuclei and in the nuclei of CA1 neurons in the 

hippocampus 30,31.  

To examine the function of nBMP2, we generated a mutant mouse strain (nBmp2NLStm) 

in which a three-amino acid substitution in the NLS inhibits translocation of nBMP2 to the 

nucleus while still allowing normal synthesis and secretion of the conventional BMP2 growth 

factor 2. The mice appear overtly normal and are fertile. They do, however, lack nBMP2 in 

myonuclei, and electrophysiological studies revealed that skeletal muscle relaxation is 

significantly slowed after stimulated twitch contraction, a process that is regulated by 

intracellular Ca2+ transport. Consistent with impaired intracellular Ca2+ transport, 

sarco/endoplasmic reticulum Ca2+ ATPase (SERCA) activity is decreased in skeletal muscle 31. 

The mutant mice also lack nBMP2 in CA1 hippocampal neurons, and electrophysiological 

studies revealed reduced long-term potentiation (LTP) in the hippocampus 30. LTP is dependent 

on intracellular Ca2+ transport and is thought to be the cellular equivalent of learning and 

memory 46-48. Behavioral tests revealed that the nBMP2 mutant mice have impaired object 

recognition memory 30. 
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Intracellular Ca2+ elevation also regulates the activation and differentiation of several 

different types of immune cells including T cells, B cells, dendritic cells, and macrophages 

14,19,49,50. To see if nBmp2NLStm mutants had compromised immune response, mice were 

challenged by systemic infection with Staphylococcus aureus. While the mutants’ immune 

response to a primary infection appeared normal, their immune response to a secondary infection 

challenge 30 days later resulted in higher levels of bacteremia, increased mortality, and failure of 

spleens to enlarge normally 32. Although we did not observed differences in the total number of 

macrophages in spleen, thymus, or lymph node from wild type compared to mutant mice, we did 

observe that after the secondary infection, spleen from nBmp2NLStm mutant mice showed fewer 

hemosiderin-laden macrophages than spleen from wild type mice 32. Macrophages in the spleen 

accumulate hemosiderin by phagocytosing damaged red blood cells and hemoglobin, which 

would be present in the blood stream of S. aureus-challenged mice due to the hemolysins that S. 

aureus expresses 51-53. The observation of fewer hemosiderin-laden macrophages in the spleens 

of mutant mice after a secondary infection suggested to us that macrophage phagocytic activity 

might be impaired in the absence of nBMP2, potentially providing us with an accessible cell type 

in which to directly test our hypothesis that intracellular Ca2+ response is disrupted in the 

absence of nBMP2. 

To interrogate if nBMP2 might play a role in Ca2+ response, we isolated macrophages 

from wild type and nBmp2NLStm mutant mice. These macrophages included bone marrow 

derived (BMD) macrophages from uninfected mice, and splenic macrophages from mice that had 

undergone primary and secondary infections with S. aureus54. Live-cell Ca2+ imaging as well as 

bead engulfment assays were performed to measure intracellular Ca2+ response and phagocytic 

activity. These analyses revealed deficient Ca2+ response and phagocytosis in splenic 
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macrophages isolated from mutant mice after secondary systemic infection with S. aureus, but 

not in BMD macrophages from naïve mice, suggesting that as nBmp2NLStm mutant cells 

respond to infection over time, Ca2+ response is progressively impaired. 

2.2 Materials and Methods 

2.2.1 Research Animals 

This study was carried out in strict accordance with recommendations in the Guide for 

the Care and Use of Laboratory Animals 55.  The protocol was approved by the Institutional 

Animal Care and Use Committee (IACUC) of Brigham Young University (protocol numbers 15-

0107 and 15-0603).   

Mice were housed in a temperature-controlled (21–22°C) room with a 12:12 hour light-

dark cycle and fed standard rodent chow and water ad libitum. The nBmp2NLStm mice were 

constructed on a Bl6/129 background, as described 31.  The homozygous wild type and mutant 

mice used in this study were obtained by breeding heterozygotes, and genotyping was performed 

as previously described 56.  All experiments were performed with male mice at least 6 months of 

age. 

2.2.2 BMD and Splenic Macrophage Isolation 

BMD macrophages were obtained from femurs and tibias of wild type and nBmp2NLStm 

mutant mice and were matured in culture at 37°C with 5% CO2 for 7 days in macrophage 

medium (DMEM (HyClone), 10% fetal bovine serum (FBS) (HyClone), 20% supernatant from 

L929 mouse fibroblast as a source of macrophage colony-stimulating factor (M-CSF), 5% heat 

inactivated horse serum (Sigma), 1 mM sodium pyruvate (Gibco by Life Technologies), 1.5 mM 

L-glutamine (Thermofisher), 10 u/ml penicillin, 10 µg/ml streptomycin (Gibco by Life 

Technologies)) prior to plating for immunocytochemistry, Ca2+ imaging or engulfment assays.   
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Spleens from wild type and nBmp2NLStm mutant mice were homogenized in phosphate 

buffered saline (PBS).  The homogenate was filtered, pelleted at 450 x g for 5 min, suspended in 

lysis buffer (155 mM NH2Cl, 10 mM KHCO3, 0.1 mM EDTA) on ice for 3-5 min to lyse 

erythrocytes, and then washed with 37°C macrophage media and plated in macrophage medium 

in 6-well plates.  After 3 days of culture at 37°C in 5% CO2, medium was replaced to remove 

non-adherent cells 57.  On day 4, 100 ng/ml lipopolysaccharide (LPS) was added to the culture 

medium to stimulate differentiation, and cells were incubated for 3-4 more days58.  Differentiated 

cells were then plated for immunocytochemistry, Ca2+ imaging, or engulfment assays.    

2.2.3 Immunocytochemistry 

Immunocytochemistry was performed using BMD and splenic macrophages.  Following 

macrophage isolation and 7-day differentiation as described above, cells were plated on 

coverslips that were pre-treated with 0.025% HCl in PBS for 20 min to facilitate cell attachment.  

Cells were cultured for 1-2 days to reach 70-90% confluence, then fixed at 37°C in 4% 

paraformaldehyde for 10 min.  Epitopes were exposed through antigen retrieval using 5% 

sodium citrate and 0.25% Tween-20 in ddH2O, pH 6.0, at 95°C for 10 min.  Cells were 

permeabilized using 0.1% Triton X-100 then blocked for 1.5 hour at room temperature (RT) 

using SEA BLOCK blocking buffer (ThermoFisher Scientific, 37527).  The samples were then 

probed with 1:50 anti-BMP2 antibody (Novus Biologicals, NBP1-19751) diluted in 10% SEA 

BLOCK blocking buffer in 0.1% Tween-20/PBS (PBS-T), overnight at 4°C.  The probed slides 

were then stained with anti-rabbit Alexa Fluor 488 (ThermoFisher Scientific, A-11034) for 1 

hour at RT.  Afterwards, nuclei were stained by incubating the slides in 1:5000 DAPI in PBS-T 

for 15 min., then slides were mounted using ProlongTM Gold Antifade Mountant (Life 

Technologies, P10144) and cured overnight prior to microscopic imaging.  Cells were imaged 
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using a Leica TCS-SP8 confocal microscope with 63X magnification, using the same laser 

intensities for all samples.  Appropriate laser lines were used such as 405 nm for DAPI and 488 

nm for BMP2-Alexa Fluor 488.    

Comparison of nuclear BMP2 staining intensity between wild type and mutant cells was 

performed on tiff versions of confocal microscope images using ImageJ to create tracings of 

DAPI-stained regions and to calculate the mean pixel intensity of nBMP2 staining within each 

nucleus.  Mean nuclear staining intensity was calculated for each image, and groups were 

compared using an unpaired, two-tailed t-test in GraphPad Prism.  (Fig 1B).   

2.2.4 S. aureus Bacterial Infections 

S. aureus ATCC strain 12600 was cultured in tryptic soy broth liquid culture alternating 

with standard streak plating on mannitol salt agar (Thermo Fisher Scientific) for counting. To 

prepare bacteria for injections, 100 µl of overnight liquid culture was transferred into a new 15 

ml broth culture and grown until OD600 reached 1.0, then pelleted and resuspended in 15 ml of 

PBS with 20% glycerol, aliquoted, and stored at -80˚C for 3 weeks before injection.  Frozen 

stock concentration was verified one day before the infection by thawing a single aliquot and 

performing standard serial dilution plate counts. On the day of infection, S. aureus was diluted 

from the frozen stock to the desired concentration in PBS, and mice received a 200 µl 

retroorbital injection using a 1 ml syringe and 27-gauge needle.  The injected volume contained a 

priming dose of 1 x 104 CFU/g body weight on day 0 (primary infection), and a dose of 3 x 105 

CFU/g body weight on day 35 (secondary infection).  Macrophages were harvested three days 

later. 
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2.2.5 Bacterial Supernatant Preparation 

Bacterial supernatant obtained from E. coli K12 and S. aureus 12600 was used to 

stimulate Ca2+ fluxes in BMD and splenic macrophages 59,60.  A single colony was picked from 

an agar plate and inoculated into liquid broth overnight culture.  The next day, 1 ml of the 

overnight culture was inoculated into 15 ml liquid broth and incubated with shaking at 37°C until 

culture reach an OD600 of 1-1.3.  Cells were then pelleted by centrifugation at 1,800 x g for 12 

min at 4°C, and supernatant was collected.    

2.2.6 Calcium Imaging 

BMD and splenic macrophages were isolated and matured in culture for 7 days as 

described above, then seeded on 8-chambered coverglasses (Nunc 155411, Thermo Scientific) 

and incubated overnight in macrophage medium at 37°C in 5% CO2.  For BMD macrophages, 10 

ng/ml LPS from E. coli O55:B5 (Sigma) was included in the overnight incubation to activate 

cells.  The next day, cells were loaded with 3 μM Fura-2AM (Invitrogen) in Ringers solution 

containing Ca2+ to be used as an extracellular source during the Ca2+ imaging assay (150 mM 

NaCl, 10mM glucose, 5 mM HEPES, 5 mM KCl, 1 mM MgCl2, 2 mM CaCl2, pH 7.4) for 30 

min at 37°C in 5% CO2, washed with Ringers solution, then incubated for another 30 minutes at 

37°C in Ringers solution.  Calcium imaging was performed at room temperature using an 

Olympus IX51 inverted microscope equipped with a xenon arc lamp.  Fura-2AM loaded 

macrophages were excited using 340 nm and 380 nm excitation filters, and images of 340 nm, 

380 nm, and transmitted light were capture using a florescence microscope camera (Q Imaging 

Exi Blue) with a 20x objective (N.A. 0.75) at 3-sec intervals.  At the 2-min time point in each 

imaging protocol, 20 µl of bacterial supernatant was added to stimulate Ca2+ flux.  Ionomycin (1 

µM final concentration) was added at the 10-min time point as a positive control.  10-20 
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representative cells were selected as regions of interest in each frame, and F340:F380 ratios were 

calculated and analyzed using CellSens software from Olympus.  Each individual cell’s 

fluorescence was normalized to its first recorded value according to the equation (F-Fo)/Fo, 

where F is the fluorescence at the specific time point, and Fo is the fluorescence value at time 0 

60,61.  

2.2.7 Engulfment Assay 

BMD and splenic macrophages were isolated and matured in culture for 7 days as 

described above, then seeded in 12-well culture plates for flow cytometry-based engulfment 

assays 62-68. 100% FBS was used to resuspend 2.0 µm phycoerythrin-conjugated polychromatic 

red latex microspheres (Polysciences, Inc.) to prevent beads from sticking to the cell membranes 

during engulfment 62.  The ~109 particles/ml  concentration was chosen to ensure that beads were 

not a limiting factor in phagocytosis rates 62.  Macrophages were then activated by adding LPS 

from E. coli O55:B5 (Sigma) to a final concentration of 10 ng/ml and incubated for 1 hour at 

37°C and 5% CO2.  Media was removed and cells were rinsed with cold PBS, then collected and 

analyzed by flow cytometry using an Attune flow cytometer (Applied Biosystems by Life 

technologies).  Cells were pre-treated with anti-CD16/32 antibodies (14-0161-85 eBioscience) to 

prevent non-specific antibody binding, then surface stained with APC-conjugated anti-CD11b 

antibodies (17-0112-82 eBioscience) and FITC-conjugated anti-F4/80 FITC antibodies (11-

4801-82 eBioscience) to identify mature macrophages.  Doublets were removed based on 

forward scatter width (FSC-W)/forward scatter area (FSC-A), and the F4/80 and CD11b double 

positive population was selected.  From within this gate, engulfing macrophages were 

distinguished from non-engulfing macrophages based on phycoerythrin fluorescence, and 
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macrophages could be further distinguished based on the engulfment of one, two, or three or 

more beads.  Results were analyzed using FlowJo software (Tree Star). 

2.2.8 Data Analysis 

All assays were performed as at least three independent repeats, each in triplicate. Area 

under the curve (AUC) was determined using GraphPad Prism.  Statistical significance was 

assessed using unpaired two-tailed Students T test in GraphPad Prism. 

2.3 Results 

2.3.1 The nuclear variant nBMP2 is expressed in BMD and splenic macrophages from wild type 

mice 

To determine whether nBMP2 is expressed in macrophages, BMD macrophages and 

splenic macrophages were isolated from naïve (uninfected) wild type and nBmp2NLStm mutant 

mice and differentiated in vitro, and immunocytochemistry was performed using an anti-BMP2 

antibody that binds to both BMP2 and nBMP2.  Consistent with our prior observation of 

impaired immune response in nBmp2NLStm mutant mice32, nBMP2 was detected in the nuclei 

of wild type BMD (Fig. 7a) and splenic (Fig. 7b) macrophages.  As expected, nBMP2 was 

significantly decreased in macrophage nuclei from nBmp2NLStm mutant mice (Fig. 7a and 7b, 

mutant).  ImageJ software quantification of immunofluorescence images showed that the density 

of nuclear BMP2 staining was significantly more intense in wild type compared to mutant 

macrophages in both BMD macrophages (p = 0.0005) and splenic macrophages (p <0.0001) 

(Fig.  8).  BMP2 staining was visible throughout the cytoplasm of both wild type and mutant 

macrophages, as expected, given that nBMP2 is synthesized in the cytosol before being 

translocated to the nucleus and that the conventional BMP2 growth factor is synthesized in the 

rough ER and translocated through the Golgi before being secreted from the cell.  
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Figure 7. BMD macrophages and splenic macrophages express nBMP2, which is decreased in the 
nuclei of nBmp2NLStm mutant macrophages. 
 (a) BMD macrophages and (b) splenic macrophages were stained with anti-BMP2 antibody (green) and 
counterstained with DAPI (blue), demonstrating that nBMP2 is expressed and localized to the nucleus in 
wild type macrophages, and that nuclear translocation of nBMP2 is inhibited in mutant macrophages.  
BMP2 labeling within the cytoplasm is present in both wild type and mutant cells as expected, because 
the targeted mutation allows translation of nBMP2 in the cytoplasm but inhibits nuclear translocation, and 
it allows normal synthesis and secretion of conventional BMP2. 
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Figure 8. Quantification of nBMP2 nuclear staining intensity. 
Five images each were analyzed for wild type and mutant BMD macrophages and for mutant splenic 
macrophages.  Four images were analyzed for wild type splenic macrophages.  Each image contained 
between 10 and 93 cells, and the number of cells analyzed per group ranged from 100 to 337.  ImageJ was 
used to outline DAPI-stained regions and quantify BMP2 immunostaining as the sum of pixel intensities 
within each nucleus.  The mean density of BMP2 immunostaining was then calculated for all nuclei in an 
image.  An unpaired, two-tailed t-test was performed to compare nuclear staining between wild type and 
mutant cells.  For BMD wild type vs. mutant macrophages, p = 0.0005.  For splenic wild type vs mutant 
macrophages, p < 0.0001.  
 

2.3.2 BMD macrophages from uninfected nBmp2NLStm mutant mice and wild type mice have 

similar Ca2+ response  

Naïve BMD macrophages isolated from femurs and tibias of uninfected mice were 

matured and activated in vitro then plated for live-cell Ca2+ imaging.  Plated cells were loaded 

with Fura-2AM, a UV-excitable ratiometric calcium indicator that changes its excitation in 
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response to Ca2+ binding; Fura-2AM emits at 380 nm when Ca2+ is not bound, and at 340 nm 

when Ca2+ binds to the dye. The fluorescence ratio (F340/F380), increases as cytosolic Ca2+ 

levels increase 69.  At the 2 min time point, supernatant from Escherichia coli (ECS) cultures was 

added to stimulate Ca2+ flux (Fig. 9a) 60,70,71.  Following this stimulation, there were no 

observable differences between naïve mutant and wild type BMD macrophages in peak Ca2+ 

response (Fig. 9b) or sustained Ca2+ levels (Fig. 9c).    

 

Figure 9. Naïve bone marrow derived (BMD) macrophages from nBmp2NLStm mutant mice and wild 
type mice have a similar Ca2+ response.  
Naïve BMD macrophages from wild type (WT) and nBmp2NLStm mutant (MT) mice were loaded with 
Fura-2AM for live-cell Ca2+ imaging.  During imaging, cells were stimulated at 2 min with E. coli 
supernatant (ECS), then at 10 min with ionomycin as a positive control.  (a) Average curves showing 
intracellular Ca2+ response in wild type and nBmp2NLStm mutant BMD macrophages.  Fluorescence 
ratios (F340/F380) were measured at 3 sec intervals from 0-12 min (n = 38 cells).  Error bars (s.e.m.) are 
shown at one min intervals.  (b) Average (± s.e.m.) of peak Ca2+ influx (F340/F380) in wild type and 
nBmp2NLStm mutant BMD macrophages (n = 38 cells).  (c) Area under the curve (AUC) of F340/F380 
ratios from minutes 3 to 10 min shows sustained intracellular Ca2+ levels (n = 38 cells).  NS, not 
significant. 
 

2.3.3 Splenic macrophages isolated from nBmp2NLStm mutant mice after secondary infection 

show impaired Ca2+ response 

In our prior study, immune deficiencies in nBMP2NLStm mice were detectable only after 

the mice received a secondary infection with S. aureus 32.  Because our current experiments 
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revealed no significant differences in Ca2+ response in naïve BMD macrophages from mutant 

compared to wild type mice, we decided to replicate the in vivo conditions of our previous work 

by examining splenic macrophage harvested from mice after a secondary infection with S. 

aureus, and by using S. aureus supernatant as the stimulus to trigger Ca2+ flux 32.  Although S. 

aureus is a gram positive bacteria that does not produce LPS, it does produce liphoteichoic acid 

(LTA), which is similarly able to activate macrophages72,73.  Thirty-five days after primary 

systemic S. aureus infections, mice were given a second injection of S. aureus, and splenic 

macrophages were isolated 3 days later.   

After one week in vitro maturation, splenic macrophages were loaded with Fura-2AM for 

live-cell Ca2+ imaging experiments. S. aureus supernatant (SAS) was used to stimulate Ca2+ flux 

at the 2-min time point (Fig. 10a).  Compared to the lack of a difference in naïve BMD 

macrophages, it is particularly striking that peak Ca2+ response was significantly decreased 

(p=0.0335) in mutant splenic macrophages after secondary infection (Fig. 10b).  Sustained Ca2+ 

levels as measured by the area under the curve (AUC) from minutes 3-10 was also significantly 

decreased (p=0.0008) (Fig. 10c).  
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Figure 10. Splenic macrophages collected from nBmp2NLStm mutant mice after secondary infection 
have an impaired Ca2+ response.  
Splenic macrophages from wild type (WT) and nBmp2NLStm mutant (MT) mice were loaded with Fura-
2AM for live-cell Ca2+ imaging.  During imaging, cells were stimulated at 2 min with S. aureus 
supernatant (SAS), then at 10 min with ionomycin as a positive control.  (a) Average curves showing 
intracellular Ca2+ response in wild type and nBmp2NLStm mutant splenic macrophages.  Fluorescence 
ratios (F340/F380) were measured at 3 sec intervals from 0-12 min (n = 44 cells).  Error bars (s.e.m.) are 
shown at one min intervals.  (b) Average ± s.e.m. of peak Ca2+ influx (F340/F380) in wild type and 
nBmp2NLStm mutant splenic macrophages shows a significant difference (n = 44 cells).  (c) AUC of 
F340/F380 ratios from minutes 3 to 10 min shows a significant difference in sustained intracellular 
Ca2+ levels (n = 44 cells).  * = p < 0.05, ** = p < 0.01, *** = p < 0.0001. 
 

2.3.4 BMD macrophages from uninfected nBmp2NLStm mutant mice and wild type mice show 

similar phagocytic activity  

To test phagocytic activity of naïve BMD macrophages (meaning macrophages that were 

isolated from uninfected mice) from nBmp2NLStm mutant compared to wild type mice, we 

measured fluorescent bead engulfment by CD11b and F4/80 positive cells with flow cytometry 

(Fig. 11a)62-68. We observed no differences in the phagocytic activity of naïve BMD 

macrophages from nBmp2NLStm mutant compared to wild type mice (Fig. 11b, 11c, 11d and 

11e).    
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Splenic macrophages from nBmp2NLStm mutant mice show impaired phagocytic activity 

To test phagocytic activity in macrophages isolated from mice after secondary infection, 

splenic macrophages were isolated from wild type and nBmp2NLStm mutant mice 3 days after 

mice received a second systemic infection with S. aureus, and fluorescent bead engulfment was 

measured as described above.  While differences between wild type and mutant macrophages did 

not reach significance when subgroups that engulfed 1, 2, or 3 or more beads were analyzed 

individually (Fig. 12a, 12b and 12c), there was a significant reduction in overall mutant 

phagocytic activity (p = 0.0176) when the subgroups were pooled (Fig. 12d).  These data suggest 

a possible relationship between the decreased Ca2+ response and reduced phagocytosis in 

nBmp2NLStm mutant splenic macrophages.   
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Figure 11. Naïve bone marrow derived (BMD) macrophages from nBmp2NLStm mutant mice and 
wild type mice show similar phagocytic activity.   
After incubation with fluorescent microspheres, macrophages were analyzed by flow cytometry.  (a) A 
representative analysis is shown.  The F4/80 and CD11b double positive population was selected, and 
from this gate a histogram was produced to identify macrophages that had engulfed 1, 2, or 3 or more 
beads. The percentages of total double positive cells represented within each peak are indicated.  (b)  
Percent of cells engulfing 1 bead, (c) percent of cells engulfing 2 beads, and (d) percent of cells engulfing 
3 or more beads.  (e) Percent of cells engulfing one or more beads.  N=3 pairs of wild type and 3 pairs of 
mutant mice. NS, not significant. 
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Figure 12. Splenic macrophages collected from nBmp2NLStm mutant mice after secondary infection 
show impaired engulfment activity.  
After incubation with fluorescent microspheres, macrophages were analyzed by flow cytometry as 
described in Figure 3.  (a) Percent of cells engulfing 1 bead, (b) percent of cells engulfing 2 beads and, (c) 
percent of cells engulfing 3 or more beads.  (d) Percent of cells engulfing one or more beads.  N=3 pairs 
of wild type and 3 pairs of mutant mice. NS, not significant.  * = p < 0.05.  
 
2.4 Discussion  

The role of BMP2 in macrophages is unknown and remains an area of active research.  

BMP2 has been reported to be constitutively expressed in M1 (inflammatory) macrophages 74.  

Other studies have shown that BMP2 expression is upregulated as macrophages shift toward the 

pro-healing/anti-inflammatory M2 phenotype 75.  BMP2 secretion by macrophages promotes 

migration of vascular smooth muscle cells, and macrophages in the intestinal muscularis secrete 

BMP2 to signal enteric neurons 76,77.  Reports of BMP2 expression by hematopoietic cells, in 
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particular macrophages, are relevant to this study because nBMP2 can be produced from the 

same mRNA as the conventional secreted BMP2 growth factor—any time BMP2 mRNA or 

BMP2 growth factor is detected, the potential for nBMP2 synthesis exists 78.  Accordingly, we 

have demonstrated by immunofluorescence that both BMD macrophages and splenic 

macrophages express the nuclear variant of BMP2, nBMP2, and that nBMP2 is decreased in the 

nuclei of macrophages from nBmp2NLStm mutant mice.   

Previously, we demonstrated that deficiency of nBMP2 in the nucleus impairs secondary 

immune response as evidenced by diminished spleen enlargement, poor clearance of S. aureus 

from the bloodstream, and increased mortality after secondary infection 32.  We have also shown 

that deficiency of nBMP2 in myonuclei is correlated with slowed skeletal muscle relaxation after 

contraction, and deficiency of nBMP2 in the nuclei of hippocampal neurons is correlated with 

learning/memory deficits 56.  Each of these phenotypes is consistent with deficiencies in 

intracellular Ca2+ transport, but until now, no direct measurements of intracellular Ca2+ have 

been performed in cells from nBmp2NLStm mutant mice.  The discovery that macrophages 

express nBMP2 (Fig. 7) provided an accessible cell type in which to directly address the question 

of whether nBMP2 plays a role in intracellular Ca2+ response. 

We found that intracellular Ca2+ response was impaired in mutant splenic macrophages 

after secondary infection with S. aureus, but not in mutant BMD macrophages isolated from 

uninfected mice, even though both macrophage types expressed nBMP2.  Recent work has 

revealed that innate immune cells can undergo memory-like adaptive responses to increasing 

pathogen load, and the deficient Ca2+ response in splenic macrophages after secondary infection 

might represent a failure of those adaptive responses 79,80.  Alternatively, it may be that the 

effects of nBMP2 deficiency in the nucleus are simply cumulative, causing a Ca2+-handling 



33 
 

phenotype that becomes progressively more severe as cells differentiate and mature. A 

progressive phenotype is consistent with our previously reported observation that hippocampal 

long-term potentiation (LTP) was normal in 3-week-old nBmp2NLStm mutant mice but deficient 

in 3-month-old mice 56.  Progressive impairment of intracellular Ca2+ response has received 

attention recently as a potential mechanism for both brain and muscle aging 81-83, suggesting that 

nBMP2 dysfunction could contribute to premature aging or aging-related diseases.   

Deficiency of nBMP2 in the nucleus also produced a significant decrease in the total 

phagocytic activity of splenic macrophages from nBmp2NLStm mutant mice, suggesting that 

mutant cells may be less effective at clearing pathogens from the blood stream.  This is 

consistent with prior studies suggesting that intracellular Ca2+ mobilization plays a role in 

macrophage phagocytic activity.  For example, impaired Ca2+ response in macrophages from 

Trpm4 (-/-) mutant mice led to decreased phagocytic activity, resulting in bacterial overgrowth 

and translocation to the bloodstream 84.  Intracellular Ca2+ levels increase during Fcɣ receptor 

(FcR)-mediated phagocytosis 22,85,86, and the loss of CaMKK2, a calcium-dependent kinase, left 

macrophages unable to phagocytose bacteria or synthesize cytokines in response to bacterial 

lipopolysaccharide (LPS) 87.  

 Although evidence supports the involvement of Ca2+ response in macrophage phagocytic 

activity, the scale of the decreased phagocytosis by splenic macrophages observed in our study 

seems insufficient to account for the markedly increased mortality of nBmp2NLStm mutant mice 

after secondary infection 56.  We cannot rule out the possibility that the bead engulfment assay 

did not fully reflect the severity of phagocytosis impairment in splenic macrophages.  Liver 

macrophages also play a role in bacterial clearance, and it is possible that the absence of nBMP2 

in the nucleus affects their function more severely 88,89.  In addition, the absence of nBMP2 in the 
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nucleus might affect other immune system cell types besides macrophages, and it is possible that 

another cell type, or perhaps several cell types together, account for the increased mortality of 

nBmp2NLStm mutant mice after secondary infection 56.  Indeed, BMP2 (and therefore potentially 

nBMP2) is expressed by a specialized endothelial population in the early embryo, termed 

hemogenic endothelium, that gives rise to hematopoietic stem cells 90.  The absence of nBMP2 at 

the earliest stages of hemogenesis could therefore impact a wide range of immune cell types.  

BMP2 is also expressed in human cord blood cells, including those that express CD34, a 

hematopoietic progenitor cell antigen 91, and acute bleeding triggers upregulation of BMP2 

expression in hematopoietic stem cells 92.  BMP2 expression is also found in mature B cells, 

where it is upregulated in response to infection with Aggregatibacter actinomycetemcomitans 93.  

It is possible, therefore, that nBMP2 impacts the activation or function of other immune cell 

types in addition to macrophages, and the combined functional deficits account for the increased 

mortality in nBmp2NLStm mutant mice after secondary infection. 

It will be important, in future work, to elucidate the molecular mechanisms underlying 

the Ca2+ response differences between macrophages from wild type and nBMP2 mutant mice.  

Differences may stem from impaired uptake or release of Ca2+ from endoplasmic reticulum 

stores, as suggested by the decreased SERCA activity observed in skeletal muscle of nBMP2 

mutant mice31.  Alternatively, transport of Ca2+ could be impaired at the macrophage cell 

membrane, consistent with observations that increasing extracellular Ca2+ levels can improve 

phagocytosis 94,95.  Neurons and muscle cells are excitable cells and are therefore equipped with 

a different set of ion channels and transporters than are macrophages, and so it will be important 

to examine molecular details of the Ca2+ handling defect in all three cell types.  This work has 

thus opened the way for future studies into the molecular interactions and activities of nBMP2.   
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Questions about how nBMP2 functions from inside the nucleus to affect Ca2+ response 

also remain to be answered.  The novel protein nBMP2 was first identified from among nuclear 

proteins that had been isolated using DNA affinity chromatography, but subsequent experiments 

failed to show direct binding of nBMP2 to DNA, and the amino acid sequence of nBMP2  

contains no predicted DNA-binding domain 78.  It is possible that nBMP2 interacts indirectly 

with DNA through a transcription factor, and future studies of nBMP2’s impact on the 

expression of genes involved in Ca2+ signaling will be informative.   

In summary, this study supports our working hypothesis that aberrant intracellular Ca2+ 

response is the mechanism that unites the otherwise disparate muscle, neurological, and immune 

phenotypes observed in nBmp2NLStm mutant mice 30-32,96-98.  In doing so, this study has paved 

the way for future work to elucidate the precise molecular nature of the Ca2+ signaling 

disruptions in nBMP2 mutant cells and to understand how nBMP2’s interactions in the nucleus 

impact Ca2+ signaling.  
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CHAPTER 3: T cell Calcium Signaling Regulation by Co-receptor CD5 

The content of this chapter was published in the Journal of Molecular Science, Freitas, C., 

Johnson, D. & Weber, K. “T Cell Calcium Signaling Regulation by the Co-Receptor CD5”. 

International Journal of Molecular Sciences 19, 1295 (2018). It has been formatted for this 

dissertation, but it is otherwise unchanged. 

Abstract 

Calcium influx is critical for T cell effector function and fate. T cells are activated when 

T cell receptors (TCRs) engage peptides presented by antigen-presenting cells (APC), causing an 

increase of intracellular calcium (Ca2+) concentration. Co-receptors stabilize interactions 

between the TCR and its ligand, the peptide-major histocompatibility complex (pMHC), and 

enhance Ca2+ signaling and T cell activation. Conversely, some co-receptors can dampen Ca2+ 

signaling and inhibit T cell activation. Immune checkpoint therapies block inhibitory co-

receptors, such as cytotoxic T-lymphocyte associated antigen 4 (CTLA-4) and programmed 

death 1 (PD-1), to increase T cell Ca2+ signaling and promote T cell survival. Similar to CTLA-4 

and PD-1, the co-receptor CD5 has been known to act as a negative regulator of T cell activation 

and to alter Ca2+ signaling and T cell function. Though much is known about the role of CD5 in 

B cells, recent research has expanded our understanding of CD5 function in T cells. Here we 

review these recent findings and discuss how our improved understanding of CD5 Ca2+ signaling 

regulation could be useful for basic and clinical research 

3.1 Introduction 

T cells are a critical component of the adaptive immune system. T cell responses are 

influenced by signals that modulate the effects of the T cell receptor (TCR) and peptide-major 
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histocompatibility complex (pMHC) interaction and initiate the transcription of genes involved 

in cytokine production, proliferation and differentiation 99-101. T cell activation requires multiple 

signals. First, the TCR engages the pMHC leading to tyrosine phosphorylation of CD3 and 

initiation of the Ca2+/Calcineurin/ Nuclear factor of activated T cells (NFAT) or PKCθ/Nuclear 

factor-κ-light chain enhancer of activated B cells (NF-κB) or Mitogen-activated protein kinase 

(MAP kinase)/AP-1 pathways 102-104. Second, cell surface costimulatory molecules, such as co-

receptor CD28, amplify TCR-pMHC complex signals and promote stronger intracellular 

interactions to prevent T cell anergy 105,106. Finally, cytokines such as interleukin-12 (IL-12), 

interferon α (INFα) and interleukin-1 (IL-1) promote T cell proliferation, differentiation and 

effector functions 104.  

Co-receptors such as CD4 and CD8 interact with MHC molecules and additional co-

receptors interact with surface ligands present on antigen presenting cells (APCs) to regulate T 

cell homeostasis, survival, and effector functions with stimulatory or inhibitory signals 107. 

Altering co-receptor levels, balance, or function dramatically effects immune responses and their 

dysfunction is implicated in autoimmune diseases 108. Stimulatory co-receptors such as CD28, 

Inducible T-cell COStimulator (ICOS), 4-1BB, OX40, glucocorticoid induced TNF receptor 

(GITR), CD137 and CD77 promote T cell activation and protective responses 109. Co-receptor 

signaling is initiated by the phosphorylation of tyrosine residues located in immunoreceptor 

tyrosine-based activation motifs (ITAMs) or immunoreceptor tyrosine based inhibitory motifs 

(ITIMs) 105,110. The phosphorylated tyrosines serve as docking sites for spleen tyrosine kinase 

(Syk) family-members such as zeta-chain-associated protein kinase 10 (ZAP-70) and Syk which 

activate the phospholipase C γ (PLCγ), RAS, and extracellular signal regulated kinase (ERK) 

pathways in addition to mobilizing intracellular Ca2+ stores 111.  
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One of the best described T cell co-receptors, CD28, is a stimulatory T cell surface 

receptor from the Ig superfamily with a single Ig variable-like domain which binds to B7-1 

(CD80) and B7-2 (CD86) 100. Ligand binding phosphorylates CD28 cytoplasmic domain tyrosine 

motifs such as YMNM and PYAP and initiates binding and activation of phosphatidylinositide 3 

kinase (PI3K) which interacts with protein kinase B (Akt) and promotes T cell proliferation and 

survival 99. CD28 also activates the NFAT pathway and mobilizes intracellular Ca2+ stores 

through association with growth factor receptor-bound protein 2 (GRB2) and the production of 

phosphatidylinositol 4-,5-bisphosphate (PIP2), the substrate of PLCγ1, respectively 100,112. 

Blocking stimulatory co-receptors suppresses T cell effector function. For example, blocking 

stimulatory CD28 with anti-CD28 antibodies promotes regulatory T cell function and represses 

activation of auto- and allo-reactive T effector cells after organ transplantation 106,113. 

T cells also have inhibitory co-receptors which regulate T cell responses 106. The best 

characterized are Ig superfamily members cytotoxic T-lymphocyte-associated protein 4 (CTLA-

4) and programmed cell death protein 1 (PD-1) 106,114. CTLA-4 binds CD80 and CD86 with 

greater avidity than CD28, and its inhibitory role refines early phase activation signals for 

proliferation and cytokine production 114-117. PD-1, another CD28/B7 family member, regulates 

late phase effector and memory response 118. Inhibitory co-receptors such as CTLA-4 and PD-1, 

known as “immune checkpoints”, block the interaction between CD28 and its ligands altering 

downstream secondary T cell activation signals 117. Therefore, blocking CTLA-4 or PD-1 

promotes effector T cell function in immunosuppressive environments 117,119.  

There are also a number of co-receptors that have differential modulatory properties. For 

example, CD5, a lymphocyte glycoprotein expressed on thymocytes and all mature T cells, has 

contradictory roles at different time points. CD5 expression is set during thymocyte development 
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and decreases the perceived strength of TCR-pMHC signaling in naïve T cells by clustering at 

the TCR-pMHC complex and reducing TCR downstream signals such as the Ca2+ response when 

its cytoplasmic pseudo-ITAM domain is phosphorylated 120-123. The CD5 cytoplasmic domain 

has four tyrosine residues (Y378, Y429, Y411 and Y463), and residues Y429 and Y441, are 

found in a YSQP-(x8)-YPAL pseudo ITAM motif while other tyrosine residues make up a 

pseudo-ITIM domain 121. Phosphorylated tyrosines recruit several effector molecules and may 

sequester activation kinases away from the TCR complex, effectively reducing activation 

signaling strength 121. Recruited proteins include Src homology-2 protein phosphatase-1 (SHP-

1), Ras GTPase protein (rasGAP), CBL, casein kinase II (CK2), zeta-chain-associated protein 

kinase 70 (ZAP70), and PI3K which are involved in regulating both positive and negative TCR-

induced responses 124-126. For example, ZAP-70 phosphorylates other substrates and eventually 

recruits effector molecules such as PLC gamma and promotes Ca2+ signaling and Ras activation 

which stimulates the ERK pathway and leads to cellular activation 111,127. Conversely, SHP1 

inhibits Ca2+ signaling and PKC activation via decreased tyrosine phosphorylation of PLCγ 

111,124,128,129. Further, Y463 serves as a docking site for c-Cb1, a ubiquitin ligase, which is 

phosphorylated upon CD3-CD5 ligation and leads to increased ubiquitylation and 

lysosomal/proteasomal degradation of TCR downstream signaling effectors and CD5 itself 130. 

Thus, CD5 has a mix of downstream effects that both promote and inhibit T cell activation. 

Curiously, recent work suggests that in contrast to its initial inhibitory nature, CD5 also co-

stimulates resting and mature T cells by augmenting CD3-mediated signaling 61,123,131,132. 

Ca2+ is an important second messenger in many cells types, including lymphocytes, and 

plays a key role in shaping immune responses. In naïve T cells, intracellular Ca2+ is maintained 

at low levels, but when TCR-pMHC complexes are formed, inositol triphosphate (IP3) initiates 
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Ca2+ release from intracellular stores of the endoplasmic reticulum (ER) which opens the Ca2+ 

release activated Ca2+ channels (CRAC) and initiates influx of extracellular Ca2+ through store 

operated Ca2+ entry (SOCE) 5,14,19,133-135. The resulting elevation of intracellular Ca2+ levels 

activates transcription factors involved in T cell proliferation, differentiation and cytokine 

production (e.g. nuclear factor of activated cells (NFAT)) 5,19. Thus, impaired Ca2+ mobilization 

affects T cell development, activation, differentiation and function 136,137. Examples of diseases 

with impaired Ca2+ signaling in T cells include systemic lupus erythematosus, type 1 diabetes 

mellitus, and others 138,139. 

In this review, we will focus on CD5 co-receptor signaling and its functional effects on T 

cell activation. First, we will discuss how the inhibitory co-receptors CTLA-4 and PD-1 

modulate T cell function. Then we will compare CTLA-4 and PD-1 function to CD5 function, 

examine recent findings that expand our understanding of the role of CD5, and assess how these 

findings apply to T cell Ca2+ signaling. Finally, we will consider CD5 Ca2+ signaling regulation 

in T cells and its potential physiological impact in immunometabolism, cell differentiation, 

homeostasis, and behavior.  

3.2 Roles of Negative Regulatory T cell Co-receptors  

3.2.1 CTLA-4 

Cytotoxic T-lymphocyte antigen-4 (CTLA-4, CD152) inhibits early stages of T cell 

activation by recruiting inhibitory proteins such as SHP-2 and type II serine/threonine 

phosphatase PP2A that interfere with T cell synapse signaling 119,140-142. CTLA-4 binds B7, a 

protein on activated APCs, with higher affinity than the stimulatory co-receptor CD28; the 

resulting balance between inhibitory and stimulatory signals controls T cell activation or anergy 

117,143. In naïve T cells, CTLA-4 is located in intracellular vesicles which localize at TCR binding 
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sites following antigen recognition and intracellular Ca2+ mobilization 117,144. Like CD28, CTLA-

4 aggregates to the central supramolecular activation complex (cSMAC) where it then 

extrinsically controls activation by decreasing immunological synapse contact time 145-147. This 

suppresses pro-activation signals by activating ligands (B7-1 and B7-2) and induces the enzyme 

Inoleamine 2,3-dioxygenase (IDO) which impairs Ca2+ mobilization and suppresses T cell 

activation, ultimately altering IL-2 production and other effector functions in T cells 145,148,149. 

CTLA-4 also stimulates production of regulatory cytokines such as transforming growth factor 

beta (TGF-β) which inhibit APC presentation and T cell effector function 141,146,147. Compared to 

effector T cells (Teff), CTLA-4 is highly expressed in regulatory T cells (Treg) and plays a role in 

maintaining Treg homeostasis, proliferation and immune responses 114,150,151. Total or partial 

CTLA-4 deficiency inhibits Treg ability to control cytokine production and can cause immune 

dysregulation 150,152-154. Thus, CTLA-4 has an important role in the Treg suppressive response 153. 

Additionally, CTLA-4 mutations are associated with autoimmune diseases as thoroughly 

reviewed by Kristiansen et al 155. 

The loss of CTLA-4 results in removal of CTLA-4 competition with CD28 for B7-1 and 

B7-2 and is implicated in autoimmunity and cancer 113,156. Because CTLA-4 inhibits TCR 

signaling, CTLA-4 deficiency leads to T cell overactivation as measured by increased CD3ζ 

phosphorylation and Ca2+ mobilization 157. Thus, modulating CTLA-4 signaling is an attractive 

target for immunotherapies that seek to boost or impair early TCR signaling for cancer and 

autoinflammatory diseases 158,159. For example, Ipilimunab, an IgG1 antibody-based melanoma 

treatment, is a T cell potentiator that blocks CTLA-4 to stimulate T cell proliferation and stem 

malignant disease progression by delaying tumor progression and has been shown to 

significantly increase life expectancy 117,160,161. Additionally, Tremelimumab, a non-complement 
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fixing IgG2 antibody, has been tested alone or in combination with other antibodies such as 

Durvalumab (a PD-1 inhibitor) and improves antitumor activity in patients with non-small cell 

lung cancer (NSCLC), melanoma, colon cancer, gastric cancer and mesothelioma treatment 162-

167.  

3.2.2 PD-1  

Programmed cell death protein-1 (PD-1, CD279) is a 288-amino acid (50-55 KDa) type I 

transmembrane protein and a member of the B7/CD28 immunoglobulin superfamily expressed 

on activated T cells, B cells and myeloid cells 117,168,169. PD-1 has two known ligands, PD-L1 and 

PD-L2, which inhibit T cell activation signals 170. Like CTLA-4, PD-1 also inhibits T cell 

proliferation and cytokine production (INF-γ, TNF and IL-2) but is expressed at a later phase of 

T cell activation 117. PD-1 has an extracellular single immunoglobulin (Ig) superfamily domain 

and a cytoplasmic domain containing an ITIM and an immunoreceptor tyrosine-based switch 

motif (ITSM) subunit critical for PD-1 inhibitory function 171. Upon T cell activation, PD-1 is 

upregulated and initiates ITIM and ITSM tyrosine interaction with SHP-2 which mediates TCR 

signaling inhibition by decreasing Erk phosphorylation and intracellular Ca2+ mobilization 172,173. 

PD-1 can block the activation signaling pathways PI3K-Akt and Ras-Mek-Erk, which inhibit or 

regulate T cell activation 172,174. Thus, engagement of PD-1 by its ligand affects intracellular Ca2+ 

mobilization, IL-2 and TNF-α production, supporting PD-1 inhibitory role in TCR strength 

mediated signals 175. 

PD-1 signaling also affects regulatory T cell (Treg) homeostasis, expansion, and function 

176. Treg activation and proliferation are impacted by PD-1 expression which enhances their 

development and function while inhibiting T effector cells 168,177. PD-1, PD-L and Tregs help 

terminate immune responses 178. Thus, PD-1 deficiency results not only in increased T cell 
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activation, but in the breakdown of tolerance and the development of autoimmunity in diseases 

such as multiple sclerosis and systemic lupus erythematosus 178-182. PD-1 and its ligands protect 

tissues from autoimmune attacks by regulating T cell activation and inducing and maintaining 

peripheral tolerance 183,184. Studies done in PD-1 deficient mice observed the development of 

lupus-like glomerulonephritis and arthritis, cardiomyopathy, autoimmune hydronephrosis, and 

Type I diabetes, among other ailments 185,186. PD-1 protects against autoimmunity and promotes 

Treg function. 178.  Enhancing Treg response with a PD-L1 agonist shows therapeutic potential for 

asthma and other autoimmune disorders 178,187. Because PD-1 specifically modulates lymphocyte 

function, effective FDA-approved monoclonal antibodies targeting PD-1 are clinically available 

(i.e. Pembrolizumab and Nivolumab) to treat advanced malignancies 118. Not only does blocking 

PD-1 decrease immunotolerance of tumor cells, it also increases cytotoxic T lymphocyte anti-

tumor activity 118. 

3.3 CD5: A Contradictory Co-receptor  

3.3.1 Overview of CD5 signaling and Ca2+ mobilization in T cells 

CD5, known as Ly-1 antigen in mice or as Leu-1 in humans, is a type I transmembrane 

glycoprotein (67 kDa) expressed on the surface of thymocytes, mature T cells, and a subset of B 

cells (B-1a) 188,189. Although CD5 was discovered over 30 years ago, it was only in the last 

decade that CD5 gained attention as a key T cell activation regulator 190,191. CD5 expression is 

set in the thymus during positive selection and correlates with how tightly the thymocyte TCR 

binds to self-peptide-MHC (self-pMHC); greater TCR affinity for self-peptide leads to increased 

CD5 expression in double positive (DP) thymocytes 192. In other words, DP thymocytes that 

receive strong activation signals through their TCR express more CD5 than those DP thymocytes 

that receive weak TCR signals 192. CD5 knock out mice (CD5-/-) have a defective negative and 
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positive selection process, and therefore their thymocytes are hyper-responsive to TCR 

stimulation with increased Ca2+ mobilization, proliferation and cytokine production 121,190. On 

the other hand, because of the increased TCR avidity for self-pMHC, mature T cells with high 

CD5 expression (CD5hi) (peripheral or post-positive selection T cells) respond to foreign peptide 

with increased survival and activation compared to mature T cells with low CD5 expression 

(CD5lo) 132,193. Therefore, CD5 is a negative regulator of TCR signaling in the thymus and 

modulates mature T cell response in the periphery 40,121,132,192.  

While CTLA-4 and PD-1 belong to the immunoglobulin (Ig) family, CD5 belongs to 

group B of the scavenger receptor cysteine-rich (SRCR) superfamily and contains three 

extracellular SRCR domains 128,188,194. The cytoplasmic tail of CD5 contains several tyrosine 

residues which mediate the negative regulatory activity independent of extracellular engagement 

192,195,196. As CD5 physically associates with TCRζ/CD3 complex upon TCR and pMHC 

interaction, the tyrosine residues in both TCRζ and CD5 are phosphorylated by tyrosine kinases 

associated with the complex 128,197-201. This interaction is so intrinsic to T cell signaling that CD5 

expression levels are proportional to the degree of TCRζ phosphorylation, IL-2 production 

capacity, and Erk phosphorylation which are critical for CD3-mediated signaling 42,131. It is 

unknown whether post-translational modifications, such as conserved domain 1 and domain 2 

glycosylations impact CD5 signaling 202,203. CD5 is present in membrane lipids rafts of mature T 

cells where, upon activation, it helps augment TCR signaling, increases Ca2+ mobilization, and 

upregulates ZAP-70/LAT (linker for activation of T cells) activation 204-206. This suggests that 

CD5 is not only a negative regulator in thymocytes, but also appears to positively influence T 

cell immune response to foreign antigen 207,208. See Figure 13. 
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Figure 13. Effects of CD5 on different stages of T cell development.  
CD5 expression on thymocytes is directly proportional to the signaling intensity of the TCR:self-pMHC 
interaction. In the periphery, T cells with higher CD5 levels (CD5hi) are better responders to foreign-
peptide. Long-lived memory cells populations are enriched for CD5hi T cells 40,132,209. 
 
3.3.2 CD5 as a Ca2+ Signaling Modulator  

As previously mentioned, CD5 expression levels are set in the thymus during T cell 

development and are maintained on peripheral lymphocytes 207. CD5 expression in T cells plays 

an important role during development and primes naïve T cells for responsiveness in the 

periphery 42,43,61. CD5hi T cells have the highest affinity for self-peptides and respond with 

increased cytokine production and proliferation to infection 35,193,210.  

Our laboratory works with two TCR transgenic mouse lines with different levels of CD5 

expression: LLO56 (CD5hi) and LLO118 (CD5lo) 42,43,207. While LLO56 (CD5hi) and LLO118 

(CD5lo) have similar affinity for the same immunodominant epitope (LLO190-205) from Listeria 
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monocytogenes, on day 7 of primary response LLO118 (CD5lo) has approximately three times 

the number of responding cells compared to LLO56 (CD5hi), and conversely, on day 4 during 

secondary infection LLO56 (CD5hi) has approximately fifteen times more cells than LLO118 

(CD5lo) 43. This difference is not due to differential proliferative capacity, rather LLO56 (CD5hi) 

has higher levels of apoptosis during the primary response 43. Thus, LLO56 CD5hi and LLO118 

CD5lo capacity to respond to infection appears to be regulated by their CD5 expression levels 207. 

LLO56 (CD5hi) thymocytes have greater affinity for self-peptide, which primes them to be 

highly apoptotic 43.  

Recently we reported that in response to foreign peptide, LLO56 (CD5hi) naïve T cells 

have higher intracellular Ca2+ mobilization than LLO118 (CD5lo), which correlates with 

increased rate of apoptosis of LLO56 (CD5hi), as Ca2+ overloaded mitochondria release 

cytochrome c which activates caspase and nuclease enzymes, thus initiating the apoptotic 

pathways 61,211,212. LLO56 (CD5hi) naïve T cell increased Ca2+ mobilization also provides 

additional support to the idea that CD5hi T cells have an enhanced response to foreign peptide 

61,212. This supports previous research that found that upon T cell activation increased CD5 

expression is correlated with greater basal TCRζ phosphorylation, increased Erk 

phosphorylation, and more IL-2 production 193. 

 Thus, unlike CTLA-4 and PD-1 that are expressed only on activated T cells in the 

periphery during early and late phases of immune response, respectively, CD5 is set during T 

cell development, and influences T cells both during thymic development and during post-

thymic immune responses 117,193 (See Fig. 14). CD5 not only has an important inhibitory role in 

the thymus, but also appears to positively influence the T cell population response; for example, 

more CD5hi T cells populate the memory T cell repertoire because CD5hi naïve T cells have a 
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stronger primary response 132,213.CD5 fine-tunes the sensitivity of TCR signaling to pMHC, 

altering intracellular Ca2+ mobilization and NFAT transcription, key players in T cell effector 

function 117,157,214. As Ca2+ signaling plays a key role in T cell activation and function, 

controlling Ca2+ mobilization in T cells through CD5 expression could influence diverse areas of 

clinical research including metabolism, cancer treatments and even cognitive behavior. 

 
Figure 14. Inhibiting co-receptors modulate T cell activation.  
CD5 is present in naïve T cells and localizes to the TCR-pMHC complex during activation. Initial 
activation cascades signal for the release of CTLA-4 from vesicles to the cell surface while the 
transcription factor NFAT transcribes PD-1. CTLA-4 provides inhibitory signals during early activation 
while PD-1 is expressed later and inhibits later stages of T cell activation. The initial Ca2+ mobilization is 
decreased by CTLA-4 and PD-1 downstream signals. 
 
3.4 Physiological Impact of CD5 Expression in T cells 

3.4.1 Metabolism 

Naive T cells are in a quiescent state and rely on oxidative phosphorylation (OXPHOS) 

to generate ATP for survival 215,216. Upon TCR-pMHC interaction, T cells undergo metabolic 

reprograming to meet energetic demands by switching from OXPHOS to glycolysis 217. 

Glycolysis is a rapid source of ATP and regulates posttranscriptional production of INF-γ, a 
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critical effector cytokine 218. Following the immune response, most effector T cells undergo 

apoptosis while a subset become quiescent memory T cells. Memory T cells have lower 

energetic requirements and rely on OXPHOS and Fatty Acid Oxidation (FAO) to enhance 

mitochondrial capacity for maintenance and survival 219.  

Ca2+ signaling is a key second messenger in T cell activation and Ca2+ ions also modulate 

T cell metabolism through CRAC channel activity and NFAT activation 8,101. During TCR-

pMHC binding Ca2+ is released from the endoplasmic reticulum where it is absorbed by the 

mitochondria and initiates an influx of extracellular Ca2+ 101. First, the rise of cytoplasmic Ca2+ 

activates stromal interaction molecule 1 (STIM1) located on the ER membrane to interact with 

the CRAC channel located on the cell membrane 220. The release of the ER store and resulting 

extracellular Ca2+ influx increases the intracellular Ca2+ concentration and promotes AMPK 

(adenosine monophosphates activated protein kinase) expression and CaMKK (calmodulin-

dependent protein kinase kinase) activity 101,220,221. AMPK senses cellular energy levels through 

the ratio of AMP to ATP and generates ATP by inhibiting ATP-dependent pathways and 

stimulating catabolic pathways 222. This indirectly controls T cell fate as AMPK indirectly 

inhibits mTOR (mammalian target of rapamycin complex) 223. Because mTOR coordinates the 

metabolic cues that control T cell homeostasis, it plays a critical role in T cell fate 224. T cells that 

are TSC1 (Tuberous sclerosis complex 1) deficient show metabolic alterations through increased 

glucose uptake and glycolytic flux 225.  

The rise of cytoplasmic Ca2+ also encourages mitochondria to uptake cytoplasmic 

Ca2+ through the mitochondrial Ca2+ uniporter (MCU) 226. This MCU uptake increases Ca2+ 

influx by depleting Ca2+ near the ER which further activates the CRAC channels and promotes 

STIM1 oligomerization 101,227-229. Ca2+ uptake in the mitochondria also enhances the function of 
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the tricarboxylic acid cycle (TCA), which generates more ATP through OXPHOS 230,231. 

OXPHOS is maintained by a glycolysis product, phosphoenolpyruvate (PEP), which sustains 

TCR-mediated Ca2+-NFAT signaling by inhibiting the ER SERCA pump, thus promoting T cell 

effector function 232,233.  Downregulation of calmodulin kinase, CaMKK2, which controls NFAT 

signaling decreases glycolytic flux, glucose uptake, and lactate and citrate metabolic processes 

87. Ca2+ may also orchestrate the metabolic reprogramming of naïve T cells by promoting 

glycolysis and OXPHOS through the SOCE/calcineurin pathway which controls the expression 

of glucose transporters GLUT1/GLUT3, and transcriptional co-regulator proteins important for 

the expression of electron transport chain complexes required for mitochondria respiration 8. 

Co-receptor stimulation plays a pivotal role in T cell metabolism and function. A 

decrease in T cell Ca2+ signaling represses glycolysis and affects T cell effector function 230. PD-

1 and CTLA-4 depress Ca2+ signaling and glycolysis while promoting FAO and antibodies 

against CTLA-4 and PD-1 increase Ca2+ mobilization and glycolysis during T cell activation 

234,235. Like CTLA-4 and PD-1, CD5 modulatory function has the potential to influence T cell 

metabolism. Analysis of gene families modulated by CD5 in B cells found that CD5 upregulates 

metabolic related genes including VEFG, Wnt signaling pathways genes, MAPK cascade genes, 

I-kB/NF-kB cascade genes, TGF β signaling genes, and adipogenesis process genes 236. 

Therefore, proliferation differences correlated with CD5 expression in T cells may be caused by 

improved metabolic function as CD5lo T cells seem to be more quiescent than CD5hi T cells 237.  

Although not much is known about how CD5 alters metabolic function in T cells, signaling 

strength differences of CD5hi and CD5lo T cell populations correlate with intracellular Ca2+ 

mobilization during activation and influence their immune response 42,43,61. This implies that 

different metabolic processes may be initiated which would influence proliferation, memory cell 
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generation, and cytokine production. Fig. 15 summarizes how Ca2+ may be mobilized in CD5hi 

and CD5lo naïve T cells and the role Ca2+ may play on metabolism. 

 

Figure 15. CD5 expression levels in naïve T cells may influence T cell metabolism and function. 
Differential levels of CD5 results in differences in Ca2+ mobilization in naïve T cells. CD5hi naïve T cells 
have higher Ca2+ influx than CD5lo naïve T cells upon TCR:pMHC interaction 61. Ca2+ signaling plays a 
significant role in T cell activation and influences metabolism and T cell function. Differential Ca2+ 
mobilization, and expression of calcineurin and NFAT affects glycolysis and mitochondrial respiration, 
suggesting CD5 expression may affect metabolic reprograming during T cell activation 8. 

3.4.2 Neuroimmunology 

The field of neuroimmunology examines the interplay between the immune system and 

the central nervous system (CNS) 238. The adaptive immune system does influence the CNS as 

cognition is impaired by the absence of mature T cells 239. In wild type mice, there is an increase 

in the number of T cells present in the meninges during the learning process, in stark contrast to 

mice with T helper 2 cytokine deficiencies (such as IL-4 and IL-13) who have decreased T cell 

recruitment and impaired learning 240. Furthermore, regulation of T cell activation and cytokine 
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production critically assists neuronal function and behavior, suggesting that manipulation of T 

cells could be a potential therapeutic target in treating neuroimmunological diseases 241,242.  

T cells go through several microenvironments before reaching the CNS 243. Many of the 

signal interactions present in these microenvironments affect T cell function and involve changes 

in intracellular Ca2+ levels 243,244. In experimental autoimmune encephalitis (EAE), a model for 

human multiple sclerosis, autoreactive T cells have Ca2+ fluctuations throughout their journey to 

the CNS 243. Prior to reaching the CNS, T cells interact with splenic stroma cells that do not 

display the cognate auto-antigen and this interaction produces short-lived low Ca2+ mobilization 

spikes 243.  Following entrance into the CNS T cells encounter autoantigen-presenting cells and 

have sustained Ca2+ mobilization which results in NFAT translocation and T cell activation 

243,245. EAE mice display reduced social interaction and cognition demonstrating that 

autoimmune response impairs neuronal function and organismal behavior 246. 

Inhibitory T cell co-receptors are implicated in CNS dysregulation and disease. Varicella 

zoster virus (VZV) infection is characterized by lifelong persistence in neurons. VZV increases 

the expression of CTLA-4 and PD-1 in infected T cells which reduces IL-2 production and 

increases T cell anergy 247,248. PD-1 deficient mice (Pdcd1-/-) have increased T cell activation, 

leading to greater intracellular Ca2+ mobilization, and as previously discussed, increased 

glycolysis 179. PD-1 deficiency causes elevated concentration of aromatic amino acids in the 

serum, specifically tryptophan and tyrosine, which decreases their availability in the brain where 

they are important for the synthesis of neurotransmitters such as dopamine and serotonin; 

consequently, there is an increase in anxiety-like behavior and fear in Pdcd1-/- mice 179. 

Therefore, increased T cell activation caused by PD-1 deficiency can affect brain function and 

thus, effects cognitive behavior 179. 
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3.4.3 Cancer 

T cells are critical components of the immune response to cancer. Helper T cells directly 

activate killer T cells to eradicate tumors and are essential in generating a strong antitumor 

response alone or in concert with killer T cells by promoting killer T cell activation, infiltration, 

persistence, and memory formation 249-254. Tumor-specific T cells may not mount a robust 

response towards cancerous cells because the tumor microenvironment has numerous 

immunosuppressive factors; cancerous cells also downregulate cell surface co-stimulatory and 

MHC proteins which suppresses T cell activation 255-259. Potent anti-tumor immune checkpoint 

blockade therapies using CTLA-4 and PD-1 monoclonal antibodies augment T cell response by 

suppressing the co-receptors inhibitory signals, thereby promoting increased Ca2+ mobilization, 

glycolysis and activation 260,261. CTLA-4 monoclonal antibodies such as ipilimumab (Yervoy) 

and tremelimumab block B7-interaction and have been used to treat melanoma 141,262,263. The 

monoclonal antibody pembrolizumab is highly selective for PD-1 and prevents PD-1 from 

engaging PD-L1 and PD-L2, thus enhancing T cell immune response 117,264,265. Further research 

will address whether combining anti-CTLA-4 and anti-PD-1 antibodies will improve cancer 

treatments 117. 

As previously mentioned, Ca2+ is critical for T cell activation and immune response. 

Manipulating Ca2+ signaling to enhance T cell-directed immune response against cancer is an 

intriguing notion, yet the means to target the Ca2+ response of specific cells without tampering 

with the metabolic processes of other cells remains elusive 266. Anti-tumor activity of tumor 

infiltrating lymphocytes (TIL), is inversely related to CD5 expression 191. CD5-levels in naïve T 

cells are constantly tuned in the periphery by interactions with self pMHC complexes to maintain 

homeostasis; therefore, CD5 expression on TILs can be downregulated in response to low 
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affinity for cancer-antigens 267-269. Thus, the majority of TILs are CD5lo which increases their 

reactivity while CD5hi TILs do not elicit a Ca2+ response and become anergic and are unable to 

eliminate malignant cells 191,269. While downregulation of CD5 on TILs enhances anti-tumor T 

cell activity, CD5lo T cells are also more likely to experience activation induced cell death 

(AICD) as CD5 protects T cells from overstimulation 121. To maximize TIL effectiveness, the 

inhibitory effects of CD5 could be blocked by neutralizing monoclonal-antibodies or soluble 

CD5-Fc molecules combined with soluble FAS-Fc molecules to reduce the inherent AICD 

121,270,271. Soluble human CD5 (shCD5) may have a similar effect but avoid targeting issues by 

blocking CD5-mediated interaction via a “decoy receptor” effect. Mice constitutively expressing 

shCD5 had reduced melanoma and thyoma tumor cell growth and increased numbers of CD4+ 

and CD8+ T cells 272. Wild type mice treated with an injection of recombinant shCD5 also had 

reduced tumor growth 272. Finally, CD5-deficient mice engrafted with B16-F10 melanoma cells 

have slower tumor growth compared to wild type C57BL/6 mice 273. This evidence suggests that 

CD5, along with PD-1 and CTLA-4, may be a potential target to specifically modulate T cell 

Ca2+ mobilization in an immunosuppressive tumor setting. 

3.4.4 Microbiome 

The gut microbiome, including the bacteria and their products, forms a dynamic 

beneficial symbiosis with the immune system influencing host genes and cellular response. The 

gut microbiome shapes and directs immune responses while the immune system dictates the 

bacterial composition of the gut microbiome 274. As the gut is the major symbiotic system 

intersecting the immune system and microbiota, understanding their connection has implications 

for immune system development and function as the gut microbiome is involved in protecting 
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against pathogens, influencing states of inflammation, and even affecting cancer patient 

outcomes 275,276.  

The gut microbiome primes immune responses 277. Alteration in the microbial 

composition can induce changes in T cells function in infectious disease, autoimmunity and 

cancer 278. For example, mice treated with antibiotics which restrict or reduce the microbial 

environment exhibit impaired immune response because their T cells have altered TCR signaling 

and compromised intracellular Ca2+ mobilization in infectious disease and cystic fibrosis models 

279-281. In contrast, administering oral antibiotics to mice with EAE increases the frequency of 

CD5+ B cell subpopulations in distal lymphoid sites and confers disease protection 282. In cancer, 

the microbiome also influences patient response to immune checkpoint inhibitors such as CTLA-

4 and PD-1 283,284. Mice and melanoma patients immunized or populated with Bacteriodes 

fragilis respond better to treatment with Ipilimumab, a monoclonal antibody against CTLA-4 275. 

Similarly, tumor-specific immunity improved when anti-PD-1/PD-L1 monoclonal antibodies 

where used in the presence of Bifidobacterium 285.  

Though little is known about how CD5 influences T cell interaction with the microbiome, 

some tantalizing details are available. As specific bacterium promotes cancer regression during 

CTLA-4 and PD-1 checkpoint blockades, a CD5 blockade in conjunction with bacterial selection 

may also improve immune response. Such studies would lead to novel immunotherapeutic 

treatments for cancer and autoimmune diseases. 

3.5 Conclusions 

CD5, widely known an inhibitory co-receptor in the thymus, appears to modulate the 

signaling intensity of peripheral T cells by increasing Ca2+ signaling activity and efficacy of 

CD5hi T cells. CD5 expression levels in the periphery correlates with intracellular Ca2+ 
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mobilization, suggesting that CD5 promotes peripheral T cell activation and immune 

response.  As such, CD5 may be a novel checkpoint therapy to regulate T cell activation and 

metabolism through altering Ca2+ mobilization, and could be used to affect neurological 

behavior, alter microbiome interactions, and treat cancer and autoinflammatory diseases. While 

this paper focuses on the role of co-receptor CD5 effects on calcium signaling and activation of 

T cells, CD5 itself may be regulated through post-translational modifications, such as N-

glycosylation, which may affect Ca2+ mobilization, T cell metabolism, activation and function. 
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CHAPTER 4: Naïve Helper T Cells with High CD5 Expression have Increased Calcium 

Signaling  

The content of this chapter was published in PLOS One, Freitas, C. M. T., Hamblin, G. J., 

Raymond, C. M. & Weber, K. S. Naive helper T cells with high CD5 expression have increased 

calcium signaling. PloS one 12, e0178799, doi:10.1371/journal.pone.0178799 (2017). It has been 

formatted for this dissertation, but it is otherwise unchanged. 

Abstract 

The adaptive immune response is orchestrated by T helper cells and their function is 

dependent upon interactions between the T cell receptor (TCR), peptide MHC (pMHC) and co-

receptors. TCR-pMHC interactions initiate calcium signaling cascades which determine T cell 

activation, survival, proliferation and differentiation. CD5 is a co-receptor that plays an 

important role in regulating T cell signaling and fate during thymocyte education. CD5 surface 

expression on mature single positive thymocytes correlates with the TCR signal strength for 

positive selecting self-ligands.  CD5 also plays a role in T cell function after thymic development 

is complete. Peripheral T cells with higher CD5 expression respond better to foreign antigen than 

those with lower CD5 expression and CD5-high T cells are enriched in memory populations. In 

our study, we examined the role of CD5 expression and calcium signaling in the primary 

response of T cells using two Listeria monocytogenes specific T helper cells (LLO118 and 

LLO56). These T cells recognize the same immunodominant epitope (LLO190-205) of L. 

monocytogenes and have divergent primary and secondary responses and different levels of CD5 

expression. We found that each T cell has unique calcium mobilization in response to in vitro 

stimulation with LLO190-205 and that CD5 expression levels in these cells changed over time 
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following stimulation. LLO56 naïve T helper cells, which expresses higher levels of CD5, have 

higher calcium mobilization than naïve LLO118 T cells. Three days after in vitro stimulation, 

LLO118 T cells had more robust calcium mobilization than LLO56 and there were no 

differences in calcium mobilization 8 days after in vitro stimulation. To further evaluate the role 

of CD5, we measured calcium signaling in CD5 knockout LLO118 and LLO56 T cells at these 

three time points and found that CD5 plays a significant role in promoting the calcium signaling 

of naïve CD5-high LLO56 T cells.    

4.1 Introduction 

Helper T cells play a critical role in adaptive immunity by orchestrating and regulating 

the immune response 286,287. In large part, the binding properties of the T cell receptor (TCR) 

regulates the development, activation, and proliferative response of T lymphocytes 288,289. In the 

thymus, T cells are selected according to their avidity for self-peptide/MHC complexes. The 

TCR must be able to recognize self-peptide/MHC complexes with enough affinity to transduce a 

signal during positive selection while not binding so tightly that they are negatively selected 289-

291. TCR avidity and signal strength plays a key role in T cell function (calcium signaling,

cytokine production, T cell proliferation and differentiation) 292-294. In addition to the TCR and its 

interaction with peptide MHC (pMHC), multiple receptors such as CD4, CD8, PD-1, and CTLA-

4 play a key role in determining whether TCR:pMHC binding results in T cell activation or 

anergy. CD5 is known to be a negative regulator of TCR signaling in developing thymocytes and 

its expression level in naïve T cells is determined during thymic development. CD5 levels are set 

during positive selection according to the strength of the TCR-self-peptide/MHC interaction. 

Typically, the stronger the avidity for self-peptide/MHC the higher the CD5 surface expression 

120,191,295,296. After completing thymic development, T cells with higher CD5 expression respond 
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better to foreign antigen than those with lower CD5 expression and CD5-high T cells are 

enriched in memory populations 193,297. Although there are studies examining the role of T cell 

CD5 expression during thymic development and CD5-high cells are enriched in memory cell 

populations, it is not clear how CD5 is involved in calcium signaling during a helper T cell 

primary response. To better understand the role of CD5 in a T cell primary response to foreign 

antigen, we examined the in vitro calcium responses of CD5-high and CD5-low T helper cells 

that respond to the same epitope of Listeria monocytogenes.  

Calcium (Ca2+) is a ubiquitous second messenger important for a wide range of cellular 

functions. Ca2+ signaling plays an important role in T cell activation, cytokine production, 

proliferation and cell fate and is determined by TCR interactions with the pMHC complex as 

well as additional co-receptors 207,294. Ca2+ signaling has been well characterized in lymphocytes 

and the calcium signal for specific helper T cell subsets has been identified, suggesting a strong 

relationship between Ca2+ mobilization in T helper cells and their functional response 19,298. TCR 

engagement with pMHC initiates signal transduction pathways that result in a dramatic increase 

of intracellular Ca2+ 5,134. Increases in intracellular Ca2+ enables transcription factors to enter the 

nucleus and turn on genes that play a critical role in immune responses. For example, NFAT, 

NF-κB, AP-1, and the Oct family transcription factors initiate transcription of the interleukin-2 

(IL-2) gene 299. IL-2 production is important for T cell proliferation and survival and plays a key 

role in promoting effector and memory cell differentiation 300-302. Thus, TCR-dependent Ca2+ 

signals are essential for robust T cell primary and secondary immune responses.  

The TCR avidity for self-peptide/MHC complex during selection affects the function and 

maintenance of these cells in the periphery and how they respond to infection 42,43.  CD5 is a 

monomeric cell surface glycoprotein expressed on thymocytes, mature T cells, and a subset of B 
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cells. High TCR avidity for self-peptide/MHC results in high surface expression of CD5 on 

double positive and single positive thymocytes, whereas lower avidity is correlated with lower 

surface expression of CD5 295. CD5 has been shown to negatively regulate the TCR signal during 

thymic development 190. CD5 expression and Ca2+ mobilization correlate with TCR signal 

strength and T cell fate 209,288,290. However, mature naïve T cells with higher expression levels of 

CD5 appear to respond better to foreign ligands, suggesting that CD5 influences T cell 

responsiveness at the post-selection level 41,193,207. Thus, it appears that the negative regulatory 

effect of CD5 in the thymus may not depend on the extracellular region of CD5 whereas the 

positive co-stimulatory effect of CD5 in the periphery is dependent on extracellular engagement 

of an endogenous ligand (CD5 or CD5L) 195,303,304. While the exact function of these CD5 

ligands is unclear, there is evidence that CD5L (CD72; a C-type ligand) binds to CD5 and that 

CD5 is homophillic and may bind to CD5 on other cells 305. Thus, CD5 has a critical and 

divergent role in regulating T cell activation depending on the time and location of activation.  

LLO56 and LLO118 are two T helper cells that recognize the same immunodominant 

epitope (LLO190-205) of L. monocytogenes and have divergent primary and secondary responses. 

They differ by 15 amino acids in their TCR sequences and have unique responses to L. 

monocytogenes infection in vivo, LLO118 has a better primary response whereas LLO56 has a 

more robust secondary response 43.  Previous analysis of thymocytes and T cells revealed that 

LLO56 has higher levels of CD5 and a more robust IL-2 response in addition to a reduced 

primary response caused by increased cell death compared to LLO118 T cells 42,43. In order to 

better understand how CD5 levels affect T cell activation in cells that have completed thymic 

development, we determined to evaluate calcium signaling in LLO56 (CD5-high) and LLO118 

(CD5-low) T cells. We also measured calcium signaling in CD5 knockout LLO118 and LLO56 
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T cells to better elucidate the role of CD5 in calcium signaling after thymic development is 

finished. This was accomplished by measuring LLO118 and LLO56 calcium mobilization at 

three different time points during the T cell response: Naïve T helper cells, day 3 post-

stimulation, and day 8 post-stimulation. We also measured calcium signaling in CD5 knockout 

LLO118 and LLO56 T cells at these time points and found CD5 plays a significant role in 

promoting the calcium signaling of naïve CD5-high T cells, but does not alter calcium 

mobilization levels at later time points.    

4.2 Materials and Methods 

4.2.1 Mice 

LLO56 (B6 Thy-1.1+ Rag1−/−), LLO118 (B6 Ly5.1+ Rag1−/−) and CD5 knockout (KO) 

LLO56 and LLO118 were bred and housed in pathogen free conditions 42,43. All mice used in 

these experiments were 5-12 weeks old. All use of laboratory animals was done with approval of 

the Animal Care and Use Committee (IACUC protocol #15-801) at Brigham Young University.  

4.2.2 T cell Isolation and Activation 

CD4+ T cells were isolated from the spleens of LLO56 and LLO118 TCR transgenic (Tg) 

mice 42. Spleen single cell suspensions from LLO56 and LLO118 mice were purified using a 

negative selection CD4+ T cell isolation kit (Miltenyi Biotec) 298. T cells were isolated from the 

spleen of LLO56, LLO118, LLO56-CD5KO, and LLO118-CD5KO mice. Spleens were 

homogenized and passed through a nylon mesh cell strainer. The single-cell suspension was 

resuspended in R10 medium containing RPMI 1640, 10% of FBS (HyClone), 1% Glutamax 

(Gibco by Life Technologies), and 0.5% Gentamicin (Life Technologies), then transferred to a 6-

well plate (1x106 cell/ml) and loaded with 1 μM of Listeria monocytogenes peptide LLO190-205. 

For T cell isolations, mice were euthanized using CO2 inhalation. 
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4.2.3 Antigen Presenting Cell isolation  

Bone marrow derived macrophages (BMDM) were obtained from B6/C57 mouse femurs 

and tibias and were cultured at 37°C and 5% CO2 and matured for 7 days in macrophage medium 

with DMEM (HyClone), 10% FBS (HyClone), 20% supernatant from L929 mouse fibroblast as 

a source of macrophage colony-stimulating factor (M-CSF), 5% heat inactivated horse serum 

(Sigma), 1 mM Na Pyruvate (Gibco by Life Technologies), 1.5 mM L-glutamine (Thermofisher), 

1100X Penicillin/Sreptomycin (Gibco by Life Technologies). Harvested cells were plate in an 8-

chamber cover glass where they were loaded with the Listeria monocytogenes peptide LLO190-205 

overnight. For bone marrow derived macrophage isolations, mice were euthanized using CO2 

inhalation. 

4.2.4 Calcium Imaging  

Naïve T cells were incubated with 1 µM of Fura-2AM (Invitrogen) for 30 minutes at 

37°C and 5% CO2 in Ringers imaging solution (150 mM NaCl, 10mM glucose, 5 mM of 

HEPES, 5 mM of KCl, 1mM MgCl2, and 2 mM CaCl2, pH 7.4), washed, and then incubated in 

Ringers solution for another 30 minutes at 37°C.  200,000 Fura-2AM loaded naïve CD4+ T cells 

were pipetted onto 200,000 bone marrow derived macrophages that were previously incubated 

with 1 µM of Listeria monocytogenes peptide LLO190-205 overnight.  Imaging was performed in 

Nunc 8-chamber covered glass slides (155411, Thermo Scientific). For day 3 and day 8 

stimulation time points, LLO118 or LLO56 splenocytes were incubated overnight with 1 µM of 

Listeria monocytogenes peptide LLO190-205. Calcium imaging was performed at room 

temperature using an Olympus IX51 inverted microscope equipped with a xenon arc lamp. Fura-

2AM loaded T cells were excited at 340 nm and 380 nm excitation filters and capture by a 

florescence microscope camera (Q Imaging Exi Blue) using a 20x objective (N.A. 0.75). Images 
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(340/380/transmitted) were recorded at 3 second intervals over 20 minutes. Each individual cell 

fluorescence was normalized with the first recorded value according to the equation (F-Fo)/Fo 

where F is the fluorescence at the specific time point, and Fo is the fluorescence value at time 0 

60. 

4.2.5 Flow Cytometry  

Calcium mobilization was also measured using flow cytometry and the high affinity 

calcium indicator Fluo-4 (ex:470–490 nm and em: 520–540 nm). Cells were surface stained with 

an anti-CD4+-APC antibody (17-0041; eBioscience). T cells were loaded for 30 mins as 

previously published with pluronic acid and 1mM Fluo-4-acetoxymethyl ester (Invitrogen) in 

Ringer solution (150 mM NaCl, 10 mM glucose, 5 mM of HEPES, 5 mM of KCl, 1 mM MgCl2, 

and 2 mM CaCl2, pH 7.4) 306. Intracellular calcium mobilization was initiated by adding  50 

ng/ml of  PMA (phorbol 12-myristate 13-acetate) and 1 μg/mml of ionomycin 307. For further 

analysis done in FlowJo, the lymphocyte population was gated in a forward and side scatter gate 

and singlets. From this gate a second gate was created specific for CD4+ T cells 308. Intracellular 

calcium flux was measured in the CD4+ T cell gate using the FlowJo kinetics tool. 

 For CD5 expression analysis, spleen single cell suspensions from naïve and stimulated 

(day 3 and day 8) were stained with anti-CD5-PE (12-0051; eBioscience), and anti-CD4-APC 

(17-0041; eBioscience) and analyzed on the flow cytometer (BD Accurri C6).  

4.2.6 Data Analysis 

Live cell calcium imaging data was analyzed using CellSens Software from Olympus and 

the 340:380 ratio calculations were performed on randomly selected cells. The standard 

deviation of the calcium levels from the regression line was determined using GraphPad Prism. 

For calcium flow cytometry measurements, FlowJo kinetics tool was used to determine the area 
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under the curve (AUC) 306,309,310. All assays were performed at least three times in triplicate and 

significant values were determined using student T test in GraphPad Prism. 

4.3 Results 

4.3.1 LLO118 and LLO56 T helper cells have different responses to antigen and CD5 expression 

levels 

To examine the role of CD5 in regulating calcium signaling in the primary response of 

helper T cells, we used LLO56 and LLO118 T cells which are specific for the same epitope of 

Listeria monocytogenes (listeriolysin O, LLO190-205) 43. These LLO118 and LLO56 T cells differ 

in their in vivo responses upon L. monocytogenes infection; LLO118 helper T cells have a better 

primary response and LLO56 helper T cells exhibit a better secondary response 43. Additionally, 

naïve LLO56 T cells have higher levels of CD5 and produce more IL-2 upon stimulation 

compared to those from LLO118 T cells 42,43.  We hypothesized that these differences in CD5 

levels and T cell function would allow us to better understand the role of CD5 in calcium 

signaling and T cell activation in a primary response (See Table 1).  

Table 1. Summary of differences between LLO56 and LLO118 T cells 

 LLO56 LLO118 
Primary Response + +++ 

Secondary Response +++ + 

IL-2 Response +++ ++ 

CD5 Expression (naïve T cells)  +++ + 
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4.3.2 LLO56 naïve helper T cells have higher calcium mobilization in vitro 

To determine how CD5 plays a role in the primary immune response of LLO56 and 

LLO118 T cells, we first analyzed the calcium signaling of naïve T cells isolated and purified 

from the spleens of LLO56 and LLO118 TCR Tg mice. Calcium mobilization was measured 

using live cell imaging after loading the T cells with Fura-2AM and adding them to 8-chamber 

slides containing antigen presenting cells loaded overnight with the L. monocytogenes peptide 

(LLO190-205). A calcium profile was generated by combining measurements (40+ cells) from 4 

different experiments taking readings every 3 seconds over a 20-minute time span (Fig 16A). 

Upon stimulation with LLO190-205 peptide, LLO56 T helper cells have higher peak calcium influx 

levels compared to LLO118 T cells (Fig 16B). There are not any significant differences in the 

mean calcium levels and variability (standard deviation) of the calcium signal between LLO56 

and LLO118 T cells (Fig 16C and 16D) 311. Thus, naïve LLO56 (CD5-high) and naïve LLO118 

(CD5-low) T cells have significantly different peak calcium mobilization profiles. 
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Figure 16. LLO56 naïve helper T cells have higher calcium mobilization in vitro.  
Naïve T cells from LLO56 and LLO118 TCR transgenic mice were obtained from the spleen using 
negative selection and calcium levels were measured using live cell microscopy. T cells were added to 
antigen presenting cells (bone marrow derived macrophages) that were loaded overnight with the L. 
monocytogenes peptide (LLO190-205).  A. Average curves of intracellular Ca2+ mobilization from LLO56 
and LLO118 naïve T cells (340/380 ratios) (n=40+). Error bars show the SEM at the influx peak and 
every 5 minutes after the peak (n=40+). B. Statistical analysis of peak calcium influx of stimulated LLO56 
and LLO118 naïve T helper cells (n=40+). C. Statistical analysis of the sustained intracellular Ca2+ levels 
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(Average 340/380 values between minutes 5 and 20) after initial stimulation response (n=40+). D. 
Standard deviation was determined by linear regression analysis and shows variability in the calcium 
signal for each group (n=40+). (* = p<0.05; NS = not significant). 
 
4.3.3 LLO56 naïve T helper cells have higher levels of CD5 surface expression  

Previous work has shown that naïve LLO56 T cells have higher expression of CD5 

compared to naïve LLO118 T cells 43. We wanted to know what happened to the levels of CD5 

at the post-stimulation time points (day 3 and day 8) that we examined in this study. As 

previously reported, LLO56 naive T helper cells showed higher CD5 expression than naïve 

LLO118 T helper cells. However, upon stimulation, the CD5 expression differences between 

LLO56 and LLO118 T cells decrease over the course of 8 days of stimulation (Figs 17A and 

17B). To further confirm CD5 expression a mean fluorescent intensity (MFI) profile was done, 

which confirmed significant CD5 expression levels differences between naïve LLO56 T cells 

with Day 3 and Day 8, however LLO56 did not have significant differences between Day 3 and 

Day 8 (Figs 17C and 171D).  

4.3.4 LLO118 T cells have higher peak calcium influx on day 3 post-stimulation 

To determine whether the Ca2+ influx difference seen in naïve T cells were maintained 

over the course of a primary response to infection, we measured calcium influx for LLO118 and 

LLO56 T helper cells 3 days post-stimulation with L. monocytogenes peptide (LLO190-205) (Fig 

18A).  In contrast to naïve T cells, day 3 post-stimulated LLO118 T cells have significantly 

higher peak levels of calcium influx than LLO56 T helper cells (Fig 18B). While there were no 

differences in mean Ca2+ levels (Fig 18C), LLO118 did have significantly higher variability in 
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the calcium signal (standard deviation). Thus, on day 3 post-stimulation LLO56 T cells had 

significantly lower peak calcium influx and lower variability compared to LLO118 T cells. 

 
Figure 17. Naïve LLO56 T helper cells have higher levels of CD5  
Flow cytometry analysis of CD5 expression of LLO56 and LLO118 T helper cells was done using 
LLO118 and LLO56 splenocytes at different time points after stimulation with the LLO190-205 peptide 
from L. monocytogenes. A. Gating strategy for measuring CD4 and CD5 mean fluorescent intensity on 
LLO118 and LLO56 T cells. B. CD5 levels of naïve T cells, T cell stimulated for 3 days, and T cells 
stimulated for 8 days. T helper cells from LLO56 (red line) overlaid with the CD5 levels from LLO118 
(shaded blue). Unstained cells are also included (black dots). C-D. Comparison of mean fluorescence 
intensity (MFI) profiles for LLO56 and LLO118 expression levels of CD5 at different time points were 
determined by flow cytometry quantitative analysis. (* = p<0.05; ** = p<0.01; *** =p<0.001; NS = not 
significant). 
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Figure 18. LLO118 helper T cells have higher calcium signaling on day 3 post stimulation. 
LLO56 and LLO118 splenocytes were isolated and cultured with the LLO190-205 peptide from L. 
monocytogenes for 72 hours in vitro. 24 hours before live imaging, a second set of splenocytes were 
isolated and cultured in an 8-chamber slide loaded with LLO190-205 peptide of L. monocytogenes for use as 
antigen presenting cells. T cells were stained with Fura-2AM, added to the antigen presenting cells and 
Ca2+ influx was measured. A. Average curves of intracellular Ca2+ mobilization from stimulated LLO56 
and LLO118 splenocytes (340/380 ratios; n=30) on day 3 post stimulation. Error bars show the SEM at 
the influx peak. B. Statistical analysis of peak calcium influx of stimulated LLO56 and LLO118 naïve T 
helper cells (n=30+). C. Statistical analysis of the sustained intracellular Ca2+ levels (Average 340/380 
values between minutes 5 and 20) after initial stimulation response (n=30+). D. Standard deviation was 
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determined by linear regression analysis and shows variability in the calcium signal for each group 
(n=30+). (** = p<0.01; *** =p<0.001; NS = not significant). 
 

4.3.5 LLO56 and LLO118 have similar in vitro calcium responses on day 8 post stimulation 

To further characterize the LLO118 and LLO56 Ca2+ response, we isolated splenocytes 

and co-cultured them with the L. monocytogenes peptide for 8 days. On day 8 post-stimulation, 

the average Ca2+ profiles were similar to each other (Fig 19A). Upon evaluation, there were no 

significant differences between LLO118 and LLO56 T cells in calcium peak, mean, or standard 

deviation on day 8 post-stimulation (Fig 19B-D).  

 

Figure 19. No calcium differences between LLO56 and LLO118 on day 8 post stimulation.  
LLO56 and LLO118 transgenic splenocytes were isolated and cultured with the LLO190-205 peptide for a 
week. 24 hours before live imaging, a second set of splenocytes were isolated and cultured in an 8-
chamber slide loaded with LLO190-205 peptide of L. monocytogenes for use as antigen presenting cells. 8 
days stimulated T cells were stained with Fura-2AM and Ca2+ influx was measured using live imaging 
microscopy. A. Average curves of intracellular Ca2+ mobilization from stimulated LLO56 and LLO118 
splenocytes (340/380 ratios; n=30) on day 8 post stimulation. Error bars show the SEM at the influx peak. 
B. Statistical analysis of peak calcium influx of stimulated LLO56 and LLO118 naïve T helper cells 
(n=30+). C. Statistical analysis of the sustained intracellular Ca2+ levels (Average 340/380 values between 
minutes 5 and 20) after initial stimulation response (n=30+). D. Standard deviation was determined by 
linear regression analysis and shows variability in the calcium signal for each group (n=30+). (NS = not 
significant). 
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4.3.6 Calcium Flow Cytometry data correlates with calcium microscopy data 

To confirm the results obtained in live cell calcium microscopy and evaluate the role of 

TCR independent calcium signaling, we isolated LLO56 and LLO118 T cells and measured Ca2+ 

mobilization using flow cytometry. Cells were labeled with Flou-4AM and stimulated with PMA 

and ionomycin. Flou-4AM fluorescence was examined before and after stimulation. 

Measurements were collected for naïve T helper cells, day 3, and day 8 post-stimulated T cells.  

The data was consistent with our previous live cell imaging findings in which naïve LLO56 T 

helper cells and day 3 post-stimulated LLO118 T cells had higher Ca2+ mobilization compared to 

their counterparts while no calcium mobilization differences were seen at day 8 between 

LLO118 and LLO56 T cells (Fig 20A-C and Table 2). Collectively, these data show CD5 

expression levels and calcium signaling changes over the course of a primary response in 

LLO118 and LLO56 T cells (Table 2, Fig. 17, and Fig. 19). Our live cell microscopy calcium 

imaging and flow cytometry calcium analysis differ in the parameters measured and the 

stimulation used (cells were stimulated in a TCR-dependent manner for live cell calcium 

imaging and in a TCR-independent manner for flow cytometry analysis). This calcium data is 

consistent with the TCR independent cytokine production differences between LLO118 and 

LLO56 identified by Persaud et al, in which they demonstrated that the LLO118 and LLO56 

naive T cell response was set during thymic selection. Naive LLO56 T cells have higher 

expression of CD5, suggesting increased affinity for self-peptide, and produce higher levels of 

IL-2 even when stimulated in a TCR independent manner 42. 
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Figure 20. Flow cytometry calcium analysis confirms improved calcium mobilization for naïve 
LLO56 T cells and higher calcium mobilization for LLO118 T cells at day 3 post-stimulation.  
LLO56 and LLO118 splenocytes were isolated and cultured at different time points with the LLO190-205 
peptide. Calcium levels were quantified using the FlowJo kinetics tool to determine the area under the 
curve (AUC) for each sample. Calcium mobilization levels for LLO118 and LLO56 are quantified (mean 
± SEM of the area under the curve). A. Statistical analysis of naïve LLO118 and LLO56 T helper cell 
calcium mobilization after activation with PMA and Ionomycin. B. Statistical analysis of day 3 post 
stimulated LLO118 and LLO56 calcium mobilization and C. Statistical analysis of day 8 post stimulated 
LLO118 and LLO56 calcium mobilization. (NS = not significant). 
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Table 2. Summary of CD5 and calcium findings for LLO56 and LLO118 

 LLO56 LLO118 
 CD5 Expression Ca2+ influx CD5 Expression Ca2+ 

mobilization 

Naïve T cell +++ +++ + + 

Day 3 ++ ++ + +++ 

Day 8 ++ ++ + ++ 

 

4.3.7 CD5 expression in naïve LLO56 T helper cells is correlated with higher Ca2+ mobilization 

To further investigate the role CD5 expression plays in Ca2+ mobilization, we measured 

the calcium signal in T cells from LLO118-CD5 knockout and LLO56-CD5 knockout mice. We 

found in the LLO118 T cells (CD5-low) that calcium mobilization was not significantly different 

from LLO118-CD5 knockout T cells at any of the three time points (Fig. 21A-C). Conversely, 

naïve LLO56-CD5 knockout T helper cells had significantly lower calcium levels compared to 

the naïve LLO56 T cells (CD5-high) (Fig. 21D). There was no calcium mobilization difference 

between LLO56 and LLO56-CD5 knockout T cells at day 3 or day 8 post-stimulation (Fig. 21E 

and 21F).  Thus, in naïve LLO118 T cells (CD5-low), CD5 does not appear to play a strong role 

in regulating calcium mobilization at any of the time points. However, CD5 expression is 

important in regulating calcium mobilization in the naïve LLO56 T cells (CD5-high) during the 

initial response to antigen, but as CD5 levels decrease over time, its role in regulating calcium 

also decreases.  
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Figure 21. CD5 expression in naïve LLO56 T helper cells is correlated with higher Ca2+ mobilization  
Flow cytometry analysis was performed to determine Ca2+ mobilization levels in LLO56, LLO118, 
LLO56-CD5 knockout and LLO118-CD5 knockout T cells stimulated with the L. monocytogenes peptide 
(naïve, day 3, and day 8 time points). Calcium levels were quantified using the FlowJo kinetics tool to 
determine the area under the curve (AUC) for each sample (mean ± SEM).  A-C. Statistical analysis of 
calcium mobilization of LLO118 and LLO118-CD5 knockout T cells stimulated with PMA/Ionomycin. 
Data is shown for naive (A), day 3 post stimulation (B) and day 8 post stimulation (C). D-F. Statistical 
analysis of calcium mobilization of naïve LLO56 and LLO56-CD5 knockout T cells stimulated with 
PMA/Ionomycin. Data is shown for naive (D), day 3 post stimulation (E) and day 8 post stimulation (F). 
(* = p<0.05; NS = not significant). 
 

4.4 Discussion  

In this study, we examined the role of CD5 in regulating T cell activation during a 

primary response using two T helper cells, LLO56 and LLO118, which bind to the same L. 

monocytogenes epitope and have different levels of CD5 on the surface upon completion of 

thymic development 42,43. Because of the described negative regulatory role of CD5 in the 
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thymus and the prevalence of CD5-high cells in memory cells, we wondered how CD5 

influences T cell immune response at a post-thymic level. We found significantly different Ca2+ 

signaling levels between LLO56 and LLO118 T helper cells at the naïve and day 3 time points. 

The distinct Ca2+ mobilization patterns of LLO56 and LLO118 likely influence their particular 

responses to antigen, similar to observations made in B cells in which unique Ca2+ mobilization 

controls distinct B cell activation phenotypes 312,313. Previous work has defined the important role 

of CD5 during T cell thymic development and that CD5-high cells are enriched in memory T cell 

populations, but how CD5 functions during the primary response stage of T helper cells has not 

been well defined. Here we characterized the role of CD5 expression and calcium mobilization 

in these CD5-high and CD5-low T cells over the course of 8 days. We found that naïve LLO56 T 

helper cells (CD5-high) have significantly higher calcium mobilization compared to the LLO56-

CD5 knockout T cells, but at later time points the removal of CD5 did not significantly alter 

LLO56 calcium mobilization. Naïve LLO118 T helper cells (CD5-low) exhibit no differences in 

Ca2+ mobilization relative to their CD5 knockout counterpart. Thus, we found naive CD5-high T 

cells have improved calcium mobilization to an antigen they have never seen before.  

T cell development shapes the T cell population by removing strongly self-reactive cells 

and helping determine future immune responses.  T cells that are moderately self-reactive may 

be able to pass positive selection and evade negative selection and circulate in the periphery. 

These self-reactive cells, marked by high levels of CD5, appear to be primed to be the best 

responders to foreign antigens42.  CD5 is a known negative regulator of TCR signaling during 

thymocyte development and its expression is correlated to the relationship of TCR avidity for 

self-pMHC 42,43,121,209. Analysis in thymocytes showed that LLO56 and LLO118 CD5 knockout 

T cells had increased p-ERK and IL-2 production, providing additional evidence that CD5 has a 
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negative regulatory effect in developing thymocytes 42. However, additional work has 

demonstrated that CD5-high and CD5-low T cells respond differently to self and foreign 

antigens, suggesting that CD5 has an important role in thymocyte selection and peripheral T cell 

function and fate 41,209.  

Recent studies suggest that developing T cell CD5 levels affect naïve T cell responses to 

foreign antigens in the periphery 297,314. While the negative regulatory function of CD5 in the 

thymus does not appear to be dependent upon engagement with a ligand, the positive co-

stimulatory effect of CD5 in the periphery is likely due to CD5 engagement of a ligand (CD5 or 

CD5L) 195,303-305. As previously reported, anti-CD5 antibodies enhance TCR-mediated activation 

and proliferation in peripheral T cells 41,201,315. This calcium difference observed in naïve T cells 

is supportive of the previously published finding that LLO56 T cells have significantly higher 

phosphorylation levels of pERK and production of IL-2 before exposure to antigen, suggesting a 

role for self-peptide affinity in altering CD5 levels and naive T cell responses. CD5-high T cells 

respond strongly upon stimulation in vitro and have increased IL-2 secretion and greater Erk 

phosphorylation compared to CD5-low T cells 42. Since CD5 expression is set by self-peptide 

reactivity in the thymus, our finding that naïve CD5-high LLO56 T cells have higher calcium 

influx is consistent with other studies that have shown that increased reactivity to self-peptides 

results in T cells with improved reactivity to foreign antigens 193,209.  

We found that CD5 expression plays an important role in intracellular Ca2+ mobilization 

for naïve LLO56 helper T cells (CD5-high). CD5-high T cells have stronger avidity for self-

peptide. It has been suggested that the enhanced activation response to foreign pathogens of 

CD5-high T cells could be due to their ability to more efficiently use self-peptide as a co-agonist 

peptide in the periphery 297. Additionally, CD5-high cells have better basal TCR signaling and 
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improved functional characteristics which correlate with better response to foreign peptide 209. 

Studies in naïve cytotoxic T cells suggest that the gene expression profile of CD5-high T cells 

transcriptionally engage into proliferative and effector functions faster than CD5-low T cells 35.  

Furthermore, CD5 appears to help with CD5-high naïve T cell survival after antigen recognition 

316. In fact, T cells with high CD5 levels may maintain diversity within the memory population,

which may outweigh the cost of increased self-reactivity 297. Additionally, T cells with high CD5 

expression are enriched in memory cell populations, suggesting that when designing vaccines, 

CD5 levels and self-peptide and foreign peptide interactions are an important consideration 

193,297.  

The data presented here helps to elucidate the role that CD5 plays in regulating calcium 

signaling in naïve cells early after cell activation during an in vitro primary response. We plan to 

further investigate whether the unique Ca2+ profiles of LLO56 and LLO118 T cells are consistent 

in an in vivo model and further quantify the role CD5 plays in effector and memory T cells. 

These future studies will help elucidate how CD5 influences naïve T cell responses and its 

potential role in memory T cell generation and maintenance.  

4.5 Acknowledgements 

We thank Paul Allen (Washington University in St. Louis) for the LLO56, LLO118, 

LLO56-CD5 knockout, LLO118-CD5 knockout mice and Darrin Kreamalmeyer (Washington 

University in St. Louis) for mouse breeding and care. We also thank Caleb Cornaby, Deborah 

Johnson, Kiara Vaden, Jeralyn Jones Franson, Eric Wilson and Jeffery Barrow for their critical 

reviews of the manuscript.  



77 

CHAPTER 5: The Role of CD5 Co-receptor in T cells Metabolism 

The following chapter is a work in progress and will be submitted for scientific review upon 

completion. Current data and future directions for this project are presented here. 

Abstract 

During activation, T cells undergo metabolic reprogramming, which helps determine 

their distinct functional fates. CD5 is a co-receptor found on T cells and plays a significant role 

in regulating T cell thymic development, signaling, and cytokine production. Although CD5 is 

known best for its function as a regulatory coreceptor during selection in T cell development, it 

has been reported to play a regulatory role similar to PD-1 and CTLA-4 in mature T cells upon 

activation. We have previously discovered that CD5 levels influence Ca2+ mobilization and T 

cell activation. Differential calcium mobilization, calcineurin function, and nuclear factor of 

activated T cell (NFAT) activity are known to affect glycolysis and mitochondrial respiration. 

Previous studies have shown that CD5 knockout mice (CD5KO) have increased T cell activation, 

leading to elevated levels of cytokine production and T cell proliferation. These functional 

changes suggest that CD5 may be affecting T cell metabolic reprograming. We hypothesized that 

CD5 deficient T cells have different bioenergetic demands that alter metabolic pathways key to T 

cell activation and function. We evaluated the effects of the CD5 co-receptor on metabolism by 

measuring the metabolic profiles of CD5KO and wild type T cells. Our preliminary data suggests 

that CD5KO T cells have higher mitochondrial respiration than wild type T cells and we are 

currently examining other mechanisms that can affect T cell mitochondrial respiration. Thus, 

CD5 may play an important role in metabolic reprograming in T cells and could potentially be 

useful in modulating the T cell response in cancer immunotherapy treatments. 
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5.1 Introduction 

Helper T cells are key regulators of the adaptive immune system and play an important 

role in protecting against foreign peptides and cancer. During an immune response, activated T 

cells undergo metabolic changes transitioning from mitochondrial respiration [oxidative 

phosphorylation (OXPHOS) and fatty acid oxidation (FAO)] to glycolysis. This significant 

metabolic shift affects T cell activation, proliferation and function216,235,317. Naïve T cells remain 

relatively quiescent and rely predominantly on OXPHOS to meet basal metabolic needs219,318. As 

T cells become activated, they have different energy demands and switch to aerobic glycolysis 

which supports effector T cells functions such as differentiation and cytokine synthesis219,319. 

T cell activation involves the interaction between the T cell receptor (TCR) and the peptide 

major histocompatibility complex (TCR-pMHC), the signal strength initiated by this interaction 

is modulated by co-stimulatory or co-inhibitory receptors. Thus, these co-receptors contribute to 

a metabolic switch according to the energy requirements of the cell140,219,235,320. CD5, is a T cell 

co-receptor that negatively regulates T cell activation during T cell development in the thymus. It 

belongs to the group B scavenger-receptor cysteine-rich (SRCR) superfamily, and is associated 

with the TCR/CD3 complex121,203.  CD5 expression levels correlate with the strength of the 

signal between the TCR-self-pMHC, and help fine tune the TCR repertoire by altering the 

strength of the antigen receptor signal during the selection process in the thymus196,321. This 

regulation appears to be independent of SHP-1 and CD5 dependent signal transduction appears 

to be dependent on specific tyrosine and serine motifs that allow for regulation of T cell 

activation132,304. In mature cells, it appears CD5 may function in a scaffolding role for the 

ubiquitin ligases CBL and CBLB322. 
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The main characterized co-receptors that negatively regulate T cell responses are PD-1 

and CTLA-4; they mediate a defective transmission of the TCR-pMHC signal which correlates 

with decreased Ca2+ mobilization and proliferation145,175. Upon activation T cells undergo 

metabolic changes from OXPHOS to glycolysis323. Signals such as those from cytokines and the 

TCR signal strength determines the magnitude of the glycolytic switch324. CD5, like the PD-1 

and CTLA-4 co-receptors, negatively regulates the T cell response by affecting the TCR signal 

strength and glucose metabolism140,235. CD5 also influences the immune response due to its 

ability to regulate the TCR signaling response and T cell functions207. Previous publications 

showed that T cells with different CD5 expression levels have different primary and secondary 

immune responses and different calcium (Ca2+) mobilization responses43,61. It has also been 

reported that CD5 deficient T cells are hyperproliferative, have enhanced AICD, and produce 

higher levels of cytokines upon stimulation321. These reported inhibitory functions of CD5 

suggest that like PD-1 and CTLA-4, the CD5 co-receptor might influence the T cell metabolic 

response321.  

To determine if the CD5 co-receptor does in fact alter T cell metabolism, we compared 

the metabolic profiles of T cells from CD5WT and CD5KO mice. Our preliminary data suggests 

that the mitochondrial respiration and spare respiratory capacity (SRC) of CD5KO naive T cells 

is significantly higher than CD5WT. We also observed that naïve CD5KO T cells have higher 

metabolite consumption. While this project remains a work in process, these initial findings 

suggest an important role of CD5 in T cell metabolism. If confirmed, then CD5 might potentially 

be useful in immunotherapy to modulate T cell metabolic responses in the tumor 

microenvironment. 
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5.2 Materials and Methods 

5.2.1 T cell Isolation  

CD4+ naïve T cells were isolated from the spleens of CD5WT and CD5KO mice42. 

Splenic single cell suspensions from CD5WT and CD5KO mice were purified using a negative 

selection CD4+ T cell isolation kit (Miltenyi Biotec)298. Spleens were homogenized and passed 

through a nylon mesh cell strainer. The single-cell suspension was resuspended in R10 medium 

containing RPMI 1640, 10% of FBS (HyClone), 1% Glutamax (Gibco by Life Technologies), 

and 0.5% Gentamicin (Life Technologies), then transferred to a 6-well plate (1x106 cell/ml). For 

T cell isolations, mice were euthanized using CO2 inhalation. 

5.2.2 T cell Activation and Culture 

  Isolated CD4+ T cells were initially plated into 24-well plates and stimulated with 4.5 µm 

diameter dynabeads coated with anti-CD3 and anti-CD28 (11456, Thermo Fisher Scientific), in a 

bead to cell ratio of 1:1 as per manufacture instructions. The cells were cultured for 24 hours, 96 

hours and 120 hours at 37 °C, 5% CO2. For cultures longer than 24 hours, 30 U/mL of IL-2 was 

added after 72 hours (402-ML-100, R&D). 

5.2.3 Metabolism Assays 

The extracellular acidification rate (ECAR) and oxygen consumption rate (OCR) were 

measured using an Extracellular Flux Analyzer XFp (Agilent Technologies, Santa Clara, CA, 

USA). The culture medium was changed to Seahorse XF RPMI Base Medium (Cat#103336-100) 

before the analysis. Briefly, 150,000 T cells were seeded onto a Poly-d coated seahorse 8-well 

plate allowing the adhesion of T-cells and were pre-incubated at 37 °C for 60 min in the absence 

of CO2.  Mitochondrial stress and glycolytic parameters were measured via oxygen consumption 

rate (OCR) (pmoles/min) and extracellular acidification rate (ECAR) (mpH/min), respectively, 
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with use of real-time injections: oligomycin, fluorocarbonyl cyanide phenylhydrazone (FCCP), 

rotedone/antimycin, glucose, and 2-deoxy-glucose (2-DG).  

For mitochondrial stress, cells were resuspended in XF assay media supplemented with 

25 mM glucose, 2 mM L-glutamine and 1 mM sodium pyruvate under basal conditions, and in 

response to 1 μM oligomycin, 1.5 μM fluorocarbonyl cyanide phenylhydrazone (FCCP), and 

0.5 μM rotenone/antimycin A (XFp mito stress test kit; cat#103010-100; Agilent Technologies). 

For glycolysis, cells were resuspended in XF assay media. The ECAR were measured at 

the baseline and in response to 10 mM glucose, 1 μM oligomycin and 50 mM 2-DG (XFp 

glycolysis stress test kit; cat#103017-100; Agilent Technologies).  All chemicals were purchased 

from Seahorse Bioscience (North Billerica, MA). Calculations for individual parameters 

represents the average of individual well calculations for each assay group. Error bars are 

calculated based on the individual well calculation for each parameter (Report Generator User 

guide, Agilent Seahorse). 

5.2.4 Metabolite Analysis 

Naïve T cells were isolated under the indicated culture conditions at 1 × 106cells / ml 

per well in six-well culture plates. After 1 hour of culture, 1× 106 cells/ml cells were 

harvested separately, flash-frozen in liquid nitrogen and stored at −80 °C. A total of four 

replicate samples for CD5KO and CD5WT were generated and analyzed via Gas 

chromatography–mass spectrometry (GC/MS). Metabolomics analysis was performed at the 

Metabolomics Core Facility at the University of Utah which is supported by 1 S10 

OD016232-01, 1 S10 OD021505-01 and 1 U54 DK110858-01 grants. Samples preparation 

and analysis was as described below: 
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5.2.5 Metabolite Extraction  

To each sample was added cold 90% methanol (MeOH) solution containing the internal 

standard d4-succinic acid (Sigma 293075) to give a final concentration of 80% MeOH to each 

cell pellet. Samples were then briefly vortexed, sonicated for 5 min and incubated at -20 ˚C for 1 

hour. After incubation the samples were centrifuged at 20,000 x g for 10 minutes at 4˚C. The 

supernatant was then transferred from each sample tube into a labeled, fresh micro centrifuge 

tube. Pooled quality control samples were made by removing a fraction of collected supernatant 

from each sample and process blanks were made using only extraction solvent and no cell 

culture. The samples were then dried en vacuo. 

5.2.6 GC-MS Analysis  

All GC-MS analyses were performed at the Metabolomics Core Facility at the University 

of Utah was done with an Agilent 7200 GC-QTOF and an Agilent 7693A automatic liquid 

sampler. Dried samples were suspended in 40 µL of a 40 mg/mL O-methoxylamine 

hydrochloride (MOX) (MP Bio #155405) in dry pyridine (EMD Millipore #PX2012-7) and 

incubated for one hour at 37°C in a sand bath.  13 µL of this solution was added to auto sampler 

vials. 60 µL of N-methyl-N-trimethylsilyltrifluoracetamide (MSTFA with 1%TMCS, Thermo 

#TS48913) was added automatically via the auto sampler and incubated for 30 minutes at 37 °C.  

After incubation, samples were vortexed and 1 µL of the prepared sample was injected into the 

gas chromatograph inlet in the split mode with the inlet temperature held at 250°C. A 5:1 split 

ratio was used for analysis for the majority of metabolites. For those metabolites that saturated 

the instrument’s detector at the 5:1 split concentration, a split of 50:1 was used for analysis. The 

gas chromatograph had an initial temperature of 60°C for one minute followed by a 10°C/min 

ramp to 325°C and a hold time of 10 minutes. A 30-meter Agilent Zorbax DB-5MS with 10 
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meters Duraguard capillary column was employed for chromatographic separation. Helium was 

used as the carrier gas at a rate of 1 mL/min. 

5.3 Preliminary Results 

5.3.1 CD5KO naïve T cells have higher amounts of metabolites involved in glycolysis and 

mitochondrial respiration compared to CD5WT naïve T cells 

 Naïve T cells are quiescent cells and their energy demands are supplied by the OXPHOS 

of intracellular metabolites generated from the tricarboxylic acid (TCA) cycle and β-oxidation 

using fatty acids to help in their homeostatic survival217,325. The metabolic state of the quiescent 

cells is also regulated by genes and/or proteins with specific roles such as the co-receptors in T 

cells216. CD5 is an important co-receptor during T cell development and negative regulates TCR-

self peptide MHC interaction. Differences in CD5 expression levels [CD5 high (CD5hi) and CD5 

low (CD5lo)] in naïve T cells are known to affect gene expression related with cytokine 

interaction326. To examine the role of CD5 in naïve T cells metabolism we isolated CD4+ T cells 

from CD5WT and CD5KO mice and compared metabolites within these cells. We observed in 

our preliminary data that the intracellular metabolites levels from the glycolytic pathway: 

glucose-6-P, fructose-6-P and D-glucose (Fig. 22A), the OXPHOS pathway in specifically the 

tricarboxylic acid cycle (TCA): citric acid, succinic acid and fumaric acid (Fig. 22B) and amino 

acids from the amino acid metabolic pathway: tyrosine, tryptophan, alanine, glutamic acid and 

glycine (Fig. 22C), from CD5KO T cells were higher compared to those of the CD5WT T cells, 

suggesting that CD5 influences the metabolic response in naïve T cells. 
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Figure 22. CD5KO T cells have higher intracellular levels of metabolites.   
Analysis of metabolites of naïve CD4+ T cells isolated from the spleen of CD5WT and CD5KO mice. A. 
Metabolites involved in glycolysis: glucose-6-P, fructose-6-P and D-glucose. B. Metabolites involved in 
OXPHOS/mitochondrial respiration: citric acid, succinic acid and fumaric acid. C. Metabolites involve in 
amino acid metabolism: tyrosine, tryptophan, alanine, glutamic acid and glycine. The amounts of the 
indicated metabolites in naïve T cells were plotted in whisker boxes.  n=4   (* = p<0.05; *** = p<0.001; 
ns = not significant).  
 

5.3.2 CD5KO naïve T cells have increased glycolytic profile 

To examine whether CD5 inhibits glycolysis in T cells, we isolated naïve CD4+ T cells 

isolated from CD5WT and CD5KO mice and measured their glycolytic profile. We observed that 

naïve CD5KO T cells have a higher ECAR rate in contrast of the CD5WT naïve T cells which is 
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associated with increased glycolysis, reflected in the extracellular acidification response in the 

cells upon glucose addition (Fig. 23A-B). We wondered if upon stimulation, the same glycolytic 

phenotype would remain. CD4+ T cells were stimulated using dynabeads coated with anti-CD3 

and anti-CD28 at different time points (24 hours, 96 hours and 120 hours). We observed that in 

contrast to naïve T cells, upon stimulation the CD5WT T cells ECAR levels (glycolytic profile) 

was either the same after 24 hours, or higher as seen at the 96 hour and 120 hour time points 

(Fig. 23B-H), suggesting that CD5 influences the glycolytic function of naïve and effector T 

cells in a divergent manner over time. 
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Figure 23. CD5KO naive T cells have increased levels of ECAR (higher glycolytic profile) and 
CD5KO effector cells have equivalent or decreased ECAR levels (decreased glycolytic profile). 
Seahorse extracellular acidification rate (ECAR) was measured in CD4+ isolated T cells from naïve and 
activated T cells using the glycolytic stress test from Agilent. Activated T cells were stimulated with 
dynabeads coated with anti-CD3/CD28 at different time points (24 hours, 96 hours and 120 hours). A, C, 
E and G Show the ECAR at different time points. B, D, F and H show the differences in glycolysis 
response between CD5WT and CD5KO upon glucose stimulation.  (* = p<0.05; ** = p<0.01, ns = not 
significant). 
 
 
 



87 
 

5.3.3 CD5KO naïve and effector T cells have increased mitochondrial respiration and SRC 

To investigate how mitochondrial respiration of CD4+ naive T cells and activated T cells 

is regulated by the CD5 co-receptor via TCR/CD3 and CD28 stimulation we measured the 

oxygen consumption rate (OCR), an indicator of OXPHOS, and spare respiratory capacity (SRC) 

which is the difference between the maximum respiratory capacity and basal respiratory 

capacity327. In other words, when energy demand exceeds supply, like in increased work or 

stress, the reserve mitochondrial capacity or SRC has the potential to provide that energy 

supply327,328. While unstimulated naïve T cells are metabolic quiescent [they rely on 

mitochondrial respiration (OXPHOS) for their bioenergetic demands], we observed that CD5KO 

naïve T cells OCR and SRC was increased in comparison to CD5WT naïve T cells (Fig. 24 A-

B). This suggests that naïve CD5KO CD4+ T cells have a greater reserve of energy before 

activation. To examine if the OCR and SRC changed after activation, we stimulated T cells using 

dynabeads coated with anti-CD3 and anti-CD28 at different time points (24 hours, 96 hours and 

120 hours), and we observed that CD5KO T cells had equivalent or higher OCR and SRC than 

CD5WT after 24 hours, and significantly different at 96 hours (Fig. 24 E and F). These data 

suggested that CD5 plays an important role in the bioenergetic properties of T cells. 

 

 

 

 

 

 

 

https://www.nature.com/articles/ncomms7692#f5
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Figure 24. CD5KO naive T cells have higher mitochondrial respiration profile 
Seahorse oxygen respiratory capacity (OCR) and spare respiratory capacity (SRC) was measured in CD4+ 
isolated T cells from naïve and activated T cells. Activated T cells were stimulated with dynabeads coated 
with anti-CD3/CD28 at different time points (24 hours, 96 hours and 120 hours). A, C, E and G Show the 
OCR at different time points. B, D, F and H show the differences in SRC. (* = p<0.05; ns = not 
significant). 
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5.4 Conclusions and Future Direction 

Upon activation, T cell metabolism shifts from mitochondrial respiration to a rapid 

increase in aerobic glycolysis216.  In fact, naïve T cells rely on glycolysis for their activation, 

even in the presence of oxygen, to help with the proliferation, effector, and differentiation 

functions219,329.  T cells from PD-1 deficient mice, a co-receptor with similar regulatory functions 

as CD5, have an increase in lymphocyte activation330. This increase in lymphocyte sustained 

activation induces metabolic changes, and affects T cell function179.  During an immune 

response, T cells change their metabolic programing upon activation when energy demands 

increase331. 

Ca2+ signaling pathways are involved in T cell metabolic homeostasis101. CD5KO 

thymocytes and T cells are hyperresponsive to TCR stimulation, have increased proliferation, 

and their signaling pathways lead to an increase in intracellular Ca2+190,191. We previously 

reported that CD5 expression levels in T cells alter Ca2+ mobilization responses61, and since Ca2+ 

levels are known to influence the T cell metabolic switch332, we wondered about the metabolic 

role of CD5 in T cells (Fig 25).  Here we described work examining the impact of the CD5 co-

receptor in T cell metabolism by comparing the bioenergy demands of naïve and activated CD4+ 

T cells from CD5KO and CD5WT mice. CD5 is a T cell co-receptor that plays a critical role 

during T cell early development by negative regulating the signal strength interaction between 

the TCR and self-pMHC complex, and participating in the positive selection process. Evidence 

of CD5 importance in T cells signaling is evident in CD5KO thymocytes which are 

hyperresponsive to TCR stimulation, and in CD5KO T cells that produce higher cytokines 

levels321 333. Therefore, we hypothesized that CD5 regulatory functions alter T cells metabolism. 
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CD5 regulatory role in metabolic function is supported by our preliminary data, which 

suggests that CD5KO and CD5WT T cells have significantly different metabolic demands. We 

observed that while CD5KO naïve T cell have a higher ECAR, OCR and SRC in comparison to 

CD5WT T naïve cells, the ECAR from activated CD5KO T cells was equivalent or lower than 

CD5WT activated T cells. T cell co-receptors are important during the switch of energy as 

costimulatory and inhibiting signals are the ones regulating proliferation, differentiation and 

cytokine production334,335. Without costimulatory signals, T cells metabolic mechanisms will be 

affected, and T cells will not be fully activated or will be anergic. 

 

Figure 25. Summary of how CD5 influences metabolic function.  
CD5KO naive T cells have higher mitochondrial respiration and glycolytic profiles. Representation of 
CD5KO naïve T cells upon activation and the effect on T cells metabolism. 
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On the other hand, when co-inhibitory signals are not present, there is no control of the 

activation upon stimulation of the T cell leading to hyperactivation of metabolic pathways such 

as glycolysis, mitochondrial respiration (OXPHOS) and lipid biosynthesis336,337.  

Co-inhibitory signals such as CD5 affect naïve T cells activation responses by negatively 

modulating TCR signaling338. Inadequate inhibitory signals result in altered T cell activation and 

immune tolerance339.  Altered T cells in autoimmune diseases show low levels of metabolites 

involved in glycolysis, mitochondrial respiration, and amino acid metabolism in serum, implying 

a higher use of these metabolites by the T cells235,340. We observed in our preliminary data that 

naïve CD5KO T cells had higher concentrations of intracellular metabolites involved in 

glycolysis, mitochondrial respiration (OXPHOS) and in amino acids synthesis, compared to 

CD5WT naïve T cells. Previous studies have shown that CD5KO thymocytes are 

hyperesponsive190.  We propose that such effects in activation are also maintained in the 

periphery in CD5KO naïve T cells, as suggested by the concentration of intracellular metabolites 

in these cells133. This observation suggests a relevant role of CD5 in T cell metabolic immune 

homeostasis not only during T cell development, but also peripheral naïve T cell maintenance.   

In addition, we observed that CD5KO naïve T cells have a higher mitochondrial 

respiration response (OCR) and a higher SRC than CD5WT naïve T cells. Previous work done in 

T cells from mice deficient in mitochondrial proteins (mitofusin 1 and optic atrophy1) 

demonstrate abnormalities in their mitochondrial mass, elevate mitochondrial membrane 

potential (generate by proton pumps in the ETC), and ATP depletion341. Interestingly, they also 

show a sustained mitochondrial respiration (OXPHOS) similar to that observed in memory T 

cells342. Furthermore, elevated SRC (a measurement of the reserve mitochondrial capacity 

available to the cell for energy production in response to increased work or metabolic stress) 
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allows memory T cells to maintain ATP levels and improve survival230,343.  Increased SRC 

promotes mitochondrial biogenesis and the expression of  CPT1 (carnitine palmitotransferase 

1a)344. CPT1, is a transmembrane protein of the mitochondrial outer membrane that converts 

long-chain acyl-CoA such as palmitoyl to acyl carnitine, and enters the mitochondrial matrix 

where it undergoes fatty acid oxidation345.  To better understand the increased SRC in CD5KO 

naive T cells, it would be useful to measure CPT1 expression levels since CPT1 impairment 

affects SRC in T cells328. While it is not clear what the influencing factors are for the higher 

OCR and SRC in CD5KO naïve T cells, we propose that mitochondria function in these cells 

plays an important role.  Thus, measurement of mitochondrial mass should be performed as 

increased mitochondrial mass is connected with fatty acid use in OXPHOS328,343.  Mitochondrial 

mass has also been connected to increase SRC and a reduction of mitochondrial mass increases 

dependency on glycolysis328. In our preliminary data we observed that CD5KO T cells seemed to 

have an equivalent or decreased glycolytic profile after activation in comparison to CD5WT. 

This could support previous claims in which CD5 modulatory signals also influence T cell 

immune responses to foreign peptide, meaning CD5 influences the T cell metabolic response not 

only in development, but also in peripheral T cells upon activation207,346.  

Finally, besides fatty acids metabolism, mitochondrial respiration (OXPHOS) is also 

involved in amino acid metabolism235,347,348. Amino acid synthesis rates increase during T cell 

activation and it is important for proliferation and cell growth317,348,349. Since, amino acid 

availability is important for cell proliferation and is related to OXPHOS, amino acid availability 

might also affect SRC of the cell. One way to measure CD5KO and CD5WT T cell ability to 

utilize amino acids is by targeting glutamine. Glutamine is essential for T cell function as it helps 

in nucleotide synthesis350. SNAT1 and SNAT2 are glutamine transporters, and their expression is 
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upregulated during T cell activation as increased levels of glutamine are needed to support 

proliferation350. Measurement of these glutamine transporters would provide additional insight in 

the role of CD5 in amino acid biosynthesis and support the important role of CD5 in T cell 

metabolism. 
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CHAPTER 6: CD5 Affects Cognitive Behavior and the Microbiome 

The following chapter is a work in progress and will be submitted for scientific review upon 

completion. Current data and future directions for this project are presented here. 

Abstract 

The immune system helps in the maintenance of central nervous system (CNS) 

homeostasis and the CNS is influenced by immune cells and cytokines. T cells are key regulators 

of the adaptive immune response, and they respond to CNS injuries and can affect learning and 

behavior. While our understanding of immune-CNS interactions remains incomplete, the role of 

T cells in the CNS is known to be critically important. Previous work has shown that the absence 

or hyperactivation of T cells affects cognitive behavior. Additionally, there is evidence that T 

cell hyperactivation leads to changes in the diversity of the microbiome population. CD5, a co-

receptor found on T cells, modulates T cell signaling, activation and proliferation. We 

hypothesized that because CD5KO T cells have altered activation and proliferation profiles, they 

would also alter cognitive behavior and microbiome diversity in mice.  To evaluate the influence 

of CD5 influence on behavior and the microbiome, we used CD5KO and CD5WT mice. We 

found that CD5KO mice had significant behavioral differences when compared to CD5WT, in 

marble burying rates and open field activity. We also found that CD5KO mice have significantly 

different microbiome diversity, compared to CD5WT mice. These results suggest that CD5 

deficient mice have altered cognitive function (higher levels of fear and anxiety-like behavior) 

and altered bacterial populations in the gut microbiota. 
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6.1 Introduction 

 The immune system, the central nervous system (CNS) and the gut microbiota, are not 

only individual entities, but are in fact, systems that often work in synergy. Systemic immune 

activation is believed to be affected by the gut microbiota and to have behavioral effects351,352. T 

cells, as part of the adaptive immune response, are important in cognition and behavior238,239,353.  

Autoreactive T cell hyperactivation, proliferation, and cytokine production (IFNγ) have been 

shown to affect neuronal plasticity and alter behavior354,355. Similarly, depletion of T cells from 

meningeal spaces results in impairment of learning and memory, which can be reversed by 

injection of wild-type T cells356.  Hence, T cells can have protective or harmful effects as they 

infiltrate the CNS in several autoimmune and infectious diseases settings and affect cognitive 

behavior357,358. 

Microbial colonization starts during delivery as the neonate moves from what is believed 

to be a “sterile” location and is exposed to the mother’s microbes in the birth canal359. This 

exposure affects neonate’s metabolism and maturation of the immune system352,360,361. The 

microbiome, consisting of hundreds of bacterial species, has been implicated in the regulation of 

inflammatory, infectious and metabolic diseases362. Interactions between the gut microbiota and 

the immune system are numerous, with multiple effects on T cells responses363-365. While the 

microbiota can influence immune cell function, studies performed in T cell deficient mice have 

found significantly altered microbiota populations, suggesting that T cells also influence 

microbiome composition366,367. Gut microbiota also contributes to the development and 

maturation of the brain, affecting locomotive and cognitive functions368. In fact, microbiota 

acquired during birth often forms a “core microbiome” during the first 2-3 years old of life, 

contribute to nervous system development, and have a direct impact on cognition and behavior 
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later in life369,370. Furthermore, germ-free mice have been shown to have impaired brain 

development and function, as well as impaired immune responses and alterations in their 

CD4+/CD8+ T cell populations363,371,372.  

PD-1, is an inhibitory co-receptor found on the surface of activated T cells and regulates 

T cell activation and promotes self-tolerance181. Studies performed in PD-1 deficient mice 

showed T cell dysregulation resulting in hyperactivation, increased production of IFNγ, and 

upregulated proliferation that leaded to impairment of the gut barrier, increased inflammation, 

and defects in IgA regulation, all of which impacted gut microbial composition373,374. In addition, 

increased T cell responses in mice that lack the inhibitory receptor PD-1 were associated with 

depletion of amino acids necessary for the synthesis of neurotransmitters such as serotonin and 

dopamine, that may be responsible for altered cognitive functions and an increase in fear based 

behavior179. Thus, an alteration in a T cell co-receptor can significantly influence multiple 

systems in the organism.  

Similar to PD-1, CD5 is a T cell co-receptor that plays an important regulatory function 

in T cell activation and immune responses. It is known to play an important role during T cell 

development, immune homeostasis, regulation of activation induced cells death (AICD) and 

tolerance121. T cells from CD5KO mice are hyper-responsive, have higher rates of proliferation 

and increased calcium mobilization124.  Because alterations in T cell activation have been 

associated with altered cognitive behavior and dysbiosis in the gut microbiota, we endeavored to 

examine the role of CD5 in cognitive behavior and microbiome diversity179,374. To do this, we 

compared CD5 knock out (CD5KO) to CD5 wild type (CD5WT) mice. Our preliminary data 

suggests that there is an impairment in cognitive behavior of CD5KO mice resulting in an 

increase in the anxiety-like response in the marble burying test and elevated plus maze. We also 
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observed gut microbiota differences in CD5KO from CD5WT mice, suggesting that CD5 also 

influences the diversity of the gut microbiota. 

6.2 Materials and Methods 

6.2.1 Mice 

CD5 wild type (CD5WT) and CD5 knockout (KO) mice (C57BL/6 genetic background) 

were bred and housed in pathogen free conditions and fed with standard chow42,43. All mice used 

in these experiments were 9-12 weeks old. All use of laboratory animals was done with approval 

of the Animal Care and Use Committee (IACUC protocols #18-0303, 18-0707, and 18-0708) at 

Brigham Young University. For the behavioral protocols, mice were maintained on a 12 hour 

light/dark cycle.  

6.2.2 Behavior assessments 

6.2.2.1 Marble burying Test 

The marble burying test measures anxiety-like behavior375. Mice were individually 

housed and placed in a clear plastic cage filled with approximately 4-cm-deep bedding of “Celu-

Nest bedding” (by Shepherd Specialty Paper Company) lightly pressed to give a flat surface375. 

Twenty glass marbles were placed on the surface in five rows of four marbles each. The number 

of buried marbles (to 2/3 their depth) were recorded during the 10-minutes test, and later 

quantified by 8 -10 individuals unaware of the groups.  

6.2.2.2 Open field activity test 

The open field activity test measures locomotor activity and anxiety-like behavior376. The 

open field consisted of a white PVC arena (50 cm × 50 cm). Mice were brought into the 

experimental room 30 minutes before testing. Each mouse was placed in one of the corner 

squares facing the wall, observed and recorded for 10 minutes. The total distance traveled, 
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movement duration and time spent in the center area and outer area over the 10 minutes were 

recorded and quantified using the Noldus EthoVision XT software. After each test, the arena was 

cleaned with 70 % ethanol to attenuate and homogenize olfactory traces.  

6.2.2.3 Elevated-plus maze test  

The elevated-plus maze test measures fear-based and anxiety-like behavior377. The 

elevated-plus maze test was conducted as previously described377. The maze (O’Hara & Co) 

consists of two open arms (30 cm × 5 cm) and two closed arms of the same size, with dark walls 

(15 cm). The arms and center square (5 cm × 5 cm) are made of white plastic plates elevated to a 

height of 30 cm above the floor. 3-mm-high plastic ledges decrease open arm falls. Individual 

mice were placed in the center square facing a closed arm, and activity was recorded or 10 

minutes and quantified using the Noldus EthoVision XT software. 

6.2.2.4 Morris Water Maze (MWM) 

The Morris Water Maze (MWM) measures cognitive function238,240. Mouse cognitive 

function was examined using the MWM for 7 days (n = 17). Mice were given three, 2-minutes 

trials a day for 7 consecutive days for training to locate a 12 cm diameter circular platform, 

which was placed 1 cm below water level in an open round pool. The water and room 

temperature were kept constant between 26.5°C and 27.5° C. An initial day of training was 

given where the mice were given 2 minute trials to locate the platform which was revealed at the 

end of the trial. 

During the acquisition phase of the task, each mouse was allowed a maximum of 2 

minutes to locate and climb onto the platform. Once the mouse had located the platform, it was 

given 5 seconds to remain on the platform, then briefly washed in warm (40°C) water before 

returning to its home cage. Mice that failed to locate the platform, within 2 minutes were gently 
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guided to the platform and allowed to acclimatize for 5 seconds before returning to the home 

cage.  

During days 1 – 4, mice were placed in the Southeast quadrant with the platform hidden 

in the opposing Northwest quadrant. On the fifth day, a probe trial was performed with the 

platform removed to test reference memory. Each mouse was given only one trial and maximum 

of 2 minutes in the MWM. On days 6 and 7, the platform was placed in the quadrant opposite the 

original training quadrant (Northwest), and the mouse was retrained for 3 sessions/trials each 

day.  

Data were recorded using the Noldus EthoVision XT software using a Basler ace 

acA1300-60gm GigE camera in an isolated environment with only four visual references in the 

MWM to facilitate the testing subject’s learning and memory: A red star on the north end, green 

triangle on south end, blue square on east end, and yellow circle on west end. 12 ounces of white 

non-toxic Art-Time Tempera Paint (Sargent Art) was used to make the MWM opaque. 

Statistical Analysis of behavioral experiments 

Groups were tested the same day, and done in successive training days as in the case of 

MWM. For MWM Two-way measures ANOVA was used for statistical analyses, with a 

Bonferroni post hoc test used for individual time point comparisons. Statistical analyses for the 

other behavioral test (marble burying, open field, and elevated plus maze) were performed using 

unpaired Student t test. All testing was performed between 9am and 1pm, (during the first 4 

hours of the lights-off phase). All groups were between the ages of 9 and 12 weeks during the 

behavior tests. p<0.05; *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. 
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6.2.3 Metagenomics analysis of gut microbiota 

6.2.3.1 Bacterial DNA extraction, isolation, and purification protocol  

Bacterial DNA was isolated and purified from fecal pellets stored at -80°C using a 

previously published extraction protocol378, with the following changes: samples were 

homogenized in the Next Advance Bullet Blender Storm (Next Advance, Averill Park, NY) 

using 3.2 mm stainless steel beads (SSB32; Next Advance, Averill Park, NY). Cells were then 

disrupted with 0.1 mm glass beads (GB01; Next Advance, Averill Park, NY). After isolation, 

purified DNA was suspended in 10mM Tris (pH 8.5) and stored at -20°C.  

6.2.3.2 Purity and concentration checks  

DNA concentration was measured by absorbance at 260 nm (A260) and purity was 

estimated by measuring the A260/A280 ratio with a Nanodrop spectrophotometer (Nanodrop 

Technologies, Wilmington DE). Integrity of purified DNA was checked using 0.8% agarose gel 

electrophoresis with ethidium bromide staining. 

6.2.3.3 Bacterial DNA library preparation and sequencing  

16S rDNA gene libraries were prepared using the protocol379 from the John Chaston Lab 

(Brigham Young University). Amplicon primer sequences (Table 2) were used to amplify the V4 

region of the 16S rDNA using the protocol found in Table 4. Integrity of PCR product was 

checked on 1.2% agarose gels. Following PCR, SequalPrep normalization plates (Invitrogen, 

Frederick, MD) were used for DNA clean-up and normalization of all samples. Paired-end 

sequencing was performed on the Illumina Hi-Seq 2500 platform in the BYU DNA Sequencing 

Center. 
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Table 3. Amplicon primer sequences 

Forward 

Primer Sequence 

v4.SB501 AATGATACGGCGACCACCGAGATCTACACCTACTATATATGGTAATTG
TGTGCCAGCMGCCGCGGTAA 

v4.SB502 AATGATACGGCGACCACCGAGATCTACACCGTTACTATATGGTAATTG
TGTGCCAGCMGCCGCGGTAA 

v4.SB503 AATGATACGGCGACCACCGAGATCTACACAGAGTCACTATGGTAATT
GTGTGCCAGCMGCCGCGGTAA 

v4.SB504 AATGATACGGCGACCACCGAGATCTACACTACGAGACTATGGTAATT
GTGTGCCAGCMGCCGCGGTAA 

v4.SB505 AATGATACGGCGACCACCGAGATCTACACACGTCTCGTATGGTAATTG
TGTGCCAGCMGCCGCGGTAA 

v4.SB506 AATGATACGGCGACCACCGAGATCTACACTCGACGAGTATGGTAATT
GTGTGCCAGCMGCCGCGGTAA 

v4.SB507 AATGATACGGCGACCACCGAGATCTACACGATCGTGTTATGGTAATTG
TGTGCCAGCMGCCGCGGTAA 

Reverse 

Primer Sequence 

v4.SA701 CAAGCAGAAGACGGCATACGAGATAACTCTCGAGTCAGTCAGCCGGA
CTACHVGGGTWTCTAAT 

v4.SA702 CAAGCAGAAGACGGCATACGAGATACTATGTCAGTCAGTCAGCCGGA
CTACHVGGGTWTCTAAT 

v4.SA703 CAAGCAGAAGACGGCATACGAGATAGTAGCGTAGTCAGTCAGCCGGA
CTACHVGGGTWTCTAAT 

v4.SA704 CAAGCAGAAGACGGCATACGAGATCAGTGAGTAGTCAGTCAGCCGGA
CTACHVGGGTWTCTAAT 

v4.SA705 CAAGCAGAAGACGGCATACGAGATCGTACTCAAGTCAGTCAGCCGGA
CTACHVGGGTWTCTAAT 

v4.SA706 CAAGCAGAAGACGGCATACGAGATCTACGCAGAGTCAGTCAGCCGGA
CTACHVGGGTWTCTAAT 

v4.SA708 CAAGCAGAAGACGGCATACGAGATGGAGACTAAGTCAGTCAGCCGG
ACTACHVGGGTWTCTAAT 

v4.SA709 CAAGCAGAAGACGGCATACGAGATGTCGCTCGAGTCAGTCAGCCGGA
CTACHVGGGTWTCTAAT 

v4.SA710 CAAGCAGAAGACGGCATACGAGATTAGCAGACAGTCAGTCAGCCGGA
CTACHVGGGTWTCTAAT 

v4.SA711 CAAGCAGAAGACGGCATACGAGATTCATAGACAGTCAGTCAGCCGGA
CTACHVGGGTWTCTAAT 

v4.SA712 CAAGCAGAAGACGGCATACGAGATTCGCTATAAGTCAGTCAGCCGGA
CTACHVGGGTWTCTAAT 
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Table 4. Protocol used to amply the V4 region of the 16s rDNA 

Amplicon PCR 
Baseline 
Sample 

Reagents Your # of 
Samples ↓ 

1 Sample 
 

35 
13.2 dd H₂0 462 
4 10x Buffer 140 
0.5 50mM MgSO₄ 17.5 
3 2.5 mM dNTP's 105 
0.3 Platinum PFX 10.5 
2 Template 

(7ng/ul) 

 

23 Master mix (2ul) 
DNA/well 

 

 

6.2.3.4 Sequence analysis 

16S rDNA sequences were analyzed using the QIIME2/2018.6. Software package380. 

Read joining, denoising, demultiplexing, and feature assignments were accomplished using the 

Dada2 plug-in381. Forward and reverse reads were not trimmed. Reverse reads were truncated at 

230 base pairs to insure overlap of reads. Samples from the created BIOM table382 were then 

filtered to remove features that appear in less than 2 total samples (singletons) and features not 

assigned to at least phyla level. Phylogenetic distances were computed using q2-feature-

classifier383 with naïve-bayes fit384. Alpha (how many different species could be detected within 

microbial ecosystem) and beta (how different is the microbial composition between CD5WT and 

CD5KO) diversity were calculated using core metrics rarefied to a sampling depth of 5000. 

Principle coordinate analysis (PCoA) visualizations were created using EMPeror385,386. 

Permutation Multivariate Analysis of Variance (PERMANOVA)387 was used to compare 

differences in beta diversity between groups. Alpha diversity was calculated using Faith’s 
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Phylogenetic Diversity (PD) and Kruskal-Wallis one-way analysis of variance388,389. Taxonomy 

was assigned using q2-feature-classifier plug-in using Greengenes13_8 99% classifier390,391.  

6.2.3.5 Statistical analysis of microbiome 

Alpha diversity (microbial diversity) of microbiota data was analyzed using Kruskal-

Wallis one-way ANOVA 388. Permutation Multivariate Analysis of Variance (PERMANOVA) 

and Bray– Curtis distance metric was used to compare differences in beta diversity between 

groups. 387. Significance levels were assigned as p<0.05; *p<0.05, **p<0.01, ***p<0.001, 

****p<0.0001.  

6.3 Preliminary Results 

6.3.1 CD5 does not influence learning and memory  

 Previous studies have reported the importance of T cells in learning and memory, as well 

as how altered immune responses could impair such behavior392,393 . CD5 modulates T cell 

activation, and CD5KO T cells are known for their hyperactivation upon peptide stimulation124. 

Because CD5KO T cells have increased proliferation and cytokine production, we wondered if 

these T cell alterations would influence the learning and memory in CD5KO mice. In order to 

answer this question, CD5KO and CD5WT mice were trained on the Morris water maze test 

(MWM). We observed that both strains recorded similar swimming distances and took similar 

amount of time to locate the platform during the first 4 days, ruling out deficiencies in simple 

learning/training behavior (Fig. 26A). We next tested the probe trial performance (Day 5; 

platform removed from water maze), in which the time spent in the original platform quadrant of 

the pool is measured and which is part of the memory assessment of the MWM238. We found that 

there were not significant differences in the frequency that the mice entered the quadrant where 

the probe had been, suggesting that CD5 does not affected memory (Fig. 26B).  On days 6 and 7, 
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we examined complex or reversal learning by placing the platform in a different (reversal) 

quadrant. On day 6 CD5KO mice had significantly improved abilities to find the platform than 

CD5WT mice, however, at day 7 there were no significant differences between CD5KO and 

CD5WT mice in finding the reversed probe (Fig. 26C). In summary, in contrast to previous 

behavioral findings with SCID, nude, Rag1-/- and Rag2-/-mice, we did not observe significant 

learning and memory differences between CD5KO and CD5WT mice in the Morris water maze 

test (Fig. 26). 

 

Figure 26. CD5 deletion in mice is not associated with abrogated spatial learning. 
A. As a control for cognitive differences during simple learning measurements (days 1-4), mice were 
tested on the distance they swam. All groups traveled similar distances during the acquisition phase of the 
task. B. On day 5 a no-platform trial was used to test memory. Frequency and time spent in the NW 
quadrant (location of the platform on days 1-4) was measured using the student-t test. C. Complex 
learning or reversal assessment was measured on days 6 and 7 by placing the platform in the quadrant 
opposite the original training quadrant. Two-way measures ANOVA was used for statistical analyses, 
with a Bonferroni post hoc test used for individual time point comparisons (n = 17 mice per 
group;**p<0.01). Results are representative of three independent experiments. 
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6.3.2 CD5KO mice did not exhibit increased anxiety-like or fear-based behavior in the elevated 

plus maze test 

 While CD5 did not show to affect memory or learning behavior, we wanted to address if 

CD5KO mice showed elevated fear-based behavior using a plus maze test.  This test measured 

responses to unconditioned anxiety-related behavior, based on an approach-avoidance conflict, 

forcing the mouse to decide between the desire to explore a novel environment and the fear that 

comes from being in an elevated open area394. Mice were placed in the center of the maze facing 

closed arms, and were allowed to freely explore for 10 minutes. There were no significant 

differences in the time spent in the open arms or frequency in open arms (Fig. 27A-B), the time 

spent in the closed arms (Fig. 27C), the frequency of visits to the closed arms (Fig. 27D), and the 

total distance traveled between CD5KO and CD5WT mice (Fig. 27E).  
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Figure 27. Elevated-plus maze results for CD5WT and CD5KO mice.  
A. Total time nice spent in the open arms. B. The frequency of times mice entered the open arms. C. Total 
time spend in the close arms. D. The frequency of times mice entered the closed arms. E. The total 
distance traveled by the mice (n = 12 for all figures) ns = no significant differences (two-tailed unpaired t-
test) 
 

6.3.3 CD5KO mice have increased marble-burying behavior 

We determined to examine the anxiety-like behavior in the CD5WT and CD5KO mice 

using marble-burying tests and found that CD5KO mice buried a significantly higher number of 

marbles compared with CD5WT mice (Fig. 28). We also observed in the CD5KO cage an 

extensive scattering of marbles from their initial locations, and disturbed bedding which 

suggested a higher burying and even digging activity by the CD5KO mice in comparison to the 

CD5WT mice.  
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Figure 28. CD5KO mice have increased marble-burying behavior.  
The bar graphs show the total number of buried marbles measured during the 10 min marble-burying test. 
**p<0.01 two-tailed unpaired t-test, (n = 13 per group) 
 

6.3.4 CD5KO mice have decreased locomotion levels compare to CD5WT mice in the open field 

test 

To further corroborate the anxiety-like behavior phenotype we used the open field 

activity test179,395. Distance traveled on the box area in the 10 minutes was how locomotor 

activity was measured. There were no significant differences in the time spent in the outer area 

(Fig. 29A) or the center area (Fig. 29B) compared with the CD5WT mice. However, CD5KO 

mice did travel significantly less distance in the 10 minutes than the CD5WT mice (Fig. 29C). 
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Figure 29. Open field test measuring locomotion activity of CD5KO and CD5WT mice.  
Open-field test results for CD5KO and CD5WT mice. A. Time spent by CD5KO and CD5WT mice in the 
outer area.  B. Time spent by CD5KO and CD5WT mice in the center area. C. Total distance traveled by 
the CD5KO and CD5WT mice in 10 minutes. (n = 13/group) *P < 0.05, (two-tailed unpaired t-test). 
 

6.3.5 CD5KO have significantly different microbiome composition than CD5WT mice 

There is increased evidence of the influence of the gut microbiota in behavior and the 

immune responses179,396,397.  In fact, changes in the microbiome and immune systems have been 

shown to significantly affect behavior and are suggested to play a role in autism spectrum 

disorders and anxiety398. It appears that the gut microbiota influences the homeostasis of the 

immune response by inducing the polarization of specific T cells, such as Th17 and Th1399,400. 

Although, alterations in the microbiota can trigger inflammatory diseases, studies done in Rag 1-
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/- mice (fail to perform V (D) J recombination and do not have mature B or T cells) have found 

that these mice have altered microbiota, suggesting a mutual relationship between gut microbiota 

and the immune cells401-403. Because it is known that CD5 deficiency dramatically alters T cell 

function, we decided to test if CD5KO and CD5WT mice differed in their microbiota. We 

examined the bacterial composition found in the fecal samples from CD5WT and CD5KO mice 

that were fed with normal chow by metagenomics analysis (Fig. 30A). Our data from the 

unweighted unifrac PCoA plot suggested that there is a significant separation in the microbial 

communities between CD5WT and CD5KO (Fig. 30B). Furthermore, we observed when 

comparing CD5KO to CD5WT samples, Phylum Firmicutes is more abundant, 

phylum Bacteroidetes is reduced, and in CD5KO samples there was no detectable levels of the 

phylum Verrucomicrobia compared while there were detectable levels in the CD5WT samples 

CD5WT (Fig. 30C). Akkermansia muciniphila is a mucin-degrading bacterium with anti-

inflammatory function, is the sole member of the Verrucomicrobia phylum, and is known to be 

more abundant in the gut of healthy individuals404. It has also been suggested that the presence of 

A. muciniphila could be involved in the microbiota-immunity symbiotic loop, since it seems to 

influence the transcriptional modulation of several immune genes405.  Thus, these data suggest 

that there is dysbiosis found in the gut microbiota composition of CD5KO mice, and that this 

alteration could be influenced by the immune system.  
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Figure 30. Microbiome analysis of CD5KO and CD5WT mice.  
A. Experimental outline for the metagenomics analysis (Figure adapted from “Altered Gut Microbiota 
Composition in Rag1-deficient Mice Contributes to Modulating Homeostasis of Hematopoietic Stem and 
Progenitor Cells” by Kwon, O., et al, 2015)402. B. Principal coordinate analysis plot (PCoA) based upon 
unweighted unifrac metrics of fecal microbiota between CD5WT and CD5KO. The axes explain that 
there is a 12.52% and a 20.04% of data variation in the gut microbiota respectively, further analysis with 
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the Bray-curtis test shows a high compositional dissimilarity based in their genotypes with a p-value of 
p<0.001. Clustering shows this separation of groups (Marked by the ovals: blue for CD5WT and pink for 
CD5KO)(n = 29). C. Bacterial phyla distribution on CD5WT and CD5KO mice. Verrucomicrobia 
Phylum was present in CD5WT but not in CD5KO mice. D. There was significant more Bacteroidetes in 
CD5WT than in CD5KO mice. E. There was a significant amount of Firmicutes species in CD5KO than 
in CD5WT mice *P < 0.05, **p<0.01 two-tailed unpaired t-test. (n = 29).  
 
6.4 Conclusions and Future directions 

Studies done in the RAG-1−/− mice model that lacks of mature lymphocytes, support the 

theory that altered immune system function influences cognitive behavior and gut microbiota406-

408.  In fact, RAG-1−/− mice have a significant increase in anxiety-like behavior in behavioral 

tests such as the open field and the marble-burying tests409.  

PD-1 is a co-receptor that negatively regulates T cell immune responses, suppressing 

proliferation and cytokine production in activated T cells338. Deletion of PD-1 in T cell leads to 

hyperactivation of T cells which depletes amino acids necessary for neurotransmitter synthesis, 

resulting in altered cognitive function and behavior179.  The CD5 co-receptor has a similar co-

inhibiting function in T cells as PD-1. The modulatory role of CD5 impacts T cells function 

during development and in the periphery and has an important role in T cell immune homeostasis 

and tolerance132. CD5KO T cells have increased levels of cytokine production and proliferation, 

affecting the role of T cells in immune responses, auto reactivity, and activation induced cell 

death (AICD)321,410. T cells are known to influence cognitive function238. T cells producing 

higher amounts of inflammatory cytokines such as TNF-α have been associated with increased 

depression in humans and laboratory animals under chronic stress411,412.  Because of the CD5 

costimulatory function on T cells, we sought to examine if there is a direct connection between 

CD5 deficiency and mice cognitive function and behavior. 

Work in other models systems with altered T cell function [SCID (Rag1/2 -/-) and nude 

(deficient in mature T cells)] used the Morris water maze test (MWM) to evaluate the effect of 
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lymphocytes in memory and learning, and found that an absence of functional T cells leaded to 

cognitive dysfunction239. Here we used the CD5KO mouse model in which the T cell have 

increased rates of cytokine production and proliferation321. We did not see a significant 

impairment in the learning or memory response of CD5KO mice in the MWM test as was seen in 

studies in mice with a T cell deficiency (SCID and nude mice). Thus, a deficiency of functional 

T cells appears to initiate impaired cognitive function in the MWM test. While T cells from 

CD5KO mice have altered function, they do still have functional T cells which could explain 

why no learning and memory differences were observed in MWM. 

 We next decided to perform different tests that could evaluate anxiety-like behavior in 

these mice. First, we use the elevated plus maze test which measures the fear response to open 

spaces, our results showed not significant differences. In the open field test we found that the 

CD5KO mice traveled a significantly shorter distance than the CD5WT mice.  We also 

performed the marble-burying test and observed that CD5KO mice had significantly increased 

the marble burying activity compared to their counterpart the CD5WT mice, suggesting that the 

CD5KO mice have increased anxiety-like behavior. The idea of altered T cell function 

influencing cognitive function and behavior has been seen before. Behavioral research performed 

on experimental autoimmune encephalomyelitis (EAE) mice, suggest that T cells alterations 

influence mice anxiety-like behavior and can influence serotonin levels413,414. In addition, PD-1 

deficiency in T cells has been associated with depletion of essential amino acids precursors of 

neurotransmitters such as serotonin and dopamine in the brain, affecting cognitive behavior, 

again supporting the important role a T cell co-receptor plays in cognitive function and 

behavior179.  
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Additional studies have also demonstrated that gut microbiota can affect behavior and 

also the influence immune cells function415,416. For example, dysfunction in gut microbiota can 

affect the balance of Tregs and Th17cells altering the immune response which leads to chronic 

inflammation and contributes to neurological disorders such as depression415,416. RAG-1−/− mice 

have altered gut microbiota including decreased representation of bacterial species such as 

Lactobacillales and Enterobacteriales in neonate mice, and increased amount of 

Verrucomicrobiales (A. muciniphila at the species level) in both neonatal and adult mice, 

suggesting that the adaptive immune system can alter the microbiome population as well408.  

Studies have found that altered T cell function from PD-1 deficiency causes 

hyperactivation, increased production of IFNγ and impairment of the gut barrier373.These 

alterations in immune function also lead to an increase in inflammation, and defects in IgA 

regulation that impacted gut microbial composition373,374. Our CD5 microbiome data analysis 

revealed that while the microbial composition of CD5WT and CD5KO mice share specific 

phylum such as Bacteroidetes, Firmicutes, and Proteobacteria, they are found in significantly 

different quantities (Fig. 32C). One dramatic difference was the Verrucomicrobia; in specific 

Akkermansia muciniphilia which is known for its protective anti-inflammatory effects was not 

found in CD5KO mice but was found in CD5WT mice417. A. muciniphila is a gram-negative 

anaerobic bacterium and the only isolated representative of the Verrucomicrobia phylum. It can 

degrade mucin and A. muciniphila altered expression of mucus genes related to altered immune 

response and homeostasis418. Furthermore, presence of A. muciniphila has been shown to 

improved anti-PD-1 blockage therapy, underlining even more the important role that this bacteria 

has in the immune response419. The myriad of interactions between the innate and adaptive 

immune cells and gut microbiota, demonstrated the importance of the immune cells in the 
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development of gut microbiota. There is not only a cause-effect relationship, but also a 

cooperative connection among these two different systems420. 

Our data indicate that CD5WT and CD5KO differ significantly in gut microbiota 

diversity and that deficiency of CD5 might play a role in gut microbiota dysbiosis. At the current 

stage of our study we cannot prove that there is a direct connection between the CD5 co-receptor 

and the anxiety-like behavior or the microbiome observed in CD5KO mice. We do see a 

correlation suggesting CD5 is influencing T cells function resulting in alteration in cognitive 

function, behavior and gut microbiota diversity. A number of previous studies have linked 

altered T cell responses in inflammation and infection and the cause of neurological disorders as 

in bacterial dysbiosis402,421-423. Our understanding of how immune dysfunction influences 

cognitive function, behavior and gut microbiome is still in early development. This research aims 

to contribute to this work, by showing how the CD5 co-receptor plays a role in the immune-

microbiota-brain axis synergy.  

Further studies are needed to evaluate the role of T cells in behavior and gut microbiota 

of CD5KO mice (Fig. 31). The following question have to be addressed: Is it the microbiome or 

the T cells responsible for altered behavior in CD5KO mice? We could address this question by 

cohousing CD5KO and CD5WT mice (this will allow for them to have similar gut microbiota), 

or T cell adoptive transfer (Transfer of CD5WT T cells to CD5KO mice) and upon behavioral 

testing provide or discard microbial or T cell influence392,424. Such answer will direct the 

functional association between CD5 co-receptor in T cells and altered emotional behavior and 

gut microbiota. 
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Figure 31. Summary of the potential effect of CD5 in microbiome and behavior.  
CD5KO T cells are hyper activation increases cytokine release, proliferation and intracellular Ca2+ 
concentration, which could potentially influence cognitive behavior and gut microbiota. 
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CHAPTER 7: Concluding Remarks and Future Directions 

The work presented in this dissertation summarizes research performed to understand the 

function of two main proteins: 1) nBMP2, a nuclear variant of the BMP2 and 2) CD5, a T cell 

co-receptor. Both of these proteins influence cellular Ca2+ mobilization responses. Concluding 

remarks and future directions for each of these two proteins will be addressed in individual 

sections. 

7.1 nBMP2 role in immune cells 

The Bone morphogenetic protein 2 (Bmp2) is a secreted growth factor important in 

embryonic development425.  The nBMP2 is a nuclear variant of the BMP2, translated from an 

alternative start codon downstream of the signal peptide sequence, which allows a bipartite 

nuclear localization signal (NLS) to direct translocation to the nucleus31. To better understand 

the role of the nBMP2, studies in muscle, hippocampal neurons and behavior were done in six 

month old mice (age when phenotype was most pronounced) and the results suggested an 

impairment in intracellular Ca2+ transport30-32. Additional work examining the role of nBMP2 

on immune cells function found that nBMP2 mutant mice have an impaired secondary 

response. Here we described work testing the hypothesis that this impaired secondary immune 

response is due to altered intracellular Ca2+ mobilization32,50. The impaired immune response 

in nBMP2 mutant mice was to a systemic bacterial challenge and it appeared these mice had 

reduced phagocytic activity by macrophages in the spleen. We determined to examine the role 

that nBMP2 played in macrophages activation and phagocytosis. Our findings revealed a Ca2+ 

mobilization impairment in splenic macrophages from nBmp2NLStm mutant mice after 
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secondary infection along with a decreased phagocytic response, supporting the hypothesis 

that intracellular Ca2+ response played a role426.  

 Macrophages are phagocytic cells activated by cytokines such as IFN-γ that are 

produced by innate and adaptive immune cells including natural killer cells, cytotoxic T cells, 

and helper T cells427.  Altered Ca2+ regulation in these cells affects their metabolism, 

proliferation, cytokine production and cytotoxicity as well428. Future work should examine if 

the nBMP2 dependent Ca2+ impairment observed in macrophages is also present in these other 

innate and adaptive immune cells after secondary infection. 

 In addition, it would be important to address if the nBMP2 plays a role in the SERCA 

activity of macrophages and other immune cells. Sarco/endoplasmic reticulum Ca2+-ATPases 

(SERCAs) pump Ca2+ into the endoplasmic reticulum. It was observed that the SERCA 

activity in skeletal muscle from nBmp2NLStm mutant mice was impaired31.  In fact, previous 

studies have suggested that the mechanism for reduced intracellular Ca2+ mobilization upon 

activation is due to increased sarco/endoplasmic reticulum Ca2+ ATPase (SERCA)-mediated 

reuptake rather than changes in Ca2+ influx capacity, meaning that the alterations in Ca2+ 

mobilization response could be due to an altered SERCA function429.  To accomplish this, test 

such as the Ca2+ pumping activity (which measure Ca2+-ATPase pumps activity and Ca2+ 

transport) could be used430. For this purpose it is relevant to inhibit the plasma membrane 

Ca2+ pumps (PMCA) activity to determine if the defect observed in Ca2+ mobilization from  

nBmp2NLStm mutant mice is dependent of SERCA activity in the cell431. In addition, the 

SERCA pump is encoded by a family of 3 genes (SERCA1 (ATP2A1), -2 (ATP2A2), and -3 

(ATP2A3)), and defects in any of them will affect SERCA activity432,433. Expression 
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measurement of these genes will help to elucidate specific components of the SERCA pump 

where the nBMP2 protein is playing a relevant role. 

7.2 CD5 Modulatory Response 

CD5 functions as an inhibitory co-receptor in the thymus, and has a modulatory role in 

the signaling intensity of peripheral T cells by controlling Ca2+ signaling activity according to 

the CD5 expression levels in the T cells. CD5 promotes peripheral T cell activation and 

immune response by increasing Ca2+ signaling in CD5hi T cells as they come in contact to a 

foreign peptide. Thus, CD5 may be a novel checkpoint to regulate T cell activation and 

metabolism by altering Ca2+ mobilization (chapter 5). CD5 also appears to affect cognitive 

function and behavior and alter microbiome interactions (Chapter 6). Detailed molecular 

characterization of the mechanisms of CD5 function could potentially lead to novels 

immunotherapies.  

7.2.1 CD5 role in T cell metabolism 

Co-receptors are signaling domains that can influence the T cell activation and 

metabolic responses434. CD5 is a co-receptor with negative regulatory role during positive 

selection in the thymus and modulatory function in naïve and mature T cell activation as T 

cells with distinctive CD5 expression levels respond differently to foreign peptide. Previous 

studies suggest that differences in proliferation and survival in T cells with different CD5 

expression levels are due to differences in the TCR signaling strength which will affect their 

metabolic state230,294. Additional work suggested that CD5 levels influence T cell 

differentiation and effector cytokine production by demonstrating that ex vivo activated 

murine CD5lo CD4+ T cells produce relatively greater amounts of the Th1 cytokine IFNγ 

compared to their CD5hi counterparts435. Our work has shown that CD5 expression levels in T 
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cells affects their activation response which we measured looking at Ca2+ mobilization upon 

activation61,320. Ca2+ plays an important role in T cell metabolism, as it directs the metabolic 

reprogramming of naive T cells by regulating the expression of glucose transporters, 

glycolytic enzymes, and metabolic regulators through the activation of nuclear factor of 

activated T cells (NFAT) and the PI3K-AKT kinase-mTOR nutrient-sensing pathway8. 

In order to address if CD5 influenced T cell metabolic response, we worked with 

CD5KO mice T cells, and used as a control CD5WT mice (C57/BL6). Our preliminary data 

suggests that CD5KO naïve T cells have a significantly higher mitochondrial respiration 

profile, increased SRC, higher usage of metabolites involved in glycolysis, and increased 

mitochondrial respiration and amino acids metabolism (See Fig 22 and Fig. 24A-B). To better 

understand this preliminary data, future research should look into the possible causes that lead 

to an increase SRC in T cells. One possible cause includes a higher presence of mitochondrial 

mass in CD5KO T cells. As T cells undergo metabolic changes they also change in 

mitochondrial content which provide them with a substantial SRC to produce energy in 

response to increase stress328. This can be tested by using MitoTracker, a fluorescent 

mitochondrial stain used to quantify mitochondrial density, and the mitochondrial membrane 

potential which is a major component of the proton motive force that increases during ATP 

synthesis436,437.  

Another hypothesis related to the SRC increase in CD5KO T cells is related with a 

possible enhancement in the fatty acid metabolism during increase mitochondrial biogenesis 

(growth and division of mitochondria)328,438. SRC promotes mitochondrial biogenesis and the 

carnitine palmitoyl transferase (CPT1a) expression328. CPT1a is a metabolic enzyme that 

controls fatty acid oxidation (FAO)328,439. Measurement of differences of the mRNA of CPT1a 
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expression between CD5KO and CD5WT T cells would help to elucidate if FAO metabolism 

plays a role in the higher SRC levels of the CD5KO T cells. Another way to examine if the 

enhanced SRC in CD5KO is FAO dependent is to run a Mito stress test by adding an extra 

injection of an CPT1 inhibitor (Etomoxir). CD5KO and CD5WT naïve T cells will be exposed 

to the etomoxir to block mitochondrial FAO before or after FCCP injection, if SCR in 

CD5KO T cells is FAO dependent we should expect that addition of etomoxir will decrease 

the SRC observed in CD5KO T cells328. It would also be valuable to examine metabolic 

function in the  CD5KO and CD5WT T cells by measuring levels of key amino acids such as 

glutamine and the glutamine transporters from the SNAT family SNAT1 (SLC38A1) and 

SNAT2 (SLC38A2) that are important in T-cell activation235.  Finally, it would be important 

to obtain measurements of the GLUT1 (glucose transporters) and glucose uptake rates since 

glucose fuels mitochondrial FAO and OXPHOS440.  All this information together can help to 

elucidate the importance of CD5 in T cell metabolism. 

7.2.2 CD5 role in cognitive behavior 

 Studies done in PD-1 deficient mice showed a connection between T cell hyperactivation 

and behavior, suggesting that T cell hyperactivation affected systemic metabolism by decreasing 

free amino acids important for neurotransmitter synthesis which resulted in the increased fear 

response179. Because CD5KO T cells also have a hyperactive phenotype, we determined to see if 

the cognitive function in CD5 mice was altered. We performed behavioral analysis to 

characterize the phenotype of CD5KO mice using the Morris water maze (MWM), the elevated 

plus maze, the open field test and the marble burying test to observe any learning and memory 

impairment and fear-based or anxiety-like behavior. There were no differences in the learning 

and memory in the MWM although it was observed that the CD5KO mice appeared to be 
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swimming faster than CD5WT mice (empirical observation not measured).  In future research it 

would be important to measure swim speed in the MWM. The elevate plus maze test did not 

show any significant differences between CD5WT and CD5KO mice. In the marble burying test 

the CD5KO mice had buried a significantly higher number in marbles than the CD5WT mice, 

suggesting increased anxiety-like behavior in the CD5KO mice. Thus, our results indicate that 

CD5KO mice have impaired cognitive behavioral function reflected in elevated fear-based and 

anxiety-like behavior. 

Future work will need to elucidate the connection between the CD5 co-receptor in T cells 

and its influence in cognitive behavior by first performing adoptive T cell transfers from 

CD5WT T cells to CD5KO mice and evaluate if this recues the fear-based and anxiety-like 

behavioral responses. Adoptive T cell transfers have restored cognitive function and behavior in 

SCID, nude and Rag1 -/-mice, providing a means to determine if CD5 deficiency is in fact 

connected to cognitive function and behavior392. It would be important to measure free amino 

acids levels in serum before and after the T cell adoptive transfer. In the PD-1 study the 

decreased amino acids levels of tryptophan and tyrosine affected synthesis of monoamine 

neurotransmitters which were the mechanism of the altered behavioral response. 

If amino acids levels are low in the serum of CD5KO mice another approach would be to 

measure the total amount of tryptophan in tissue (brain and liver) and plasma441. Tryptophan is 

an essential amino acid, and an important precursor of serotonin442. When tryptophan is limited 

in mice it has been shown to result in a defensive behavioral response, suggesting that tryptophan 

restriction alters the emotional response to stress443. It is also possible to address whether the 

CD5KO phenotype is due to altered amino acid levels is to feed CD5KO mice a tryptophan 
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supplemented chow (or oral administration) and then measure behavior to see if fear and anxiety-

like behavior decreased in CD5KO mice444,445 . 

7.2.3 CD5 role in gut microbiota 

There is increased evidence that host-microbe interactions play a key role in maintaining 

homeostasis and alterations in gut microbial composition is associated with marked behavioral 

changes446. Dysfunction of the microbiome-brain-gut axis has been implicated in stress-related 

disorders such as depression, anxiety and irritable bowel syndrome and neurodevelopmental 

disorders such as autism447. Studies done in Rag-/- mice showed that they have a distinct 

microbiota, suggesting that lymphocytes play an important role in the microbiome 

composition406. Since we have documented altered behavior in our CD5KO mice, we 

hypothesized that an additional component that could affect behavior is microbiome dysbiosis. 

Our data analysis showed significant differences between the microbial populations composition 

from CD5WT and CD5KO mice (Fig. 32B). Further characterization of these differences 

revealed that the phylum Verrucomicrobia (Akkermansia muciniphila is the only identified 

member of this phylum) was not present in the CD5KO gut microbiota (Fig. 32C). This is an 

important finding considering that Akkermansia muciniphila is considered a hallmark of healthy 

gut due to its anti-inflammatory and immune-stimulant properties and its ability to improve gut 

barrier function448.  

Of note, hyperactivation of the immune cells increases production of pro-inflammatory 

cytokines which then increase the permeability of the gut-blood barrier and affect the diversity 

and composition of gut microbiota449. In fact, PD-1 deficient T cells hyperactivity has influenced 

the selection of IgA plasma cells and leads to gut microbiota dysbiosis373,374. CD5 has similar 

function than PD-1 in terms of regulating T cell activation and it would be of great interest to see 
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if CD5 deficiency also impacts IgA levels. This can be done by determining any differences in 

the number of IgA plasma cells in the lamina propia, total levels of IgA, or differences in IgA 

bacterial binding capacity between CD5WT and CD5KO373,374.  

To further establish the role of CD5KO microbiota on mouse behavior, it would be useful 

to do a fecal transplant. This can be done in mice by cohousing CD5KO and CD5WT mice. Co-

housing allows for normalization of the composition of the gut microbiota to see if it will 

alleviate the fear and anxiety-like behavior in CD5KO mice450.  

Future work should also address if there are changes in gut microbiota after adoptive T 

cell transfer from CD5WT to CD5KO mice. In addition, it could be ideal to have a group of mice 

that will be co-housed following adoptive transfer451. In this way, it is possible to better elucidate 

the associations and mechanism of action between the CD5 coreceptor in T cells, the 

microbiome, and behavior.  
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APPENDIX I: CD5 Expression Influences T cell Metabolism and Mice Behavior 

The following appendix contains a published abstract in the journal of Immunology Freitas, C. 

T., Cox, T., Johnson, D. & Weber, K. S. CD5 expression influences T cell metabolism and mice 

behavior. The Journal of Immunology 200, 108.116-108.116 (2018). The data for this abstract 

was presented at the American Association of Immunologist (AAI) Annual Meeting in Austin, 

TX, 2018 . 

Abstract 

T cells are key players in the adaptive immune response and undergo metabolic changes 

upon activation. CD5 is a co-receptor found on T cells and plays a significant role in regulating T 

cell thymic development, intracellular signaling and cytokine production. Previous studies have 

found that naïve T cells with high CD5 expression (CD5hi) have increased TCR signal strength 

and enhances immune response to foreign peptide in the periphery. Additionally, we have 

reported that CD5hi naïve T cells have higher calcium mobilization and improved T cell 

activation compared to CD5lo T cells. Calcium influx levels can modulate and influence 

metabolic changes in T cells. Thus, we hypothesized that CD5hi, CD5lo and CD5 deficient T cells 

have different bioenergetic demands that affect metabolic pathways and T cell activation. We 

evaluated the effects of CD5 levels on metabolism using CD5 deficient mice vs wild type 

controls and found CD5 deficient T cells had significant differences in metabolic function. 

Recently published work has described a connection between increased T cell metabolism and 

altered cognitive function in PD-1 deficient mice. We have also found significant differences 

between CD5 deficient and wild type mice in marble burying rates, elevated plus and water maze 

behavior and open field activity.  
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These behavioral test results suggest CD5 deficient mice have altered cognitive function and 

higher levels of anxiety. Thus, CD5 deficiency alters T cell metabolic and cognitive function. 
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Naïve helper T cells with high CD5 expression

have increased calcium signaling
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Abstract

The adaptive immune response is orchestrated by T helper cells and their function is depen-

dent upon interactions between the T cell receptor (TCR), peptide MHC (pMHC) and co-

receptors. TCR-pMHC interactions initiate calcium signaling cascades which determine T

cell activation, survival, proliferation and differentiation. CD5 is a co-receptor that plays an

important role in regulating T cell signaling and fate during thymocyte education. CD5 sur-

face expression on mature single positive thymocytes correlates with the TCR signal

strength for positive selecting self-ligands. CD5 also plays a role in T cell function after thy-

mic development is complete. Peripheral T cells with higher CD5 expression respond better

to foreign antigen than those with lower CD5 expression and CD5-high T cells are enriched

in memory populations. In our study, we examined the role of CD5 expression and calcium

signaling in the primary response of T cells using two Listeria monocytogenes specific T

helper cells (LLO118 and LLO56). These T cells recognize the same immunodominant

epitope (LLO190-205) of L. monocytogenes and have divergent primary and secondary

responses and different levels of CD5 expression. We found that each T cell has unique cal-

cium mobilization in response to in vitro stimulation with LLO190-205 and that CD5 expression

levels in these cells changed over time following stimulation. LLO56 naïve T helper cells,

which expresses higher levels of CD5, have higher calcium mobilization than naïve LLO118

T cells. Three days after in vitro stimulation, LLO118 T cells had more robust calcium mobili-

zation than LLO56 and there were no differences in calcium mobilization 8 days after in vitro

stimulation. To further evaluate the role of CD5, we measured calcium signaling in CD5

knockout LLO118 and LLO56 T cells at these three time points and found that CD5 plays a

significant role in promoting the calcium signaling of naïve CD5-high LLO56 T cells.

Introduction

Helper T cells play a critical role in adaptive immunity by orchestrating and regulating the

immune response [1, 2]. In large part, the binding properties of the T cell receptor (TCR) regu-

lates the development, activation, and proliferative response of T lymphocytes [3, 4]. In the

thymus, T cells are selected according to their avidity for self-peptide/MHC complexes. The
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TCR must be able to recognize self-peptide/MHC complexes with enough affinity to transduce

a signal during positive selection while not binding so tightly that they are negatively selected

[4–6]. TCR avidity and signal strength plays a key role in T cell function (calcium signaling,

cytokine production, T cell proliferation and differentiation) [7–9]. In addition to the TCR

and its interaction with peptide MHC (pMHC), multiple receptors such as CD4, CD8, PD-1,

and CTLA-4 play a key role in determining whether TCR:pMHC binding results in T cell acti-

vation or anergy. CD5 is known to be a negative regulator of TCR signaling in developing thy-

mocytes and its expression level in naïve T cells is determined during thymic development.

CD5 levels are set during positive selection according to the strength of the TCR-self-peptide/

MHC interaction. Typically, the stronger the avidity for self-peptide/MHC the higher the CD5

surface expression [10–13]. After completing thymic development, T cells with higher CD5

expression respond better to foreign antigen than those with lower CD5 expression and

CD5-high T cells are enriched in memory populations [14, 15]. Although there are studies

examining the role of T cell CD5 expression during thymic development and CD5-high cells

are enriched in memory cell populations, it is not clear how CD5 is involved in calcium signal-

ing during a helper T cell primary response. To better understand the role of CD5 in a T cell

primary response to foreign antigen, we examined the in vitro calcium responses of CD5-high

and CD5-low T helper cells that respond to the same epitope of Listeria monocytogenes.
Calcium (Ca2+) is a ubiquitous second messenger important for a wide range of cellular

functions. Ca2+ signaling plays an important role in T cell activation, cytokine production,

proliferation and cell fate and is determined by TCR interactions with the pMHC complex as

well as additional co-receptors [9, 16]. Ca2+ signaling has been well characterized in lympho-

cytes and the calcium signal for specific helper T cell subsets has been identified, suggesting a

strong relationship between Ca2+ mobilization in T helper cells and their functional response

[17, 18]. TCR engagement with pMHC initiates signal transduction pathways that result in a

dramatic increase of intracellular Ca2+ [19, 20]. Increases in intracellular Ca2+ enables tran-

scription factors to enter the nucleus and turn on genes that play a critical role in immune

responses. For example, NFAT, NF-κB, AP-1, and the Oct family transcription factors initiate

transcription of the interleukin-2 (IL-2) gene [21]. IL-2 production is important for T cell pro-

liferation and survival and plays a key role in promoting effector and memory cell differentia-

tion [22–24]. Thus, TCR-dependent Ca2+ signals are essential for robust T cell primary and

secondary immune responses.

The TCR avidity for self-peptide/MHC complex during selection affects the function and

maintenance of these cells in the periphery and how they respond to infection [25, 26]. CD5 is

a monomeric cell surface glycoprotein expressed on thymocytes, mature T cells, and a subset

of B cells. High TCR avidity for self-peptide/MHC results in high surface expression of CD5

on double positive and single positive thymocytes, whereas lower avidity is correlated with

lower surface expression of CD5 [10]. CD5 has been shown to negatively regulate the TCR sig-

nal during thymic development [27]. CD5 expression and Ca2+ mobilization correlate with

TCR signal strength and T cell fate [3, 5, 28]. However, mature naïve T cells with higher

expression levels of CD5 appear to respond better to foreign ligands, suggesting that CD5

influences T cell responsiveness at the post-selection level [14, 16, 29]. Thus, it appears that the

negative regulatory effect of CD5 in the thymus may not depend on the extracellular region of

CD5 whereas the positive co-stimulatory effect of CD5 in the periphery is dependent on extra-

cellular engagement of an endogenous ligand (CD5 or CD5L) [30–32]. While the exact func-

tion of these CD5 ligands is unclear, there is evidence that CD5L (CD72; a C-type ligand)

binds to CD5 and that CD5 is homophillic and may bind to CD5 on other cells [33]. Thus,

CD5 has a critical and divergent role in regulating T cell activation depending on the time and

location of activation.

Naïve helper T cells with high CD5 expression have increased calcium signaling
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LLO56 and LLO118 are two T helper cells that recognize the same immunodominant epi-

tope (LLO190-205) of L. monocytogenes and have divergent primary and secondary responses.

They differ by 15 amino acids in their TCR sequences and have unique responses to L. monocy-
togenes infection in vivo, LLO118 has a better primary response whereas LLO56 has a more

robust secondary response [25]. Previous analysis of thymocytes and T cells revealed that

LLO56 has higher levels of CD5 and a more robust IL-2 response in addition to a reduced pri-

mary response caused by increased cell death compared to LLO118 T cells [25, 26]. In order to

better understand how CD5 levels affect T cell activation in cells that have completed thymic

development, we determined to evaluate calcium signaling in LLO56 (CD5-high) and LLO118

(CD5-low) T cells. We also measured calcium signaling in CD5 knockout LLO118 and LLO56

T cells to better elucidate the role of CD5 in calcium signaling after thymic development is fin-

ished. This was accomplished by measuring LLO118 and LLO56 calcium mobilization at three

different time points during the T cell response: Naïve T helper cells, day 3 post-stimulation,

and day 8 post-stimulation. We also measured calcium signaling in CD5 knockout LLO118

and LLO56 T cells at these time points and found CD5 plays a significant role in promoting

the calcium signaling of naïve CD5-high T cells, but does not alter calcium mobilization levels

at later time points.

Materials and methods

Mice

LLO56 (B6 Thy-1.1+ Rag1−/−), LLO118 (B6 Ly5.1+ Rag1−/−) and CD5 knockout (KO) LLO56

and LLO118 were bred and housed in pathogen free conditions [25, 26]. All mice used in these

experiments were 5–12 weeks old. All use of laboratory animals was done with approval of the

Animal Care and Use Committee (IACUC protocol #15–801) at Brigham Young University.

T cell isolation and activation

CD4+ T cells were isolated from the spleens of LLO56 and LLO118 TCR transgenic (Tg) mice

[26]. Spleen single cell suspensions from LLO56 and LLO118 mice were purified using a nega-

tive selection CD4+ T cell isolation kit (Miltenyi Biotec) [17]. T cells were isolated from the

spleen of LLO56, LLO118, LLO56-CD5KO, and LLO118-CD5KO mice. Spleens were homog-

enized and passed through a nylon mesh cell strainer. The single-cell suspension was resus-

pended in R10 medium containing RPMI 1640, 10% of FBS (HyClone), 1% Glutamax (Gibco

by Life Technologies), and 0.5% Gentamicin (Life Technologies), then transferred to a 6-well

plate (1x106 cell/ml) and loaded with 1 μM of Listeria monocytogenes peptide LLO190-205. For T

cell isolations, mice were euthanized using CO2 inhalation.

Antigen presenting cell isolation

Bone marrow derived macrophages (BMDM) were obtained from B6/C57 mouse femurs and

tibias and were cultured at 37˚C and 5% CO2 and matured for 7 days in macrophage medium

with DMEM (HyClone), 10% FBS (HyClone), 20% supernatant from L929 mouse fibroblast as

a source of macrophage colony-stimulating factor (M-CSF), 5% heat inactivated horse serum

(Sigma), 1 mM Na Pyruvate (Gibco by Life Technologies), 1.5 mM L-glutamine (Thermo-

fisher), 1100X Penicillin/Sreptomycin (Gibco by Life Technologies). Harvested cells were plate

in an 8-chamber cover glass where they were loaded with the Listeria monocytogenes peptide

LLO190-205 overnight. For bone marrow derived macrophage isolations, mice were euthanized

using CO2 inhalation.

Naïve helper T cells with high CD5 expression have increased calcium signaling
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Calcium imaging

Naïve T cells were incubated with 1 μM of Fura-2AM (Invitrogen) for 30 minutes at 37˚C and

5% CO2 in Ringers imaging solution (150 mM NaCl, 10mM glucose, 5 mM of HEPES, 5 mM

of KCl, 1mM MgCl2, and 2 mM CaCl2, pH 7.4), washed, and then incubated in Ringers solu-

tion for another 30 minutes at 37˚C. 200,000 Fura-2AM loaded naïve CD4+ T cells were

pipetted onto 200,000 bone marrow derived macrophages that were previously incubated with

1 μM of Listeria monocytogenes peptide LLO190-205 overnight. Imaging was performed in Nunc

8-chamber covered glass slides (155411, Thermo Scientific). For day 3 and day 8 stimulation

time points, LLO118 or LLO56 splenocytes were incubated overnight with 1 μM of Listeria
monocytogenes peptide LLO190-205. Calcium imaging was performed at room temperature

using an Olympus IX51 inverted microscope equipped with a xenon arc lamp. Fura-2AM

loaded T cells were excited at 340 nm and 380 nm excitation filters and capture by a flores-

cence microscope camera (Q Imaging Exi Blue) using a 20x objective (N.A. 0.75). Images

(340/380/transmitted) were recorded at 3 second intervals over 20 minutes. Each individual

cell fluorescence was normalized with the first recorded value according to the equation

(F-Fo)/Fo where F is the fluorescence at the specific time point, and Fo is the fluorescence

value at time 0 [34].

Flow cytometry

Calcium mobilization was also measured using flow cytometry and the high affinity calcium

indicator Fluo-4 (ex:470–490 nm and em: 520–540 nm). Cells were surface stained with an

anti-CD4+-APC antibody (17–0041; eBioscience). T cells were loaded for 30 mins as previously

published with pluronic acid and 1mM Fluo-4-acetoxymethyl ester (Invitrogen) in Ringer

solution (150 mM NaCl, 10 mM glucose, 5 mM of HEPES, 5 mM of KCl, 1 mM MgCl2, and 2

mM CaCl2, pH 7.4) [35]. Intracellular calcium mobilization was initiated by adding 50 ng/ml

of PMA (phorbol 12-myristate 13-acetate) and 1 μg/mml of ionomycin [36]. For further analy-

sis done in FlowJo, the lymphocyte population was gated in a forward and side scatter gate and

singlets. From this gate a second gate was created specific for CD4+ T cells [37]. Intracellular

calcium flux was measured in the CD4+ T cell gate using the FlowJo kinetics tool.

For CD5 expression analysis, spleen single cell suspensions from naïve and stimulated (day

3 and day 8) were stained with anti-CD5-PE (12–0051; eBioscience), and anti-CD4-APC (17–

0041; eBioscience) and analyzed on the flow cytometer (BD Accurri C6).

Data analysis

Live cell calcium imaging data was analyzed using CellSens Software from Olympus and the

340:380 ratio calculations were performed on randomly selected cells. The standard deviation

of the calcium levels from the regression line was determined using GraphPad Prism. For cal-

cium flow cytometry measurements, FlowJo kinetics tool was used to determine the area

under the curve (AUC) [35, 38, 39]. All assays were performed at least three times in triplicate

and significant values were determined using student T test in GraphPad Prism.

Results

LLO118 and LLO56 T helper cells have different responses to antigen

and CD5 expression levels

To examine the role of CD5 in regulating calcium signaling in the primary response of helper

T cells, we used LLO56 and LLO118 T cells which are specific for the same epitope of Listeria
monocytogenes (listeriolysin O, LLO190-205) [25]. These LLO118 and LLO56 T cells differ in

Naïve helper T cells with high CD5 expression have increased calcium signaling
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their in vivo responses upon L. monocytogenes infection; LLO118 helper T cells have a better

primary response and LLO56 helper T cells exhibit a better secondary response [25]. Addition-

ally, naïve LLO56 T cells have higher levels of CD5 and produce more IL-2 upon stimulation

compared to those from LLO118 T cells [25, 26]. We hypothesized that these differences in

CD5 levels and T cell function would allow us to better understand the role of CD5 in calcium

signaling and T cell activation in a primary response (See Table 1).

LLO56 naïve helper T cells have higher calcium mobilization in vitro

To determine how CD5 plays a role in the primary immune response of LLO56 and LLO118 T

cells, we first analyzed the calcium signaling of naïve T cells isolated and purified from the

spleens of LLO56 and LLO118 TCR Tg mice. Calcium mobilization was measured using live

cell imaging after loading the T cells with Fura-2AM and adding them to 8-chamber slides

containing antigen presenting cells loaded overnight with the L. monocytogenes peptide

(LLO190-205). A calcium profile was generated by combining measurements (40+ cells) from 4

different experiments taking readings every 3 seconds over a 20-minute time span (Fig 1A).

Upon stimulation with LLO190-205 peptide, LLO56 T helper cells have higher peak calcium

influx levels compared to LLO118 T cells (Fig 1B). There are not any significant differences in

the mean calcium levels and variability (standard deviation) of the calcium signal between

LLO56 and LLO118 T cells (Fig 1C and 1D) [40]. Thus, naïve LLO56 (CD5-high) and naïve

LLO118 (CD5-low) T cells have significantly different peak calcium mobilization profiles.

LLO56 naïve T helper cells have higher levels of CD5 surface

expression

Previous work has shown that naïve LLO56 T cells have higher expression of CD5 compared

to naïve LLO118 T cells [25]. We wanted to know what happened to the levels of CD5 at the

post-stimulation time points (day 3 and day 8) that we examined in this study. As previously

reported, LLO56 naive T helper cells showed higher CD5 expression than naïve LLO118 T

helper cells. However, upon stimulation, the CD5 expression differences between LLO56 and

LLO118 T cells decrease over the course of 8 days of stimulation (Fig 2A and 2B). To further

confirm CD5 expression a mean fluorescent intensity (MFI) profile was done, which con-

firmed significant CD5 expression levels differences between naïve LLO56 T cells with Day 3

and Day 8, however LLO56 did not have significant differences between Day 3 and Day 8 (Fig

2C and 2D).

LLO118 T cells have higher peak calcium influx on day 3 post-

stimulation

To determine whether the Ca2+ influx difference seen in naïve T cells were maintained over

the course of a primary response to infection, we measured calcium influx for LLO118 and

LLO56 T helper cells 3 days post-stimulation with L. monocytogenes peptide (LLO190-205)

(Fig 3A). In contrast to naïve T cells, day 3 post-stimulated LLO118 T cells have significantly

Table 1. Summary of differences between LLO56 and LLO118 T cells.

LLO56 LLO118

Primary Response + +++

Secondary Response +++ +

IL-2 Response +++ ++

CD5 Expression (naïve T cells) +++ +

https://doi.org/10.1371/journal.pone.0178799.t001
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Fig 1. LLO56 naïve helper T cells have higher calcium mobilization in vitro. Naïve T cells from LLO56

and LLO118 TCR transgenic mice were obtained from the spleen using negative selection and calcium levels

were measured using live cell microscopy. T cells were added to antigen presenting cells (bone marrow

derived macrophages) that were loaded overnight with the L. monocytogenes peptide (LLO190-205). A.

Average curves of intracellular Ca2+ mobilization from LLO56 and LLO118 naïve T cells (340/380 ratios)

Naïve helper T cells with high CD5 expression have increased calcium signaling
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higher peak levels of calcium influx than LLO56 T helper cells (Fig 3B). While there were

no differences in mean Ca2+ levels (Fig 3C), LLO118 did have significantly higher variability

in the calcium signal (standard deviation). Thus, on day 3 post-stimulation LLO56 T cells

had significantly lower peak calcium influx and lower variability compared to LLO118 T

cells.

(n = 40+). Error bars show the SEM at the influx peak and every 5 minutes after the peak (n = 40+). B.

Statistical analysis of peak calcium influx of stimulated LLO56 and LLO118 naïve T helper cells (n = 40+). C.

Statistical analysis of the sustained intracellular Ca2+ levels (Average 340/380 values between minutes 5 and

20) after initial stimulation response (n = 40+). D. Standard deviation was determined by linear regression

analysis and shows variability in the calcium signal for each group (n = 40+). (* = p < .05; NS = not significant).

https://doi.org/10.1371/journal.pone.0178799.g001

Fig 2. Naïve LLO56 T helper cells have higher levels of CD5. Flow cytometry analysis of CD5 expression of LLO56 and LLO118 T helper cells was done

using LLO118 and LLO56 splenocytes at different time points after stimulation with the LLO190-205 peptide from L. monocytogenes. A. Gating strategy for

measuring CD4 and CD5 mean fluorescent intensity on LLO118 and LLO56 T cells. B. CD5 levels of naïve T cells, T cell stimulated for 3 days, and T cells

stimulated for 8 days. T helper cells from LLO56 (red line) overlaid with the CD5 levels from LLO118 (shaded blue). Unstained cells are also included (black

dots). C-D. Comparison of mean fluorescence intensity (MFI) profiles for LLO56 and LLO118 expression levels of CD5 at different time points were

determined by flow cytometry quantitative analysis. (* = p < .05; ** = p < .01; *** = p < .001; NS = not significant).

https://doi.org/10.1371/journal.pone.0178799.g002
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Fig 3. LLO118 helper T cells have higher calcium signaling on day 3 post stimulation. LLO56 and

LLO118 splenocytes were isolated and cultured with the LLO190-205 peptide from L. monocytogenes for 72

hours in vitro. 24 hours before live imaging, a second set of splenocytes were isolated and cultured in an

8-chamber slide loaded with LLO190-205 peptide of L. monocytogenes for use as antigen presenting cells. T

cells were stained with Fura-2AM, added to the antigen presenting cells and Ca2+ influx was measured. A.

Naïve helper T cells with high CD5 expression have increased calcium signaling
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LLO56 and LLO118 have similar in vitro calcium responses on day 8

post stimulation

To further characterize the LLO118 and LLO56 Ca2+ response, we isolated splenocytes and co-

cultured them with the L. monocytogenes peptide for 8 days. On day 8 post-stimulation, the

average Ca2+ profiles were similar to each other (Fig 4A). Upon evaluation, there were no sig-

nificant differences between LLO118 and LLO56 T cells in calcium peak, mean, or standard

deviation on day 8 post-stimulation (Fig 4B–4D).

Calcium flow cytometry data correlates with calcium microscopy data

To confirm the results obtained in live cell calcium microscopy and evaluate the role of TCR

independent calcium signaling, we isolated LLO56 and LLO118 T cells and measured Ca2+

mobilization using flow cytometry. Cells were labeled with Flou-4AM and stimulated with

PMA and ionomycin. Flou-4AM fluorescence was examined before and after stimulation.

Measurements were collected for naïve T helper cells, day 3, and day 8 post-stimulated T cells.

The data was consistent with our previous live cell imaging findings in which naïve LLO56 T

helper cells and day 3 post-stimulated LLO118 T cells had higher Ca2+ mobilization compared

to their counterparts while no calcium mobilization differences were seen at day 8 between

LLO118 and LLO56 T cells (Fig 5A–5C and Table 2). Collectively, these data show CD5

expression levels and calcium signaling changes over the course of a primary response in

LLO118 and LLO56 T cells (Table 2, Figs 2 and 5). Our live cell microscopy calcium imaging

and flow cytometry calcium analysis differ in the parameters measured and the stimulation

used (cells were stimulated in a TCR-dependent manner for live cell calcium imaging and in a

TCR-independent manner for flow cytometry analysis). This calcium data is consistent with

the TCR independent cytokine production differences between LLO118 and LLO56 identified

by Persaud et al, in which they demonstrated that the LLO118 and LLO56 naive T cell response

was set during thymic selection. Naive LLO56 T cells have higher expression of CD5, suggest-

ing increased affinity for self-peptide, and produce higher levels of IL-2 even when stimulated

in a TCR independent manner [26].

CD5 expression in naïve LLO56 T helper cells is correlated with higher

Ca2+ mobilization

To further investigate the role CD5 expression plays in Ca2+ mobilization, we measured the

calcium signal in T cells from LLO118-CD5 knockout and LLO56-CD5 knockout mice. We

found in the LLO118 T cells (CD5-low) that calcium mobilization was not significantly differ-

ent from LLO118-CD5 knockout T cells at any of the three time points (Fig 6A–6C). Con-

versely, naïve LLO56-CD5 knockout T helper cells had significantly lower calcium levels

compared to the naïve LLO56 T cells (CD5-high) (Fig 6D). There was no calcium mobilization

difference between LLO56 and LLO56-CD5 knockout T cells at day 3 or day 8 post-stimula-

tion (Fig 6E and 6F). Thus, in naïve LLO118 T cells (CD5-low), CD5 does not appear to play a

strong role in regulating calcium mobilization at any of the time points. However, CD5

Average curves of intracellular Ca2+ mobilization from stimulated LLO56 and LLO118 splenocytes (340/380

ratios; n = 30) on day 3 post stimulation. Error bars show the SEM at the influx peak. B. Statistical analysis of

peak calcium influx of stimulated LLO56 and LLO118 naïve T helper cells (n = 30+). C. Statistical analysis of

the sustained intracellular Ca2+ levels (Average 340/380 values between minutes 5 and 20) after initial

stimulation response (n = 30+). D. Standard deviation was determined by linear regression analysis and

shows variability in the calcium signal for each group (n = 30+). (** = p < .01; *** = p < .001; NS = not

significant).

https://doi.org/10.1371/journal.pone.0178799.g003
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Fig 4. No calcium differences between LLO56 and LLO118 on day 8 post stimulation. LLO56 and

LLO118 transgenic splenocytes were isolated and cultured with the LLO190-205 peptide for a week. 24 hours

before live imaging, a second set of splenocytes were isolated and cultured in an 8-chamber slide loaded with

LLO190-205 peptide of L. monocytogenes for use as antigen presenting cells. 8 days stimulated T cells were

stained with Fura-2AM and Ca2+ influx was measured using live imaging microscopy. A. Average curves of
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expression is important in regulating calcium mobilization in the naïve LLO56 T cells

(CD5-high) during the initial response to antigen, but as CD5 levels decrease over time, its

role in regulating calcium also decreases.

Discussion

In this study, we examined the role of CD5 in regulating T cell activation during a primary

response using two T helper cells, LLO56 and LLO118, which bind to the same L. monocyto-
genes epitope and have different levels of CD5 on the surface upon completion of thymic devel-

opment [25, 26]. Because of the described negative regulatory role of CD5 in the thymus and

the prevalence of CD5-high cells in memory cells, we wondered how CD5 influences T cell

immune response at a post-thymic level. We found significantly different Ca2+ signaling levels

between LLO56 and LLO118 T helper cells at the naïve and day 3 time points. The distinct Ca2

+ mobilization patterns of LLO56 and LLO118 likely influence their particular responses to

antigen, similar to observations made in B cells in which unique Ca2+ mobilization controls

distinct B cell activation phenotypes [20, 41]. Previous work has defined the important role of

CD5 during T cell thymic development and that CD5-high cells are enriched in memory T cell

populations, but how CD5 functions during the primary response stage of T helper cells has

not been well defined. Here we characterized the role of CD5 expression and calcium mobili-

zation in these CD5-high and CD5-low T cells over the course of 8 days. We found that naïve

LLO56 T helper cells (CD5-high) have significantly higher calcium mobilization compared

to the LLO56-CD5 knockout T cells, but at later time points the removal of CD5 did not

intracellular Ca2+ mobilization from stimulated LLO56 and LLO118 splenocytes (340/380 ratios; n = 30) on

day 8 post stimulation. Error bars show the SEM at the influx peak. B. Statistical analysis of peak calcium

influx of stimulated LLO56 and LLO118 naïve T helper cells (n = 30+). C. Statistical analysis of the sustained

intracellular Ca2+ levels (Average 340/380 values between minutes 5 and 20) after initial stimulation response

(n = 30+). D. Standard deviation was determined by linear regression analysis and shows variability in the

calcium signal for each group (n = 30+). (NS = not significant).

https://doi.org/10.1371/journal.pone.0178799.g004

Fig 5. Flow cytometry calcium analysis confirms improved calcium mobilization for naïve LLO56 T cells and higher calcium mobilization for

LLO118 T cells at day 3 post-stimulation. LLO56 and LLO118 splenocytes were isolated and cultured at different time points with the LLO190-205 peptide.

Calcium levels were quantified using the FlowJo kinetics tool to determine the area under the curve (AUC) for each sample. Calcium mobilization levels for

LLO118 and LLO56 are quantified (mean ± SEM of the area under the curve). A. Statistical analysis of naïve LLO118 and LLO56 T helper cell calcium

mobilization after activation with PMA and Ionomycin. B. Statistical analysis of day 3 post stimulated LLO118 and LLO56 calcium mobilization and C.

Statistical analysis of day 8 post stimulated LLO118 and LLO56 calcium mobilization. (NS = not significant).

https://doi.org/10.1371/journal.pone.0178799.g005
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significantly alter LLO56 calcium mobilization. Naïve LLO118 T helper cells (CD5-low)

exhibit no differences in Ca2+ mobilization relative to their CD5 knockout counterpart. Thus,

we found naive CD5-high T cells have improved calcium mobilization to an antigen they have

never seen before.

T cell development shapes the T cell population by removing strongly self-reactive cells and

helping determine future immune responses. T cells that are moderately self-reactive may be

Table 2. Summary of CD5 and calcium findings for LLO56 and LLO118.

LLO56 LLO118

CD5 Expression Ca2+ influx CD5 Expression Ca2+ mobilization

Naïve T cell +++ +++ + +

Day 3 ++ ++ + +++

Day 8 ++ ++ + ++

https://doi.org/10.1371/journal.pone.0178799.t002

Fig 6. CD5 expression in naïve LLO56 T helper cells is correlated with higher Ca2+ mobilization. Flow cytometry analysis was performed to determine

Ca2+ mobilization levels in LLO56, LLO118, LLO56-CD5 knockout and LLO118-CD5 knockout T cells stimulated with the L. monocytogenes peptide (naïve,

day 3, and day 8 time points). Calcium levels were quantified using the FlowJo kinetics tool to determine the area under the curve (AUC) for each sample

(mean ± SEM). A-C. Statistical analysis of calcium mobilization of LLO118 and LLO118-CD5 knockout T cells stimulated with PMA/Ionomycin. Data is shown

for naive (A), day 3 post stimulation (B) and day 8 post stimulation (C). D-F. Statistical analysis of calcium mobilization of naïve LLO56 and LLO56-CD5

knockout T cells stimulated with PMA/Ionomycin. Data is shown for naive (D), day 3 post stimulation (E) and day 8 post stimulation (F). (* = p < .05; NS = not

significant).

https://doi.org/10.1371/journal.pone.0178799.g006
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able to pass positive selection and evade negative selection and circulate in the periphery.

These self-reactive cells, marked by high levels of CD5, appear to be primed to be the best

responders to foreign antigens [26]. CD5 is a known negative regulator of TCR signaling dur-

ing thymocyte development and its expression is correlated to the relationship of TCR avidity

for self-pMHC [25, 26, 28, 42]. Analysis in thymocytes showed that LLO56 and LLO118 CD5

knockout T cells had increased p-ERK and IL-2 production, providing additional evidence

that CD5 has a negative regulatory effect in developing thymocytes [26]. However, additional

work has demonstrated that CD5-high and CD5-low T cells respond differently to self and for-

eign antigens, suggesting that CD5 has an important role in thymocyte selection and periph-

eral T cell function and fate [28, 29].

Recent studies suggest that developing T cell CD5 levels affect naïve T cell responses to for-

eign antigens in the periphery [15, 43]. While the negative regulatory function of CD5 in the

thymus does not appear to be dependent upon engagement with a ligand, the positive co-stim-

ulatory effect of CD5 in the periphery is likely due to CD5 engagement of a ligand (CD5 or

CD5L) [30–33]. As previously reported, anti-CD5 antibodies enhance TCR-mediated activa-

tion and proliferation in peripheral T cells [29, 44, 45]. This calcium difference observed in

naïve T cells is supportive of the previously published finding that LLO56 T cells have signifi-

cantly higher phosphorylation levels of pERK and production of IL-2 before exposure to anti-

gen, suggesting a role for self-peptide affinity in altering CD5 levels and naive T cell responses.

CD5-high T cells respond strongly upon stimulation in vitro and have increased IL-2 secretion

and greater Erk phosphorylation compared to CD5-low T cells [26]. Since CD5 expression is

set by self-peptide reactivity in the thymus, our finding that naïve CD5-high LLO56 T cells

have higher calcium influx is consistent with other studies that have shown that increased reac-

tivity to self-peptides results in T cells with improved reactivity to foreign antigens [14, 28, 46].

We found that CD5 expression plays an important role in intracellular Ca2+ mobilization

for naïve LLO56 helper T cells (CD5-high). CD5-high T cells have stronger avidity for self-pep-

tide. It has been suggested that the enhanced activation response to foreign pathogens of

CD5-high T cells could be due to their ability to more efficiently use self-peptide as a co-ago-

nist peptide in the periphery [15]. Additionally, CD5-high cells have better basal TCR signaling

and improved functional characteristics which correlate with better response to foreign pep-

tide [28]. Studies in naïve cytotoxic T cells suggest that the gene expression profile of CD5-high

T cells transcriptionally engage into proliferative and effector functions faster than CD5-low T

cells [46]. Furthermore, CD5 appears to help with CD5-high naïve T cell survival after antigen

recognition [47]. In fact, T cells with high CD5 levels may maintain diversity within the mem-

ory population, which may outweigh the cost of increased self-reactivity [15]. Additionally, T

cells with high CD5 expression are enriched in memory cell populations, suggesting that when

designing vaccines, CD5 levels and self-peptide and foreign peptide interactions are an impor-

tant consideration [14, 15].

The data presented here helps to elucidate the role that CD5 plays in regulating calcium sig-

naling in naïve cells early after cell activation during an in vitro primary response. We plan to

further investigate whether the unique Ca2+ profiles of LLO56 and LLO118 T cells are consis-

tent in an in vivo model and further quantify the role CD5 plays in effector and memory T

cells. These future studies will help elucidate how CD5 influences naïve T cell responses and its

potential role in memory T cell generation and maintenance.
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38. Bajnok A, Kaposi A, Kovács L, Vásárhelyi B, Balog A, Toldi G. Analysis by flow cytometry of calcium

influx kinetics in peripheral lymphocytes of patients with rheumatoid arthritis. Cytometry Part A. 2013;

83A(3):287–93. https://doi.org/10.1002/cyto.a.22256 PMID: 23335202
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Abstract: Calcium influx is critical for T cell effector function and fate. T cells are activated when
T cell receptors (TCRs) engage peptides presented by antigen-presenting cells (APC), causing an
increase of intracellular calcium (Ca2+) concentration. Co-receptors stabilize interactions between
the TCR and its ligand, the peptide-major histocompatibility complex (pMHC), and enhance Ca2+

signaling and T cell activation. Conversely, some co-receptors can dampen Ca2+ signaling and inhibit
T cell activation. Immune checkpoint therapies block inhibitory co-receptors, such as cytotoxic
T-lymphocyte associated antigen 4 (CTLA-4) and programmed death 1 (PD-1), to increase T cell
Ca2+ signaling and promote T cell survival. Similar to CTLA-4 and PD-1, the co-receptor CD5 has
been known to act as a negative regulator of T cell activation and to alter Ca2+ signaling and T cell
function. Though much is known about the role of CD5 in B cells, recent research has expanded
our understanding of CD5 function in T cells. Here we review these recent findings and discuss
how our improved understanding of CD5 Ca2+ signaling regulation could be useful for basic and
clinical research.

Keywords: calcium signaling; T cell receptor (TCR); co-receptors; CD-5; PD-1; CTL-4

1. Introduction

T cells are a critical component of the adaptive immune system. T cell responses are
influenced by signals that modulate the effects of the T cell receptor (TCR) and peptide-major
histocompatibility complex (pMHC) interaction and initiate the transcription of genes involved in
cytokine production, proliferation, and differentiation [1–3]. T cell activation requires multiple signals.
First, the TCR engages the pMHC leading to tyrosine phosphorylation of CD3 and initiation of the
Ca2+/Calcineurin/Nuclear factor of activated T cells (NFAT) or Protein kinase C-theta (PKCθ)/Nuclear
factor-κ-light chain enhancer of activated B cells (NF-κB) or Mitogen-activated protein kinase (MAP
kinase)/AP-1 pathways [4–6]. Second, cell surface costimulatory molecules, such as co-receptor CD28,
amplify TCR-pMHC complex signals and promote stronger intracellular interactions to prevent T cell
anergy [7,8]. Finally, cytokines such as interleukin-12 (IL-12), interferon α (INFα), and interleukin-1
(IL-1) promote T cell proliferation, differentiation, and effector functions [6].

Co-receptors such as CD4 and CD8 interact with MHC molecules and additional co-receptors
interact with surface ligands present on antigen-presenting cells (APCs) to regulate T cell homeostasis,
survival, and effector functions with stimulatory or inhibitory signals [9]. Altering co-receptor levels,
balance, or function dramatically affects immune responses and their dysfunction is implicated in
autoimmune diseases [10]. Stimulatory co-receptors such as CD28, inducible T cell co-stimulator
(ICOS), Tumor necrosis factor receptor superfamily member 9 (TNFRSF9 or 4-1BB), member of the
TNR-superfamily receptor (CD134 or OX40), glucocorticoid-induced tumor necrosis factor (TNF)
receptor (GITR), CD137, and CD77 promote T cell activation and protective responses [11]. Co-receptor

Int. J. Mol. Sci. 2018, 19, 1295; doi:10.3390/ijms19051295 www.mdpi.com/journal/ijms

http://www.mdpi.com/journal/ijms
http://www.mdpi.com
https://orcid.org/0000-0002-4575-9841
https://orcid.org/0000-0003-3688-2191
http://www.mdpi.com/1422-0067/19/5/1295?type=check_update&version=1
http://www.mdpi.com/journal/ijms
http://dx.doi.org/10.3390/ijms19051295


Int. J. Mol. Sci. 2018, 19, 1295 2 of 21

signaling is initiated by the phosphorylation of tyrosine residues located in immunoreceptor
tyrosine-based activation motifs (ITAMs) or immunoreceptor tyrosine-based inhibitory motifs
(ITIMs) [7,12]. The phosphorylated tyrosines serve as docking sites for spleen tyrosine kinase (Syk)
family members such as zeta-chain-associated protein kinase 10 (ZAP-70) and Syk which activate the
phospholipase C γ (PLCγ), RAS, and extracellular signal-regulated kinase (ERK) pathways in addition
to mobilizing intracellular Ca2+ stores [13].

One of the best described T cell co-receptors, CD28, is a stimulatory T cell surface receptor from the
Ig superfamily with a single Ig variable-like domain which binds to B7-1 (CD80) and B7-2 (CD86) [2].
Ligand binding phosphorylates CD28 cytoplasmic domain tyrosine motifs such as YMNM and PYAP
and initiates binding and activation of phosphatidylinositide 3 kinase (PI3K) which interacts with
protein kinase B (Akt) and promotes T cell proliferation and survival [1]. CD28 also activates the NFAT
pathway and mobilizes intracellular Ca2+ stores through association with growth factor receptor-bound
protein 2 (GRB2) and the production of phosphatidylinositol 4,5-bisphosphate (PIP2), the substrate
of PLCγ1, respectively [2,14]. Blocking stimulatory co-receptors suppresses T cell effector function.
For example, blocking stimulatory CD28 with anti-CD28 antibodies promotes regulatory T cell function
and represses activation of auto- and allo-reactive T effector cells after organ transplantation [8,15].

T cells also have inhibitory co-receptors which regulate T cell responses [8]. The best characterized
are immunoglobulin (Ig) superfamily members cytotoxic T-lymphocyte-associated protein 4 (CTLA-4)
and programmed cell death protein 1 (PD-1) [8,16]. CTLA-4 binds CD80 and CD86 with greater
avidity than CD28, and its inhibitory role refines early phase activation signals for proliferation and
cytokine production [16–19]. PD-1, another CD28/B7 family member, regulates late phase effector
and memory response [20]. Inhibitory co-receptors such as CTLA-4 and PD-1, known as “immune
checkpoints”, block the interaction between CD28 and its ligands altering downstream secondary T
cell activation signals [19]. Therefore, blocking CTLA-4 or PD-1 promotes effector T cell function in
immunosuppressive environments [19,21].

There are also a number of co-receptors that have differential modulatory properties. For example,
CD5, a lymphocyte glycoprotein expressed on thymocytes and all mature T cells, has contradictory
roles at different time points. CD5 expression is set during thymocyte development and decreases
the perceived strength of TCR-pMHC signaling in naïve T cells by clustering at the TCR-pMHC
complex and reducing TCR downstream signals such as the Ca2+ response when its cytoplasmic
pseudo-ITAM domain is phosphorylated [22–25]. The CD5 cytoplasmic domain has four tyrosine
residues (Y378, Y429, Y411, and Y463), and residues Y429 and Y441 are found in a YSQP-(x8)-YPAL
pseudo ITAM motif while other tyrosine residues make up a pseudo-ITIM domain [23]. Phosphorylated
tyrosines recruit several effector molecules and may sequester activation kinases away from the
TCR complex, effectively reducing activation signaling strength [23]. Recruited proteins include Src
homology-2 protein phosphatase-1 (SHP-1), Ras GTPase protein (rasGAP), CBL, casein kinase II
(CK2), zeta-chain-associated protein kinase 70 (ZAP70), and PI3K which are involved in regulating
both positive and negative TCR-induced responses [26–28]. For example, ZAP-70 phosphorylates
other substrates and eventually recruits effector molecules such as PLC gamma and promotes
Ca2+ signaling and Ras activation which stimulates the ERK pathway and leads to cellular
activation [13,29]. Conversely, SHP1 inhibits Ca2+ signaling and PKC activation via decreased tyrosine
phosphorylation of PLCγ [13,26,30,31]. Further, Y463 serves as a docking site for c-Cb1, a ubiquitin
ligase, which is phosphorylated upon CD3–CD5 ligation and leads to increased ubiquitylation and
lysosomal/proteasomal degradation of TCR downstream signaling effectors and CD5 itself [32].
Thus, CD5 has a mix of downstream effects that both promote and inhibit T cell activation. Curiously,
recent work suggests that in contrast to its initial inhibitory nature, CD5 also co-stimulates resting and
mature T cells by augmenting CD3-mediated signaling [25,33–35].

Ca2+ is an important second messenger in many cells types, including lymphocytes, and plays
a key role in shaping immune responses. In naïve T cells, intracellular Ca2+ is maintained at low
levels, but when TCR-pMHC complexes are formed, inositol triphosphate (IP3) initiates Ca2+ release
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from intracellular stores of the endoplasmic reticulum (ER) which opens the Ca2+ release-activated
Ca2+ channels (CRAC) and initiates influx of extracellular Ca2+ through store-operated Ca2+ entry
(SOCE) [36–41]. The resulting elevation of intracellular Ca2+ levels activates transcription factors
involved in T cell proliferation, differentiation, and cytokine production (e.g., nuclear factor of
activated cells (NFAT)) [36,37]. Thus, impaired Ca2+ mobilization affects T cell development, activation,
differentiation, and function [42,43]. Examples of diseases with impaired Ca2+ signaling in T cells
include systemic lupus erythematosus, type 1 diabetes mellitus, and others [44,45].

In this review, we will focus on CD5 co-receptor signaling and its functional effects on T cell
activation. First, we will discuss how the inhibitory co-receptors CTLA-4 and PD-1 modulate T cell
function. Then we will compare CTLA-4 and PD-1 function to CD5 function, examine recent findings
that expand our understanding of the role of CD5, and assess how these findings apply to T cell
Ca2+ signaling. Finally, we will consider CD5 Ca2+ signaling regulation in T cells and its potential
physiological impact on immunometabolism, cell differentiation, homeostasis, and behavior.

2. Roles of Negative Regulatory T Cell Co-Receptors

2.1. Cytotoxic T-Lymphocyte Antigen-4 (CTLA-4)

Cytotoxic T-lymphocyte antigen-4 (CTLA-4, CD152) inhibits early stages of T cell activation by
recruiting inhibitory proteins such as SHP-2 and type II serine/threonine phosphatase PP2A that
interfere with T cell synapse signaling [21,46–48]. CTLA-4 binds B7, a protein on activated APCs,
with higher affinity than the stimulatory co-receptor CD28; the resulting balance between inhibitory and
stimulatory signals controls T cell activation or anergy [19,49]. In naïve T cells, CTLA-4 is located in
intracellular vesicles which localize at TCR binding sites following antigen recognition and intracellular
Ca2+ mobilization [19,50]. Like CD28, CTLA-4 aggregates to the central supramolecular activation complex
(cSMAC) where it then extrinsically controls activation by decreasing immunological synapse contact
time [51–53]. This suppresses proactivation signals by activating ligands (B7-1 and B7-2) and induces
the enzyme Inoleamine 2,3-dioxygenase (IDO) which impairs Ca2+ mobilization and suppresses T cell
activation, ultimately altering IL-2 production and other effector functions in T cells [51,54,55]. CTLA-4
also stimulates production of regulatory cytokines, such as transforming growth factor beta (TGF-β),
which inhibit APC presentation and T cell effector function [47,52,53]. Compared to effector T cells (Teff),
CTLA-4 is highly expressed in regulatory T cells (Treg) and plays a role in maintaining Treg homeostasis,
proliferation, and immune responses [16,56,57]. Total or partial CTLA-4 deficiency inhibits Treg’s ability
to control cytokine production and can cause immune dysregulation [58–61]. Thus, CTLA-4 has an
important role in the Treg suppressive response [60]. Additionally, CTLA-4 mutations are associated with
autoimmune diseases as thoroughly reviewed by Kristiansen et al. [62].

The loss of CTLA-4 results in removal of CTLA-4 competition with CD28 for B7-1 and B7-2 and
is implicated in autoimmunity and cancer [15,63]. Because CTLA-4 inhibits TCR signaling, CTLA-4
deficiency leads to T cell overactivation as measured by increased CD3ζ phosphorylation and Ca2+

mobilization [64]. Thus, modulating CTLA-4 signaling is an attractive target for immunotherapies
that seek to boost or impair early TCR signaling for cancer and autoinflammatory diseases [65,66].
For example, Ipilimunab, an IgG1 antibody-based melanoma treatment, is a T cell potentiator that
blocks CTLA-4 to stimulate T cell proliferation and stem malignant disease progression by delaying
tumor progression and has been shown to significantly increase life expectancy [19,67,68]. Additionally,
Tremelimumab, a noncomplement fixing IgG2 antibody, has been tested alone or in combination with
other antibodies such as Durvalumab (a PD-1 inhibitor) and improves antitumor activity in patients
with non-small cell lung cancer (NSCLC), melanoma, colon cancer, gastric cancer, and mesothelioma
treatment [69–74].

2.2. Programmed Death 1 (PD-1)

Programmed cell death protein-1 (PD-1, CD279) is a 288-amino acid (50–55 KDa) type I
transmembrane protein and a member of the B7/CD28 immunoglobulin superfamily expressed
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on activated T cells, B cells, and myeloid cells [19,75,76]. PD-1 has two known ligands, PD-L1 and
PD-L2, which inhibit T cell activation signals [77]. Like CTLA-4, PD-1 also inhibits T cell proliferation
and cytokine production (INF-γ, TNF and IL-2) but is expressed at a later phase of T cell activation [19].
PD-1 has an extracellular single immunoglobulin (Ig) superfamily domain and a cytoplasmic domain
containing an ITIM and an immunoreceptor tyrosine-based switch motif (ITSM) subunit critical
for PD-1 inhibitory function [78]. Upon T cell activation, PD-1 is upregulated and initiates ITIM
and ITSM tyrosine interaction with SHP-2 which mediates TCR signaling inhibition by decreasing
ERK phosphorylation and intracellular Ca2+ mobilization [79,80]. PD-1 can block the activation
signaling pathways PI3K-Akt and Ras-Mek-ERK, which inhibit or regulate T cell activation [79,81].
Thus, engagement of PD-1 by its ligand affects intracellular Ca2+ mobilization, IL-2 and TNF-α
production, supporting PD-1’s inhibitory role in TCR strength-mediated signals [82].

PD-1 signaling also affects regulatory T cell (Treg) homeostasis, expansion, and function [83].
Treg activation and proliferation are impacted by PD-1 expression which enhances their development
and function while inhibiting T effector cells [75,84]. PD-1, PD-L, and Tregs help terminate immune
responses [85]. Thus, PD-1 deficiency results not only in increased T cell activation, but in the
breakdown of tolerance and the development of autoimmunity in diseases such as multiple sclerosis
and systemic lupus erythematosus [85–89]. PD-1 and its ligands protect tissues from autoimmune
attacks by regulating T cell activation and inducing and maintaining peripheral tolerance [90,91].
Studies done in PD-1-deficient mice observed the development of lupus-like glomerulonephritis
and arthritis, cardiomyopathy, autoimmune hydronephrosis, and Type I diabetes, among other
ailments [92–94]. PD-1 protects against autoimmunity and promotes Treg function. [85]. Enhancing
Treg response with a PD-L1 agonist shows therapeutic potential for asthma and other autoimmune
disorders [85,95]. Because PD-1 specifically modulates lymphocyte function, effective FDA-approved
monoclonal antibodies targeting PD-1 are clinically available (i.e., Pembrolizumab and Nivolumab) to
treat advanced malignancies [20]. Not only does blocking PD-1 decrease immunotolerance of tumor
cells, it also increases cytotoxic T lymphocyte antitumor activity [20].

3. CD5: A Contradictory Co-Receptor

3.1. Overview of CD5 Signaling and Ca2+ Mobilization in T Cells

CD5, known as Ly-1 antigen in mice or as Leu-1 in humans, is a type I transmembrane glycoprotein
(67 kDa) expressed on the surface of thymocytes, mature T cells, and a subset of B cells (B-1a) [96,97].
Although CD5 was discovered over 30 years ago, it was only in the last decade that CD5 gained
attention as a key T cell activation regulator [98,99]. CD5 expression is set in the thymus during positive
selection and correlates with how tightly the thymocyte TCR binds to self-peptide-MHC (self-pMHC);
greater TCR affinity for self-peptide leads to increased CD5 expression in double positive (DP)
thymocytes [100]. In other words, DP thymocytes that receive strong activation signals through their
TCR express more CD5 than those DP thymocytes that receive weak TCR signals [100]. CD5 knockout
mice (CD5−/−) have a defective negative and positive selection process, and therefore their thymocytes
are hyper-responsive to TCR stimulation with increased Ca2+ mobilization, proliferation, and cytokine
production [23,98]. On the other hand, because of the increased TCR avidity for self-pMHC, mature T
cells with high CD5 expression (CD5hi) (peripheral or postpositive selection T cells) respond to foreign
peptide with increased survival and activation compared to mature T cells with low CD5 expression
(CD5lo) [34,101]. Therefore, CD5 is a negative regulator of TCR signaling in the thymus and modulates
mature T cell response in the periphery [23,34,100,102].

While CTLA-4 and PD-1 belong to the immunoglobulin (Ig) family, CD5 belongs to group B
of the scavenger receptor cysteine-rich (SRCR) superfamily and contains three extracellular SRCR
domains [30,96,103]. The cytoplasmic tail of CD5 contains several tyrosine residues which mediate the
negative regulatory activity independent of extracellular engagement [100,104,105]. As CD5 physically
associates with TCRζ/CD3 complex upon TCR and pMHC interaction, the tyrosine residues in both
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TCRζ and CD5 are phosphorylated by tyrosine kinases associated with the complex [30,106–110].
This interaction is so intrinsic to T cell signaling that CD5 expression levels are proportional to the
degree of TCRζ phosphorylation, IL-2 production capacity, and ERK phosphorylation which are
critical for CD3-mediated signaling [33,111]. It is unknown whether posttranslational modifications,
such as conserved domain 1 and domain 2 glycosylations, impact CD5 signaling [112,113]. CD5 is
present in membrane lipids rafts of mature T cells where, upon activation, it helps augment TCR
signaling, increases Ca2+ mobilization, and upregulates ZAP-70/LAT (linker for activation of T cells)
activation [114–116]. This suggests that CD5 is not only a negative regulator in thymocytes, but also
appears to positively influence T cell immune response to foreign antigens [117,118]. See Figure 1.
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Figure 1. Effects of CD5 on different stages of T cell development. CD5 expression on thymocytes is
directly proportional to the signaling intensity of the TCR:self-pMHC interaction. In the periphery,
T cells with higher CD5 levels (CD5hi) are better responders to foreign-peptide. Long-lived memory
cells populations are enriched for CD5hi T cells [34,102,119].

CD5 has three known ligands: CD72, a glycoprotein expressed by B cells, CD5 ligand or CD5L,
an activation antigen expressed on splenocytes, and CD5 itself [120–122]. Crosslinking CD5L to
CD5 increases intracellular Ca2+ concentrations [30,120,121,123,124]. Early studies with anti-CD5
monoclonal antibodies also demonstrated enhanced Ca2+ mobilization and proliferation, suggesting
that CD5 co-stimulates and increases the T cell activation signal [125,126]. Following TCR:pMHC
interaction, CD5 cytoplasmic ITAM and ITIM like-domains are phosphorylated by p56lck and bound
by Src homology 2 (SH2) domain-containing protein tyrosine phosphatase (SHP-1) [108,127,128].
However, while SHP-1 affects Ca2+ mobilization and is a purported down-regulator of thymocyte
activation, recent findings suggest that SHP-1 is not necessary for CD5 signaling as T cells deficient in
SHP-1 have normal CD5 expression and continue to signal normally [26,129]. Thus, while CD5 is not a
SHP-1 substrate and SHP-1 is likely unnecessary for CD5 signaling, CD5 signaling results in increased
Ca2+ mobilization. It has yet to be resolved how CD5 can act as an inhibiting co-receptor in the thymus
and as an activating co-receptor in the periphery.

3.2. CD5 as a Ca2+ Signaling Modulator

As previously mentioned, CD5 expression levels are set in the thymus during T cell development
and are maintained on peripheral lymphocytes [117]. CD5 expression in T cells plays an important
role during development and primes naïve T cells for responsiveness in the periphery [35,111,130].
CD5hi T cells have the highest affinity for self-peptides and respond with increased cytokine production
and proliferation to infection [101,131,132].

Our laboratory works with two TCR transgenic mouse lines with different levels of CD5
expression: LLO56 (CD5hi) and LLO118 (CD5lo) [111,117,130]. While LLO56 (CD5hi) and LLO118
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(CD5lo) have similar affinity for the same immunodominant epitope (listeriolysin O amino acids
190–205 or LLO190–205) from Listeria monocytogenes, on day 7 of primary response, LLO118 (CD5lo) has
approximately three times the number of responding cells compared to LLO56 (CD5hi), and conversely,
on day 4 during secondary infection, LLO56 (CD5hi) has approximately fifteen times more cells than
LLO118 (CD5lo) [130]. This difference is not due to differential proliferative capacity, rather LLO56
(CD5hi) has higher levels of apoptosis during the primary response [130]. Thus, LLO56 CD5hi and
LLO118 CD5lo’s capacity to respond to infection appears to be regulated by their CD5 expression
levels [117]. LLO56 (CD5hi) thymocytes have greater affinity for self-peptide, which primes them to be
highly apoptotic [130].

Recently we reported that in response to foreign peptide, LLO56 (CD5hi) naïve T cells have higher
intracellular Ca2+ mobilization than LLO118 (CD5lo), which correlates with increased rate of apoptosis
of LLO56 (CD5hi), as Ca2+ overloaded mitochondria release cytochrome c which activates caspase and
nuclease enzymes, thus initiating the apoptotic pathways [35,133,134]. LLO56 (CD5hi) naïve T cell
increased Ca2+ mobilization also provides additional support to the idea that CD5hi T cells have an
enhanced response to foreign peptide [35,134]. This supports previous research that found that upon
T cell activation, increased CD5 expression is correlated with greater basal TCRζ phosphorylation,
increased ERK phosphorylation, and more IL-2 production [101,111].

Thus, unlike CTLA-4 and PD-1 which are expressed only on activated T cells in the periphery
during early and late phases of immune response, respectively, CD5 is set during T cell development,
and influences T cells both during thymic development and during postthymic immune responses [19,
101,111] (see Figure 2). CD5 not only has an important inhibitory role in the thymus, but also appears to
positively influence the T cell population response; for example, more CD5hi T cells populate the memory
T cell repertoire because CD5hi naïve T cells have a stronger primary response [34,135]. CD5 finetunes the
sensitivity of TCR signaling to pMHC, altering intracellular Ca2+ mobilization and NFAT transcription,
key players in T cell effector function [19,64,126]. As Ca2+ signaling plays a key role in T cell activation
and function, controlling Ca2+ mobilization in T cells through CD5 expression could influence diverse
areas of clinical research including metabolism, cancer treatments, and even cognitive behavior.
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Figure 2. Inhibiting co-receptors modulate T cell activation by increasing (green arrows) or decreasing
activity (red arrows). CD5 is present in naïve T cells and localizes to the TCR:pMHC complex during
activation. Initial activation cascades signal for the release of CTLA-4 from vesicles to the cell surface
while the transcription factor NFAT transcribes PD-1. CTLA-4 provides inhibitory signals during early
activation while PD-1 is expressed later and inhibits later stages of T cell activation. The initial Ca2+

mobilization is decreased by CTLA-4 and PD-1 downstream signals. A more detailed illustration of the
calcium signaling pathway (i.e., IP3, STIM 1/2, CRAC channel, calmodulin, etc.) is outlined in Figure 3.
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4. Physiological Impact of CD5 Expression in T Cells

4.1. Metabolism

Naive T cells are in a quiescent state and rely on oxidative phosphorylation (OXPHOS) to generate
ATP for survival [136,137]. Upon TCR-pMHC interaction, T cells undergo metabolic reprograming
to meet energetic demands by switching from OXPHOS to glycolysis [138]. Glycolysis is a rapid
source of ATP and regulates posttranscriptional production of INF-γ, a critical effector cytokine [139].
Following the immune response, most effector T cells undergo apoptosis while a subset become
quiescent memory T cells. Memory T cells have lower energetic requirements and rely on OXPHOS
and Fatty Acid Oxidation (FAO) to enhance mitochondrial capacity for maintenance and survival [140].

Ca2+ signaling is a key second messenger in T cell activation and Ca2+ ions also modulate T
cell metabolism through CRAC channel activity and NFAT activation [3,141]. During TCR-pMHC
binding Ca2+ is released from the endoplasmic reticulum (ER) where it is absorbed by the mitochondria
and initiates an influx of extracellular Ca2+ [3]. First, the rise of cytoplasmic Ca2+ activates stromal
interaction molecule 1 (STIM1) located on the ER membrane to interact with the CRAC channel
located on the cell membrane [142]. The release of the ER store and resulting extracellular Ca2+ influx
increases the intracellular Ca2+ concentration and promotes AMPK (adenosine monophosphates
activated protein kinase) expression and CaMKK (calmodulin-dependent protein kinase kinase)
activity [3,142,143]. AMPK senses cellular energy levels through the ratio of AMP to ATP and generates
ATP by inhibiting ATP-dependent pathways and stimulating catabolic pathways [144]. This indirectly
controls T cell fate as AMPK indirectly inhibits mTOR (mammalian target of rapamycin complex) [145].
Because mTOR coordinates the metabolic cues that control T cell homeostasis, it plays a critical role
in T cell fate [146]. T cells that are TSC1 (Tuberous sclerosis complex 1)-deficient show metabolic
alterations through increased glucose uptake and glycolytic flux [147].

The rise of cytoplasmic Ca2+ also encourages mitochondria to uptake cytoplasmic Ca2+ through the
mitochondrial Ca2+ uniporter (MCU) [148]. This MCU uptake increases Ca2+ influx by depleting Ca2+

near the ER which further activates the CRAC channels and promotes STIM1 oligomerization [3,149–151].
Ca2+ uptake in the mitochondria also enhances the function of the tricarboxylic acid cycle (TAC),
which generates more ATP through OXPHOS [152,153]. OXPHOS is maintained by a glycolysis product,
phosphoenolpyruvate (PEP), which sustains TCR-mediated Ca2+-NFAT signaling by inhibiting the
sarcoendoplasmic reticulum (SR) calcium transport ATPase (SERCA) pump, thus promoting T cell
effector function [154,155]. Downregulation of calmodulin kinase, CaMKK2, which controls NFAT
signaling, decreases glycolytic flux, glucose uptake, and lactate and citrate metabolic processes [156].
Ca2+ may also orchestrate the metabolic reprogramming of naïve T cells by promoting glycolysis and
OXPHOS through the SOCE/calcineurin pathway which controls the expression of glucose transporters
GLUT1/GLUT3 and transcriptional co-regulator proteins important for the expression of electron
transport chain complexes required for mitochondria respiration [141].

Co-receptor stimulation plays a pivotal role in T cell metabolism and function. A decrease in T
cell Ca2+ signaling represses glycolysis and affects T cell effector function [152]. PD-1 and CTLA-4
depress Ca2+ signaling and glycolysis while promoting FAO and antibodies against CTLA-4 and PD-1
increase Ca2+ mobilization and glycolysis during T cell activation [157,158]. Like CTLA-4 and PD-1,
CD5 modulatory function has the potential to influence T cell metabolism. Analysis of gene families
modulated by CD5 in B cells found that CD5 upregulates metabolic-related genes including VEFG,
Wnt signaling pathways genes, MAPK cascade genes, I-kB/NF-kB cascade genes, TGF β signaling
genes, and adipogenesis process genes [159]. Therefore, proliferation differences correlated with CD5
expression in T cells may be caused by improved metabolic function as CD5lo T cells seem to be more
quiescent than CD5hi T cells [160]. Although not much is known about how CD5 alters metabolic
function in T cells, signaling strength differences of CD5hi and CD5lo T cell populations correlate with
intracellular Ca2+ mobilization during activation and influence their immune response [35,111,130].
This implies that different metabolic processes may be initiated which would influence proliferation,
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memory cell generation, and cytokine production. Figure 3 summarizes how Ca2+ may be mobilized
in CD5hi and CD5lo naïve T cells and the role Ca2+ may play on metabolism.

Int. J. Mol. Sci. 2018, 19, x FOR PEER REVIEW  8 of 20 

 

expression in T cells may be caused by improved metabolic function as CD5lo T cells seem to be more 
quiescent than CD5hi T cells [160]. Although not much is known about how CD5 alters metabolic 
function in T cells, signaling strength differences of CD5hi and CD5lo T cell populations correlate with 
intracellular Ca2+ mobilization during activation and influence their immune response [35,111,130]. 
This implies that different metabolic processes may be initiated which would influence proliferation, 
memory cell generation, and cytokine production. Figure 3 summarizes how Ca2+ may be mobilized 
in CD5hi and CD5lo naïve T cells and the role Ca2+ may play on metabolism. 

 
Figure 3. CD5 expression levels in naïve T cells may influence T cell metabolism and function. 
Differential levels of CD5 result in differences in Ca2+ mobilization in naïve T cells. CD5hi naïve T cells 
have higher Ca2+ influx than CD5lo naïve T cells upon TCR:pMHC interaction [35]. Ca2+ signaling plays 
a significant role in T cell activation and influences metabolism and T cell function. Differential Ca2+ 
mobilization and expression of calcineurin and NFAT affect glycolysis and mitochondrial respiration 
(hypothetical levels of metabolic activation are shown with dashed (low) or solid (high) arrows), 
suggesting CD5 expression may affect metabolic reprograming during T cell activation [141]. 

4.2. Neuroimmunology 

The field of neuroimmunology examines the interplay between the immune system and the 
central nervous system (CNS) [161]. The adaptive immune system does influence the CNS as 
cognition is impaired by the absence of mature T cells [162]. In wild type mice, there is an increase in 
the number of T cells present in the meninges during the learning process, in stark contrast to mice 
with T helper 2 cytokine deficiencies (such as IL-4 and IL-13) who have decreased T cell recruitment 
and impaired learning [163]. Furthermore, regulation of T cell activation and cytokine production 
critically assists neuronal function and behavior, suggesting that manipulation of T cells could be a 
potential therapeutic target in treating neuroimmunological diseases [164,165].  

T cells go through several microenvironments before reaching the CNS [166]. Many of the signal 
interactions present in these microenvironments affect T cell function and involve changes in 
intracellular Ca2+ levels [166,167]. In experimental autoimmune encephalitis (EAE), a model for 
human multiple sclerosis, autoreactive T cells have Ca2+ fluctuations throughout their journey to the 
CNS [166]. Prior to reaching the CNS, T cells interact with splenic stroma cells that do not display the 
cognate auto-antigen and this interaction produces short-lived low Ca2+ mobilization spikes [166]. 
Following entrance into the CNS, T cells encounter autoantigen-presenting cells and have sustained 
Ca2+ mobilization which results in NFAT translocation and T cell activation [166,168]. EAE mice 
display reduced social interaction and cognition demonstrating that autoimmune response impairs 
neuronal function and organismal behavior [169]. 

Inhibitory T cell co-receptors are implicated in CNS dysregulation and disease. Varicella zoster 
virus (VZV) infection is characterized by lifelong persistence in neurons. VZV increases the 
expression of CTLA-4 and PD-1 in infected T cells which reduces IL-2 production and increases T cell 

Figure 3. CD5 expression levels in naïve T cells may influence T cell metabolism and function.
Differential levels of CD5 result in differences in Ca2+ mobilization in naïve T cells. CD5hi naïve T cells
have higher Ca2+ influx than CD5lo naïve T cells upon TCR:pMHC interaction [35]. Ca2+ signaling plays
a significant role in T cell activation and influences metabolism and T cell function. Differential Ca2+

mobilization and expression of calcineurin and NFAT affect glycolysis and mitochondrial respiration
(hypothetical levels of metabolic activation are shown with dashed (low) or solid (high) arrows),
suggesting CD5 expression may affect metabolic reprograming during T cell activation [141].

4.2. Neuroimmunology

The field of neuroimmunology examines the interplay between the immune system and the
central nervous system (CNS) [161]. The adaptive immune system does influence the CNS as cognition
is impaired by the absence of mature T cells [162]. In wild type mice, there is an increase in the
number of T cells present in the meninges during the learning process, in stark contrast to mice with
T helper 2 cytokine deficiencies (such as IL-4 and IL-13) who have decreased T cell recruitment and
impaired learning [163]. Furthermore, regulation of T cell activation and cytokine production critically
assists neuronal function and behavior, suggesting that manipulation of T cells could be a potential
therapeutic target in treating neuroimmunological diseases [164,165].

T cells go through several microenvironments before reaching the CNS [166]. Many of the
signal interactions present in these microenvironments affect T cell function and involve changes
in intracellular Ca2+ levels [166,167]. In experimental autoimmune encephalitis (EAE), a model for
human multiple sclerosis, autoreactive T cells have Ca2+ fluctuations throughout their journey to the
CNS [166]. Prior to reaching the CNS, T cells interact with splenic stroma cells that do not display
the cognate auto-antigen and this interaction produces short-lived low Ca2+ mobilization spikes [166].
Following entrance into the CNS, T cells encounter autoantigen-presenting cells and have sustained
Ca2+ mobilization which results in NFAT translocation and T cell activation [166,168]. EAE mice
display reduced social interaction and cognition demonstrating that autoimmune response impairs
neuronal function and organismal behavior [169].

Inhibitory T cell co-receptors are implicated in CNS dysregulation and disease. Varicella
zoster virus (VZV) infection is characterized by lifelong persistence in neurons. VZV increases the
expression of CTLA-4 and PD-1 in infected T cells which reduces IL-2 production and increases T cell
anergy [170,171]. PD-1-deficient mice (Pdcd1−/−) have increased T cell activation, leading to greater
intracellular Ca2+ mobilization, and as previously discussed, increased glycolysis [86]. PD-1 deficiency
causes elevated concentration of aromatic amino acids in the serum, specifically tryptophan and
tyrosine, which decreases their availability in the brain where they are important for the synthesis of
neurotransmitters such as dopamine and serotonin; consequently, there is an increase in anxiety-like
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behavior and fear in Pdcd1−/− mice [86]. Therefore, increased T cell activation caused by PD-1
deficiency can affect brain function and thus, affects cognitive behavior [86].

4.3. Cancer

T cells are critical components of the immune response to cancer. Helper T cells directly activate
killer T cells to eradicate tumors and are essential in generating a strong antitumor response alone
or in concert with killer T cells by promoting killer T cell activation, infiltration, persistence, and
memory formation [172–177]. Tumor-specific T cells may not mount a robust response towards
cancerous cells because the tumor microenvironment has numerous immunosuppressive factors;
cancerous cells also downregulate cell surface co-stimulatory and MHC proteins which suppresses
T cell activation [178–182]. Potent antitumor immune checkpoint blockade therapies using CTLA-4
and PD-1 monoclonal antibodies augment T cell response by suppressing the co-receptors’ inhibitory
signals, thereby promoting increased Ca2+ mobilization, glycolysis, and activation [183,184]. CTLA-4
monoclonal antibodies such as ipilimumab (Yervoy) and tremelimumab block B7-interaction and
have been used to treat melanoma [47,185,186]. The monoclonal antibody pembrolizumab is highly
selective for PD-1 and prevents PD-1 from engaging PD-L1 and PD-L2, thus enhancing T cell immune
response [19,187,188]. Further research will address whether combining anti-CTLA-4 and anti-PD-1
antibodies will improve cancer treatments [19].

As previously mentioned, Ca2+ is critical for T cell activation and immune response. Manipulating
Ca2+ signaling to enhance T cell-directed immune response against cancer is an intriguing notion,
yet the means to target the Ca2+ response of specific cells without tampering with the metabolic
processes of other cells remains elusive [189]. Antitumor activity of tumor-infiltrating lymphocytes
(TIL) is inversely related to CD5 expression [99]. CD5 levels in naïve T cells are constantly tuned
in the periphery by interactions with self pMHC complexes to maintain homeostasis; therefore,
CD5 expression on TILs can be downregulated in response to low affinity for cancer antigens [190–192].
Thus, the majority of TILs are CD5lo which increase their reactivity while CD5hi TILs do not
elicit a Ca2+ response and become anergic and are unable to eliminate malignant cells [99,192].
While downregulation of CD5 on TILs enhances antitumor T cell activity, CD5lo T cells are also
more likely to experience activation-induced cell death (AICD) as CD5 protects T cells from
overstimulation [23]. To maximize TIL effectiveness, the inhibitory effects of CD5 could be blocked
by neutralizing monoclonal antibodies or soluble CD5-Fc molecules combined with soluble FAS-Fc
molecules to reduce the inherent AICD [23,193,194]. Soluble human CD5 (shCD5) may have a similar
effect but avoids targeting issues by blocking CD5-mediated interaction via a “decoy receptor” effect.
Mice constitutively expressing shCD5 had reduced melanoma and thyoma tumor cell growth and
increased numbers of CD4+ and CD8+ T cells [195]. Wild type mice treated with an injection of
recombinant shCD5 also had reduced tumor growth [195]. Finally, CD5-deficient mice engrafted with
B16-F10 melanoma cells had slower tumor growth compared to wild type C57BL/6 mice [196]. This
evidence suggests that CD5, along with PD-1 and CTLA-4, may be a potential target to specifically
modulate T cell Ca2+ mobilization in an immunosuppressive tumor setting.

4.4. Microbiome

The gut microbiome, including the bacteria and their products, forms a dynamic beneficial
symbiosis with the immune system influencing host genes and cellular response. The gut microbiome
shapes and directs immune responses while the immune system dictates the bacterial composition of
the gut microbiome [197]. As the gut is the major symbiotic system intersecting the immune system
and microbiota, understanding their connection has implications for immune system development
and function as the gut microbiome is involved in protecting against pathogens, influencing states of
inflammation, and even affecting cancer patient outcomes [198,199].

The gut microbiome primes immune responses [200]. Alteration in the microbial composition can
induce changes in T cell function in infectious disease, autoimmunity, and cancer [201]. For example,



Int. J. Mol. Sci. 2018, 19, 1295 10 of 21

mice treated with antibiotics which restrict or reduce the microbial environment exhibit impaired
immune response because their T cells have altered TCR signaling and compromised intracellular
Ca2+ mobilization in infectious disease and cystic fibrosis models [202–204]. In contrast, administering
oral antibiotics to mice with EAE increases the frequency of CD5+ B cell subpopulations in distal
lymphoid sites and confers disease protection [205]. In cancer, the microbiome also influences patient
response to immune checkpoint inhibitors such as CTLA-4 and PD-1 [206,207]. Mice and melanoma
patients immunized or populated with Bacteriodes fragilis respond better to treatment with Ipilimumab,
a monoclonal antibody against CTLA-4 [198]. Similarly, tumor-specific immunity improved when
anti-PD-1/PD-L1 monoclonal antibodies where used in the presence of Bifidobacterium [208].

Though little is known about how CD5 influences T cell interaction with the microbiome,
some tantalizing details are available. As specific bacterium promotes cancer regression during
CTLA-4 and PD-1 checkpoint blockades, a CD5 blockade in conjunction with bacterial selection may
also improve immune response. Such studies would lead to novel immunotherapeutic treatments for
cancer and autoimmune diseases.

5. Conclusions

CD5, widely known as an inhibitory co-receptor in the thymus, appears to modulate the signaling
intensity of peripheral T cells by increasing Ca2+ signaling activity and efficacy of CD5hi T cells.
CD5 expression levels in the periphery correlates with intracellular Ca2+ mobilization, suggesting
that CD5 promotes peripheral T cell activation and immune response. As such, CD5 may be a novel
checkpoint therapy to regulate T cell activation and metabolism through altering Ca2+ mobilization,
and could be used to affect neurological behavior, alter microbiome interactions, and treat cancer
and autoinflammatory diseases. While this paper focuses on the role of co-receptor CD5 effects on
calcium signaling and activation of T cells, CD5 itself may be regulated through posttranslational
modifications, such as N-glycosylation, which may affect Ca2+ mobilization, T cell metabolism,
activation, and function. In the future it would be interesting to determine the role of other
posttranslational modifications (e.g., N-glycosylation, S-glutathionylation, lipidation) in CD5 signaling.
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Abbreviations

CTLA-4 Cytotoxic T-lymphocyte antigen 4
CD Cluster of differenciation
PD-1 Programmed cell death protein 1
AMP Adenosine monophosphate
ATP Adenosine triphosphate
CaMKK Calmodulin-dependent protein kinase kinase
AMPK AMP-activated protein kinase
SOCE Store-operated calcium channels
CRAC Calcium+-release-activated channel
STIM Stromal interaction molecule
SERCA Sarcoendoplasmic reticulum calcium transport ATPase
ER Endoplasmic reticulum
NFAT Nuclear factor of activated T cells
INF-γ Interferon gamma
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Abbreviations

TNF Tumor necrosis factor
IL-2 Interleukin 2
GLUT1 Glucose transporter 1
GLUT3 Glucose transporter 3
TIL Tumor infiltrating lymphocytes
ERK Extracellular signal-regulated kinases
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the nuclear variant of bone 
morphogenetic protein 2 (nBMP2) 
is expressed in macrophages and 
alters calcium response
Claudia M. tellez Freitas  1, Haley R. Burrell1, Jonard C. Valdoz  2, Garrett J. Hamblin1, 
Carlee M. Raymond1, Tyler D. Cox1, Deborah K. Johnson  1, Joshua L. Andersen2, 
K. Scott Weber  1 & Laura C. Bridgewater  1

We previously identified a nuclear variant of bone morphogenetic protein 2 (BMP2), named nBMP2, 
that is translated from an alternative start codon. Decreased nuclear localization of nBMP2 in the 
nBmp2NLStm mouse model leads to muscular, neurological, and immune phenotypes—all of which are 
consistent with aberrant intracellular calcium (Ca2+) response. Ca2+ response in these mice, however, 
has yet to be measured directly. Because a prior study suggested impairment of macrophage function 
in nBmp2NLStm mutant mice, bone marrow derived (BMD) macrophages and splenic macrophages 
were isolated from wild type and nBmp2NLStm mutant mice. Immunocytochemistry revealed that 
nuclei of both BMD and splenic macrophages from wild type mice contain nBMP2, while the protein 
is decreased in nuclei of nBmp2NLStm mutant macrophages. Live-cell Ca2+ imaging and engulfment 
assays revealed that Ca2+ response and phagocytosis in response to bacterial supernatant are similar in 
BMD macrophages isolated from naïve (uninfected) nBmp2NLStm mutant mice and wild type mice, but 
are deficient in splenic macrophages isolated from mutant mice after secondary systemic infection with 
Staphylococcus aureus, suggesting progressive impairment as macrophages respond to infection. This 
direct evidence of impaired Ca2+ handling in nBMP2 mutant macrophages supports the hypothesis that 
nBMP2 plays a role in Ca2+ response.

Our group has reported the existence of a nuclear variant of the growth factor bone morphogenetic protein 2 
(BMP2), designated nBMP21. This variant protein is produced by translation from an alternative downstream 
start codon that eliminates the N-terminal endoplasmic reticulum signal peptide, thus preventing the protein’s 
delivery to the secretory pathway. Instead, nBMP2 is translated in the cytoplasm and translocated to the nucleus 
by means of an embedded bipartite nuclear localization signal (NLS)1. Using immunohistochemistry, we have 
detected nBMP2 in skeletal muscle nuclei and in the nuclei of CA1 neurons in the hippocampus2,3.

To examine the function of nBMP2, we generated a mutant mouse strain (nBmp2NLStm) in which a 
three-amino acid substitution in the NLS inhibits translocation of nBMP2 to the nucleus while still allowing 
normal synthesis and secretion of the conventional BMP2 growth factor2. The mice appear overtly normal and are 
fertile. They do, however, lack nBMP2 in myonuclei, and electrophysiological studies revealed that skeletal muscle 
relaxation is significantly slowed after stimulated twitch contraction, a process that is regulated by intracellular 
Ca2+ transport. Consistent with impaired intracellular Ca2+ transport, sarco/endoplasmic reticulum Ca2+ ATPase 
(SERCA) activity is decreased in skeletal muscle2. The mutant mice also lack nBMP2 in CA1 hippocampal neu-
rons, and electrophysiological studies revealed reduced long-term potentiation (LTP) in the hippocampus3. LTP 
is dependent on intracellular Ca2+ transport and is thought to be the cellular equivalent of learning and mem-
ory4–6. Behavioral tests revealed that the nBMP2 mutant mice have impaired object recognition memory3.

Intracellular Ca2+ elevation also regulates the activation and differentiation of several different types of 
immune cells including T cells, B cells, dendritic cells, and macrophages7–10. To see if nBmp2NLStm mutants had 
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compromised immune response, mice were challenged by systemic infection with Staphylococcus aureus. While 
the mutants’ immune response to a primary infection appeared normal, their immune response to a secondary 
infection challenge 30 days later resulted in higher levels of bacteremia, increased mortality, and failure of spleens 
to enlarge normally11. Although we did not observed differences in the total number of macrophages in spleen, 
thymus, or lymph node from wild type compared to mutant mice, we did observe that after the secondary infec-
tion, spleen from nBmp2NLStm mutant mice showed fewer hemosiderin-laden macrophages than spleen from 
wild type mice11. Macrophages in the spleen accumulate hemosiderin by phagocytosing damaged red blood cells 
and hemoglobin, which would be present in the blood stream of S. aureus-challenged mice due to the hemolysins 
that S. aureus expresses12–14. The observation of fewer hemosiderin-laden macrophages in the spleens of mutant 
mice after a secondary infection suggested to us that macrophage phagocytic activity might be impaired in the 
absence of nBMP2, potentially providing us with an accessible cell type in which to directly test our hypothesis 
that intracellular Ca2+ response is disrupted in the absence of nBMP2.

To interrogate if nBMP2 might play a role in Ca2+ response, we isolated macrophages from wild type and 
nBmp2NLStm mutant mice. These macrophages included bone marrow derived (BMD) macrophages from unin-
fected mice, and splenic macrophages from mice that had undergone primary and secondary infections with S. 
aureus15. Live-cell Ca2+ imaging as well as bead engulfment assays were performed to measure intracellular Ca2+ 
response and phagocytic activity. These analyses revealed deficient Ca2+ response and phagocytosis in splenic 
macrophages isolated from mutant mice after secondary systemic infection with S. aureus, but not in BMD mac-
rophages from naïve mice, suggesting that as nBmp2NLStm mutant cells respond to infection over time, Ca2+ 
response is progressively impaired.

Results
The nuclear variant nBMP2 is expressed in BMD and splenic macrophages from wild type mice.  
To determine whether nBMP2 is expressed in macrophages, BMD macrophages and splenic macrophages were 
isolated from naïve (uninfected) wild type and nBmp2NLStm mutant mice and differentiated in vitro, and immu-
nocytochemistry was performed using an anti-BMP2 antibody that binds to both BMP2 and nBMP2. Consistent 
with our prior observation of impaired immune response in nBmp2NLStm mutant mice11, nBMP2 was detected 
in the nuclei of wild type BMD (Fig. 1a) and splenic (Fig. 1b) macrophages. As expected, nBMP2 was signifi-
cantly decreased in macrophage nuclei from nBmp2NLStm mutant mice (Fig. 1a,b, mutant). ImageJ software 
quantification of immunofluorescence images showed that the density of nuclear BMP2 staining was significantly 
more intense in wild type compared to mutant macrophages in both BMD macrophages (p = 0.0005) and splenic 
macrophages (p < 0.0001) (Fig. 2). BMP2 staining was visible throughout the cytoplasm of both wild type and 
mutant macrophages, as expected, given that nBMP2 is synthesized in the cytosol before being translocated to the 
nucleus and that the conventional BMP2 growth factor is synthesized in the rough ER and translocated through 
the Golgi before being secreted from the cell.

BMD macrophages from uninfected nBmp2NLStm mutant mice and wild type mice have similar 
Ca2+ response. Naïve BMD macrophages isolated from femurs and tibias of uninfected mice were differen-
tiated and activated in vitro then plated for live-cell Ca2+ imaging. Plated cells were loaded with Fura-2AM, a 
UV-excitable ratiometric calcium indicator that changes its excitation in response to Ca2+ binding; Fura-2AM 
emits at 380 nm when Ca2+ is not bound, and at 340 nm when Ca2+ binds to the dye. The fluorescence ratio 
(F340/F380), increases as cytosolic Ca2+ levels increase16. At the 2 min time point, supernatant from Escherichia 
coli (ECS) cultures was added to stimulate Ca2+ flux (Fig. 3a)17–19. Following this stimulation, there were no 
observable differences between naïve mutant and wild type BMD macrophages in peak Ca2+ response (Fig. 3b) 
or sustained Ca2+ levels (Fig. 3c).

Splenic macrophages isolated from nBmp2NLStm mutant mice after secondary infection show 
impaired Ca2+ response. In our prior study, immune deficiencies in nBMP2NLStm mice were detectable 
only after the mice received a secondary infection with S. aureus11. Because our current experiments revealed no 
significant differences in Ca2+ response in naïve BMD macrophages from mutant compared to wild type mice, we 
decided to replicate the in vivo conditions of our previous work by examining splenic macrophage harvested from 
mice after a secondary infection with S. aureus, and by using S. aureus supernatant as the stimulus to trigger Ca2+ 
flux11. Although S. aureus is a gram positive bacteria that does not produce LPS, it does produce liphoteichoic 
acid (LTA), which is similarly able to activate macrophages20,21. Thirty-five days after primary systemic S. aureus 
infections, mice were given a second injection of S. aureus, and splenic macrophages were isolated 3 days later.

After one week in vitro maturation, splenic macrophages were loaded with Fura-2AM for live-cell Ca2+ 
imaging experiments. S. aureus supernatant (SAS) was used to stimulate Ca2+ flux at the 2-min time point 
(Fig. 4a). Compared to the lack of a difference in naïve BMD macrophages, it is particularly striking that peak 
Ca2+ response was significantly decreased (p = 0.0335) in mutant splenic macrophages after secondary infection 
(Fig. 4b). Sustained Ca2+ levels as measured by the area under the curve (AUC) from minutes 3–10 was also sig-
nificantly decreased (p = 0.0008) (Fig. 4c).

BMD macrophages from uninfected nBmp2NLStm mutant mice and wild type mice show sim-
ilar phagocytic activity. To test phagocytic activity of naïve BMD macrophages (meaning macrophages 
that were isolated from uninfected mice) from nBmp2NLStm mutant compared to wild type mice, we measured 
fluorescent bead engulfment by CD11b and F4/80 positive cells with flow cytometry (Fig. 5a)22–28. We observed 
no differences in the phagocytic activity of naïve BMD macrophages from nBmp2NLStm mutant compared to wild 
type mice (Fig. 5b–e).
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Splenic macrophages from nBmp2NLStm mutant mice show impaired phagocytic activity. To 
test phagocytic activity in macrophages isolated from mice after secondary infection, splenic macrophages were 
isolated from wild type and nBmp2NLStm mutant mice 3 days after mice received a second systemic infection 
with S. aureus, and fluorescent bead engulfment was measured as described above. While differences between 
wild type and mutant macrophages did not reach significance when subgroups that engulfed 1, 2, or 3 or more 
beads were analyzed individually (Fig. 6a–c), there was a significant reduction in overall mutant phagocytic activ-
ity (p = 0.0176) when the subgroups were pooled (Fig. 6d). These data suggest a possible relationship between the 
decreased Ca2+ response and reduced phagocytosis in nBmp2NLStm mutant splenic macrophages.

Figure 1. BMD macrophages and splenic macrophages express nBMP2, which is decreased in the nuclei of 
nBmp2NLStm mutant macrophages. (a) BMD macrophages and (b) splenic macrophages were stained with 
anti-BMP2 antibody (green) and counterstained with DAPI (blue), demonstrating that nBMP2 is expressed 
and localized to the nucleus in wild type macrophages, and that nuclear translocation of nBMP2 is inhibited 
in mutant macrophages. BMP2 labeling within the cytoplasm is present in both wild type and mutant cells as 
expected, because the targeted mutation allows translation of nBMP2 in the cytoplasm but inhibits nuclear 
translocation, and it allows normal synthesis and secretion of conventional BMP2.
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Figure 2. Quantification of nBMP2 nuclear staining intensity. Five images each were analyzed for wild 
type and mutant BMD macrophages and for mutant splenic macrophages. Four images were analyzed for 
wild type splenic macrophages. Each image contained between 10 and 93 cells, and the number of cells 
analyzed per group ranged from 100 to 337. ImageJ was used to outline DAPI-stained regions and quantify 
BMP2 immunostaining as the sum of pixel intensities within each nucleus. The mean density of BMP2 
immunostaining was then calculated for all nuclei in an image. An unpaired, two-tailed t-test was performed 
to compare nuclear staining between wild type and mutant cells. For BMD wild type vs. mutant macrophages, 
p = 0.0005. For splenic wild type vs mutant macrophages, p < 0.0001.

Figure 3. Naïve bone marrow derived (BMD) macrophages from nBmp2NLStm mutant mice and wild type 
mice have a similar Ca2+ response. Naïve BMD macrophages from wild type (WT) and nBmp2NLStm mutant 
(MT) mice were loaded with Fura-2AM for live-cell Ca2+ imaging. During imaging, cells were stimulated at 
2 min with E. coli supernatant (ECS), then at 10 min with ionomycin as a positive control. (a) Average curves 
showing intracellular Ca2+ response in wild type and nBmp2NLStm mutant BMD macrophages. Fluorescence 
ratios (F340/F380) were measured at 3 sec intervals from 0–12 min (n = 38 cells). Error bars (s.e.m.) are shown 
at one min intervals. (b) Average (±s.e.m.) of peak Ca2+ influx (F340/F380) in wild type and nBmp2NLStm 
mutant BMD macrophages (n = 38 cells). (c) Area under the curve (AUC) of F340/F380 ratios from minutes 3 
to 10 min shows sustained intracellular Ca2+ levels (n = 38 cells). NS, not significant.
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Discussion
The role of BMP2 in macrophages is unknown and remains an area of active research. BMP2 has been reported to 
be constitutively expressed in M1 (inflammatory) macrophages29. Other studies have shown that BMP2 expres-
sion is upregulated as macrophages shift toward the pro-healing/anti-inflammatory M2 phenotype30,31. BMP2 
secretion by macrophages promotes migration of vascular smooth muscle cells, and macrophages in the intestinal 
muscularis secrete BMP2 to signal enteric neurons32,33. Reports of BMP2 expression by hematopoietic cells, in 
particular macrophages, are relevant to this study because nBMP2 can be produced from the same mRNA as 
the conventional secreted BMP2 growth factor—any time BMP2 mRNA or BMP2 growth factor is detected, the 
potential for nBMP2 synthesis exists1. Accordingly, we have demonstrated by immunofluorescence that both 
BMD macrophages and splenic macrophages express the nuclear variant of BMP2, nBMP2, and that nBMP2 is 
decreased in the nuclei of macrophages from nBmp2NLStm mutant mice.

Previously, we demonstrated that deficiency of nBMP2 in the nucleus impairs secondary immune response as 
evidenced by diminished spleen enlargement, poor clearance of S. aureus from the bloodstream, and increased 
mortality after secondary infection11. We have also shown that deficiency of nBMP2 in myonuclei is correlated 
with slowed skeletal muscle relaxation after contraction, and deficiency of nBMP2 in the nuclei of hippocampal 
neurons is correlated with learning/memory deficits2,3. Each of these phenotypes is consistent with deficiencies 
in intracellular Ca2+ transport, but until now, no direct measurements of intracellular Ca2+ have been performed 
in cells from nBmp2NLStm mutant mice. The discovery that macrophages express nBMP2 (Fig. 1) provided an 
accessible cell type in which to directly address the question of whether nBMP2 plays a role in intracellular Ca2+ 
response.

We found that intracellular Ca2+ response was impaired in mutant splenic macrophages after secondary infec-
tion with S. aureus, but not in mutant BMD macrophages isolated from uninfected mice, even though both mac-
rophage types expressed nBMP2. Recent work has revealed that innate immune cells can undergo memory-like 
adaptive responses to increasing pathogen load, and the deficient Ca2+ response in splenic macrophages after sec-
ondary infection might represent a failure of those adaptive responses34,35. Alternatively, it may be that the effects 
of nBMP2 deficiency in the nucleus are simply cumulative, causing a Ca2+-handling phenotype that becomes 
progressively more severe as cells differentiate and mature. A progressive phenotype is consistent with our pre-
viously reported observation that hippocampal long-term potentiation (LTP) was normal in 3-week-old nBmp-
2NLStm mutant mice but deficient in 3-month-old mice3. Progressive impairment of intracellular Ca2+ response 
has received attention recently as a potential mechanism for both brain and muscle aging36–38, suggesting that 
nBMP2 dysfunction could contribute to premature aging or aging-related diseases.

Deficiency of nBMP2 in the nucleus also produced a significant decrease in the total phagocytic activity of 
splenic macrophages from nBmp2NLStm mutant mice, suggesting that mutant cells may be less effective at clear-
ing pathogens from the blood stream. This is consistent with prior studies suggesting that intracellular Ca2+ 
mobilization plays a role in macrophage phagocytic activity. For example, impaired Ca2+ response in mac-
rophages from Trpm4(−/−) mutant mice led to decreased phagocytic activity, resulting in bacterial overgrowth 
and translocation to the bloodstream39. Intracellular Ca2+ levels increase during Fcɣ receptor (FcR)-mediated 
phagocytosis40–42, and the loss of CaMKK2, a calcium-dependent kinase, left macrophages unable to phagocytose 
bacteria or synthesize cytokines in response to bacterial lipopolysaccharide (LPS)43.

Although evidence supports the involvement of Ca2+ response in macrophage phagocytic activity, the scale 
of the decreased phagocytosis by splenic macrophages observed in our study seems insufficient to account for 
the markedly increased mortality of nBmp2NLStm mutant mice after secondary infection3. We cannot rule out 
the possibility that the bead engulfment assay did not fully reflect the severity of phagocytosis impairment in 
splenic macrophages. Liver macrophages also play a role in bacterial clearance, and it is possible that the absence 
of nBMP2 in the nucleus affects their function more severely44,45. In addition, the absence of nBMP2 in the 

Figure 4. Splenic macrophages collected from nBmp2NLStm mutant mice after secondary infection have an 
impaired Ca2+ response. Splenic macrophages from wild type (WT) and nBmp2NLStm mutant (MT) mice were 
loaded with Fura-2AM for live-cell Ca2+ imaging. During imaging, cells were stimulated at 2 min with S. aureus 
supernatant (SAS), then at 10 min with ionomycin as a positive control. (a) Average curves showing intracellular 
Ca2+ response in wild type and nBmp2NLStm mutant splenic macrophages. Fluorescence ratios (F340/
F380) were measured at 3 sec intervals from 0-12 min (n = 44 cells). Error bars (s.e.m.) are shown at one min 
intervals. (b) Average ± s.e.m. of peak Ca2+ influx (F340/F380) in wild type and nBmp2NLStm mutant splenic 
macrophages shows a significant difference (n = 44 cells). (c) AUC of F340/F380 ratios from minutes 3 to 
10 min shows a significant difference in sustained intracellular Ca2+ levels (n = 44 cells). *p < 0.05, **p < 0.01, 
***p < 0.0001.
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nucleus might affect other immune system cell types besides macrophages, and it is possible that another cell 
type, or perhaps several cell types together, account for the increased mortality of nBmp2NLStm mutant mice after 
secondary infection3. Indeed, BMP2 (and therefore potentially nBMP2) is expressed by a specialized endothelial 
population in the early embryo, termed hemogenic endothelium, that gives rise to hematopoietic stem cells46. 
The absence of nBMP2 at the earliest stages of hemogenesis could therefore impact a wide range of immune cell 
types. BMP2 is also expressed in human cord blood cells, including those that express CD34, a hematopoietic 
progenitor cell antigen47, and acute bleeding triggers upregulation of BMP2 expression in hematopoietic stem 
cells48. BMP2 expression is also found in mature B cells, where it is upregulated in response to infection with 
Aggregatibacter actinomycetemcomitans49. It is possible, therefore, that nBMP2 impacts the activation or function 
of other immune cell types in addition to macrophages, and the combined functional deficits account for the 
increased mortality in nBmp2NLStm mutant mice after secondary infection.

Figure 5. Naïve bone marrow derived (BMD) macrophages from nBmp2NLStm mutant mice and wild type 
mice show similar phagocytic activity. After incubation with fluorescent microspheres, macrophages were 
analyzed by flow cytometry. (a) A representative analysis is shown. The F4/80 and CD11b double positive 
population was selected, and from this gate a histogram was produced to identify macrophages that had 
engulfed 1, 2, or 3 or more beads. The percentages of total double positive cells represented within each peak 
are indicated. (b) Percent of cells engulfing 1 bead, (c) percent of cells engulfing 2 beads, and (d) percent of cells 
engulfing 3 or more beads. (e) Percent of cells engulfing one or more beads. N = 3 pairs of wild type and 3 pairs 
of mutant mice. NS, not significant.
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It will be important, in future work, to elucidate the molecular mechanisms underlying the Ca2+ response 
differences between macrophages from wild type and nBMP2 mutant mice. Differences may stem from impaired 
uptake or release of Ca2+ from endoplasmic reticulum stores, as suggested by the decreased SERCA activity 
observed in skeletal muscle of nBMP2 mutant mice2. Alternatively, transport of Ca2+ could be impaired at the 
macrophage cell membrane, consistent with observations that increasing extracellular Ca2+ levels can improve 
phagocytosis50,51. Neurons and muscle cells are excitable cells and are therefore equipped with a different set of 
ion channels and transporters than are macrophages, and so it will be important to examine molecular details 
of the Ca2+ handling defect in all three cell types. This work has thus opened the way for future studies into the 
molecular interactions and activities of nBMP2.

Questions about how nBMP2 functions from inside the nucleus to affect Ca2+ response also remain to be 
answered. The novel protein nBMP2 was first identified from among nuclear proteins that had been isolated using 
DNA affinity chromatography, but subsequent experiments failed to show direct binding of nBMP2 to DNA, and 
the amino acid sequence of nBMP2 contains no predicted DNA-binding domain1. It is possible that nBMP2 inter-
acts indirectly with DNA through a transcription factor, and future studies of nBMP2’s impact on the expression 
of genes involved in Ca2+ signaling will be informative.

In summary, this study supports our working hypothesis that aberrant intracellular Ca2+ response is the 
mechanism that unites the otherwise disparate muscle, neurological, and immune phenotypes observed in 
nBmp2NLStm mutant mice2,3,11,52–54. In doing so, this study has paved the way for future work to elucidate the pre-
cise molecular nature of the Ca2+ signaling disruptions in nBMP2 mutant cells and to understand how nBMP2’s 
interactions in the nucleus impact Ca2+ signaling.

Materials and Methods
Research Animals. This study was carried out in strict accordance with recommendations in the Guide for 
the Care and Use of Laboratory Animals55. The protocol was approved by the Institutional Animal Care and Use 
Committee (IACUC) of Brigham Young University (protocol numbers 15-0107 and 15-0603).

Mice were housed in a temperature-controlled (21–22 °C) room with a 12:12 hr light-dark cycle and fed stand-
ard rodent chow and water ad libitum. The nBmp2NLStm mice were constructed on a Bl6/129 background, as 
described2. The homozygous wild type and mutant mice used in this study were obtained by breeding heterozy-
gotes, and genotyping was performed as previously described3. All experiments were performed with male mice 
at least 6 months of age.

Figure 6. Splenic macrophages collected from nBmp2NLStm mutant mice after secondary infection show 
impaired engulfment activity. After incubation with fluorescent microspheres, macrophages were analyzed by 
flow cytometry as described in Fig. 3. (a) Percent of cells engulfing 1 bead, (b) percent of cells engulfing 2 beads 
and, (c) percent of cells engulfing 3 or more beads. (d) Percent of cells engulfing one or more beads. N = 3 pairs 
of wild type and 3 pairs of mutant mice. NS, not significant. *p < 0.05.
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BMD and Splenic Macrophage Isolation. BMD macrophages were obtained from femurs and tibias of 
wild type and nBmp2NLStm mutant mice and were differentiated in culture at 37 °C with 5% CO2 for 7 days in 
macrophage medium (DMEM (HyClone), 10% fetal bovine serum (FBS) (HyClone), 20% supernatant from L929 
mouse fibroblast as a source of macrophage colony-stimulating factor (M-CSF), 5% heat inactivated horse serum 
(Sigma), 1 mM sodium pyruvate (Gibco by Life Technologies), 1.5 mM L-glutamine (Thermofisher), 10 u/ml 
penicillin, 10 μg/ml streptomycin (Gibco by Life Technologies)) prior to plating for immunocytochemistry, Ca2+ 
imaging or engulfment assays.

Spleens from wild type and nBmp2NLStm mutant mice were homogenized in phosphate buffered saline (PBS). 
The homogenate was filtered, pelleted at 450 × g for 5 min, suspended in lysis buffer (155 mM NH2Cl, 10 mM 
KHCO3, 0.1 mM EDTA) on ice for 3–5 min to lyse erythrocytes, and then washed with 37 °C macrophage media 
and plated in macrophage medium in 6-well plates. After 3 days of culture at 37 °C in 5% CO2, medium was 
replaced to remove non-adherent cells56. On day 4, 100 ng/ml lipopolysaccharide (LPS) was added to the culture 
medium to stimulate differentiation, and cells were incubated for 3–4 more days57. Differentiated cells were then 
plated for immunocytochemistry, Ca2+ imaging, or engulfment assays.

Immunocytochemistry. Immunocytochemistry was performed using BMD and splenic macrophages. 
Following macrophage isolation and 7-day differentiation as described above, cells were plated on coverslips 
that were pre-treated with 0.025% HCl in PBS for 20 min to facilitate cell attachment. Cells were cultured for 1–2 
days to reach 70–90% confluence, then fixed at 37 °C in 4% paraformaldehyde for 10 min. Epitopes were exposed 
through antigen retrieval using 5% sodium citrate and 0.25% Tween-20 in ddH2O, pH 6.0, at 95 °C for 10 min. 
Cells were permeabilized using 0.1% Triton X-100 then blocked for 1.5 hr at room temperature (RT) using SEA 
BLOCK blocking buffer (ThermoFisher Scientific, 37527). The samples were then probed with 1:50 anti-BMP2 
antibody (Novus Biologicals, NBP1-19751) diluted in 10% SEA BLOCK blocking buffer in 0.1% Tween-20/PBS 
(PBS-T), overnight at 4 °C. The probed slides were then stained with anti-rabbit Alexa Fluor 488 (ThermoFisher 
Scientific, A-11034) for 1 hr at RT. Afterwards, nuclei were stained by incubating the slides in 1:5000 DAPI in 
PBS-T for 15 min., then slides were mounted using ProlongTM Gold Antifade Mountant (Life Technologies, 
P10144) and cured overnight prior to microscopic imaging. Cells were imaged using a Leica TCS-SP8 confocal 
microscope with 63X magnification, using the same laser intensities for all samples. Appropriate laser lines were 
used such as 405 nm for DAPI and 488 nm for BMP2-Alexa Fluor 488.

Comparison of nuclear BMP2 staining intensity between wild type and mutant cells was performed on tiff 
versions of confocal microscope images using ImageJ to create tracings of DAPI-stained regions and to calculate 
the mean pixel intensity of nBMP2 staining within each nucleus. Mean nuclear staining intensity was calculated 
for each image, and groups were compared using an unpaired, two-tailed t-test in GraphPad Prism.

S. aureus Bacterial Infections. S. aureus ATCC strain 12600 was cultured in tryptic soy broth liquid cul-
ture alternating with standard streak plating on mannitol salt agar (Thermo Fisher Scientific) for counting. To 
prepare bacteria for injections, 100 µl of overnight liquid culture was transferred into a new 15 ml broth culture 
and grown until OD600 reached 1.0, then pelleted and resuspended in 15 ml of PBS with 20% glycerol, aliquoted, 
and stored at −80 °C for 3 weeks before injection. Frozen stock concentration was verified one day before the 
infection by thawing a single aliquot and performing standard serial dilution plate counts. On the day of infec-
tion, S. aureus was diluted from the frozen stock to the desired concentration in PBS, and mice received a 200 μl 
retroorbital injection using a 1 ml syringe and 27-gauge needle. The injected volume contained a priming dose 
of 1 × 104 CFU/g body weight on day 0 (primary infection), and a dose of 3 × 105 CFU/g body weight on day 35 
(secondary infection). Macrophages were harvested three days later.

Bacterial Supernatant Preparation. Bacterial supernatant obtained from E. coli K12 and S. aureus 12600 
was used to stimulate Ca2+ fluxes in BMD and splenic macrophages19,58. A single colony was picked from an agar 
plate and inoculated into liquid broth overnight culture. The next day, 1 ml of the overnight culture was inocu-
lated into 15 ml liquid broth and incubated with shaking at 37 °C until culture reach an OD600 of 1–1.3. Cells were 
then pelleted by centrifugation at 1,800 × g for 12 min at 4 °C, and supernatant was collected.

Calcium Imaging. BMD and splenic macrophages were isolated and differentiated in culture for 7 days as 
described above, then seeded on 8-chambered coverglasses (Nunc 155411, Thermo Scientific) and incubated 
overnight in macrophage medium at 37 °C in 5% CO2. For BMD macrophages, 10 ng/ml LPS from E. coli O55:B5 
(Sigma) was included in the overnight incubation to activate cells. The next day, cells were loaded with 3 μM 
Fura-2AM (Invitrogen) in Ringers solution containing Ca2+ to be used as an extracellular source during the 
Ca2+ imaging assay (150 mM NaCl, 10 mM glucose, 5 mM HEPES, 5 mM KCl, 1 mM MgCl2, 2 mM CaCl2, pH 
7.4) for 30 min at 37 °C in 5% CO2, washed with Ringers solution, then incubated for another 30 minutes at 37 °C 
in Ringers solution. Calcium imaging was performed at room temperature using an Olympus IX51 inverted 
microscope equipped with a xenon arc lamp. Fura-2AM loaded macrophages were excited using 340 nm and 
380 nm excitation filters, and images of 340 nm, 380 nm, and transmitted light were capture using a florescence 
microscope camera (Q Imaging Exi Blue) with a 20x objective (N.A. 0.75) at 3-sec intervals. At the 2-min time 
point in each imaging protocol, 20 μl of bacterial supernatant was added to stimulate Ca2+ flux. Ionomycin (1 
μM final concentration) was added at the 10-min time point as a positive control. 10–20 representative cells were 
selected as regions of interest in each frame, and F340:F380 ratios were calculated and analyzed using CellSens 
software from Olympus. Each individual cell’s fluorescence was normalized to its first recorded value according 
to the equation (F-Fo)/Fo, where F is the fluorescence at the specific time point, and Fo is the fluorescence value 
at time 019,59.
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Engulfment Assay. BMD and splenic macrophages were isolated and differentiated in culture for 7 days as 
described above, then seeded in 12-well culture plates for flow cytometry-based engulfment assays22–28. 100% FBS 
was used to resuspend 2.0 μm phycoerythrin-conjugated polychromatic red latex microspheres (Polysciences, 
Inc.) to prevent beads from sticking to the cell membranes during engulfment23. The ~109 particles/ml concen-
tration was chosen to ensure that beads were not a limiting factor in phagocytosis rates23. Macrophages were then 
activated by adding LPS from E. coli O55:B5 (Sigma) to a final concentration of 10 ng/ml and incubated for 1 hour 
at 37 °C and 5% CO2. Media was removed and cells were rinsed with cold PBS, then collected and analyzed by 
flow cytometry using an Attune flow cytometer (Applied Biosystems by Life technologies). Cells were pre-treated 
with anti-CD16/32 antibodies (14-0161-85 eBioscience) to prevent non-specific antibody binding, then surface 
stained with APC-conjugated anti-CD11b antibodies (17-0112-82 eBioscience) and FITC-conjugated anti-F4/80 
antibodies (11-4801-82 eBioscience). Doublets were removed based on forward scatter width (FSC-W)/forward 
scatter area (FSC-A), and the F4/80 and CD11b double positive population was selected. From within this gate, 
engulfing macrophages were distinguished from non-engulfing macrophages based on phycoerythrin fluores-
cence, and macrophages could be further distinguished based on the engulfment of one, two, or three or more 
beads. Results were analyzed using FlowJo software (Tree Star).

Data Analysis. All assays were performed as at least three independent repeats, each in triplicate. Area under 
the curve (AUC) was determined using GraphPad Prism. Statistical significance was assessed using unpaired 
two-tailed Students T test in GraphPad Prism.

Data Availability
All data generated or analyzed during this study are included in this published article. Biological reagents will be 
made available on request.
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Abstract

Flavonoids are dietary compounds with potential anti-diabetes activities. Many flavonoids have poor bioavailability and thus low circulating concentrations.
Unabsorbed flavonoids are metabolized by the gut microbiota to smaller metabolites, which are more bioavailable than their precursors. The activities of these
metabolites may be partly responsible for associations between flavonoids and health. However, these activities remain poorly understood. We investigated
bioactivities of flavonoidmicrobial metabolites [hippuric acid (HA), homovanillic acid (HVA), and 5-phenylvaleric acid (5PVA)] in primary skeletal muscle and β-cells
compared to a native flavonoid [(−)-epicatechin, EC]. In muscle, EC was the most potent stimulator of glucose oxidation, while 5PVA and HA simulated glucose
metabolism at 25 μM, and all compounds preservedmitochondrial function after insult. However, EC and themetabolites did not uncouplemitochonndrial respiration,
with the exception of 5PVA at10 μM. In β-cells, all metabolites more potently enhanced glucose-stimulated insulin secretion (GSIS) compared to EC. Unlike EC,
the metabolites appear to enhance GSIS without enhancing β-cell mitochondrial respiration or increasing expression of mitochondrial electron transport
chain components, andwith varying effects onβ-cell insulin content. The present results demonstrate the activities of flavonoidmicrobialmetabolites for preservation
of β-cell function and glucose utilization. Additionally, our data suggest that metabolites and native compounds may act by distinct mechanisms, suggesting
complementary and synergistic activities in vivowhichwarrant further investigation. This raises the intriguing prospect that bioavailability of native dietary flavonoids
may not be as critical of a limiting factor to bioactivity as previously thought.
© 2018 Elsevier Inc. All rights reserved.

Keywords: Hippuric acid; Homovanillic acid; 5-Phenylvaleric acid; (−)-Epicatechin; Insulin; Respiration

1. Introduction

Incidence rates of type-2 diabetes and obesity are rising world-
wide. In addition to traditionalmedical interventions, complementary
lifestyle strategies such as diet and exercise are needed to blunt this
epidemic. Flavonoids from cocoa, fruit, tea and other sources have
been identified as dietary bioactive compounds with potential anti-
obesity and anti-diabetes activities. Many of these flavonoids, such as
quercetin [1] and procyanidins [2], have poor oral bioavailability and
thus low circulating concentrations. Non-extractable/bound flavo-
noids (from cocoa, etc.) and oxidized flavonoids, such as theaflavins
and thearubigins from oolong and black teas, have extremely limited
oral bioavailability [3,4] and vanishing low circulating concentrations.
As an extreme example, consumption of 700 mg theaflavins
(equivalent to~30 cups of black tea), produced maximal blood
concentrations of only 1 μg/L (~1.8 nM) in humans [3]. Therefore,
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circulating concentrations of the native species may represent a very
small fraction of the ingested dose, whereas the majority reaches the
colon unabsorbed. Unabsorbed flavonoids are extensively metabo-
lized by the gut microbiota to a series of smaller metabolites such as
valerolactones, phenylalkyl acids, and smaller aromatics (Fig. 1A)
[4–9]. While some metabolites are unique to individual flavonoid
compounds or subclasses, dozens of metabolites are common to most
flavonoids [10,11]. These metabolites are comparatively more bio-
available than their native flavonoid precursors, and in many cases
represent the predominant circulating forms following flavonoid
consumption [10]. For example, a recent study of pharmacokinetics
following consumption of grape pomace demonstrated that anthocy-
anins and procyanidins were not detected in blood and catechins and
their phase-II conjugates exhibited maximum blood levels of 7–136
nM (with only 1 compound reaching at least 100 nM), whilemicrobial
metabolites exhibited maximum blood levels of 3–1170 nM (with 8
compounds reaching at least 100 nM) [12]. In an extreme example,
consumption of 6 cups of green or black tea resulted in circulating
metabolite levels in the mM range (hippuric acid, HA, reached 2.3
mM) [13]. This highlights the comparative importance of these
metabolites as potential bioactives in circulation following the
consumption of flavonoids.

Even flavonoids with comparatively high bioavailability (mono-
meric catechins, etc.) are only present in the bloodstream at nM to
very low μM levels following consumption of typical doses in foods
and supplements [14,15]. These doses are generally lower than the
range of concentrations typically used to study mechanisms in cell
culture models (1–100 μM, or sometimes higher). Despite poor
bioavailability and low circulating concentrations, many of these
compounds (and foods rich in them) appear to effectively prevent or
ameliorate metabolic syndrome even at low dietary doses in animals
[16] and humans [17]. Dietary efficacy, despite poor bioavailability
and/or low circulating concentrations of the native forms, suggests
three mechanisms by which ingested flavonoids exert their activities:
(1) native flavonoids primarily exert their activities in the gut lumen

(inhibition of digestive enzymes, alteration of microbiome composi-
tion and function, etc.) [18,19] and/or epithelium (improving barrier
function, immune development, etc.) [20] where they are at highest
concentrations (μM-mM range), (2) native flavonoids primarily exert
their activity in peripheral tissues even at the very low (pM-low μM
range) circulating levels achieved, or (3) microbial metabolites of
flavonoids generated by commensal microbiota in the lower gut exert
activities locally in the gut and systemically [21,22].

Considering the relatively high concentrations of microbial
metabolites documented in plasma compared to the native com-
pounds, it is plausible that these metabolites may be responsible, at
least in part, for observed associations between dietary flavonoids and
health outcomes. While all of the three possible scenarios identified
above likely occur simultaneously, the potential anti-diabetic and
anti-obesity activities of microbial metabolites formed from unab-
sorbed flavonoids remain poorly understood.

Recent provocative evidence has strengthened the argument that
native flavonoids may exert their effects independent of systemic
bioavailability: either directly on the microbiota, or by formation of
bioavailable microbial metabolites that then act in peripheral tissues
[23]. In vitro, 3-(3-hydroxyphenyl)propionoic acid (a microbial
metabolite common to many flavonoids) prevented loss of insulin-
stimulated nitric oxide synthesis and activity under high glucose
concentrations in human aortic endothelial cells [24]. In human
skeletal muscle myotubes, various microbial metabolites stimulated
glucose and oleic acid uptake [25]. Recent studies demonstrated that
phenylacetic and phenylpropionic acid have protective activities in
pancreatic β-cells and islets [26,27] and protect hepatocytes from
acetaminophen injury [28]. Two recent studies demonstrated that
valerolactones inhibited monocyte adhesion to endothelial cells [29].
A key animal study demonstrated that administration of antibiotics
(depletion of gut microbiota and their associated metabolites)
abolished the ability of procyanidin-rich grape seed extract to prevent
inflammation, insulin resistance, hyperglycemia and weight gain in a
high-fat feeding mouse model [30]. Furthermore, antibiotic

Fig. 1. (A) Schematic showing representative sequential metabolism of representative flavonoids [a dimeric procyanidin, and (−)-epicatechin monomer] by the gut microbiota. (B)
Structures of (−)-epicatechin and the three representative flavonoid microbial metabolites employed in this present study.
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administration reversed the ability of blackcurrant anthocyanins to
ameliorate diet-induced obesity in mice [31]. Finally, digestion and
microbial metabolism of berry flavonoids did not diminish their
protective activities against colon cancer [32]. While the in vivo
studies did not measure metabolite production, they strongly suggest
that these effects are mediated by the microbiota and/or their
metabolites produced from the native dietary flavonoids. Perhaps
the most well-known microbial metabolites, the phenylalkyl acids
(phenylacetic, phenyl propionic, and phenylvaleric acids) have not
been well studied, and the phenylvaleric acids have not been studied
at all to our knowledge. Some compounds that are microbial
metabolites have been studied, but only because they also exist as
native compounds in foods, such as the cinnamic acids and small
aromatics such as vanillic acid. These compounds have been shown to
possess anti-diabetic and anti-obesity activities in β-cell, skeletal
muscle, hepatocyte and adipose models (see Supplementary Infor-
mation). Finally, some microbial metabolites of flavonoids have been
shown to possess enhanced anti-tumor and anti-platelet aggregation
activities compared to the native forms [33].

Despite these promising findings, relatively little work has been
done to characterize the effects of these metabolites in cell or animal
models, in comparison to the exhaustive body of literature on the
bioactivities of native flavonoids. The majority of research that does
exist on thesemetabolites has focused on their formation, but not their
activities nor mechanisms of action. Our objectives were therefore to
1) investigate the anti-diabetic activities of microbial flavonoid
metabolites (including a poorly-studied class, phenylvaleric acids) in
β-cells and primary skeletal muscle cells, 2) compare these activities
to those of a control native flavonoid, and 3) suggest potential
mechanisms by which these activities may occur. Our findings
demonstrate that these metabolites possess potent bioactivities, and
may contribute to the observed peripheral tissue effects of dietary
flavonoids.

2. Materials and methods

2.1. Materials

Three representative metabolites representative of three distinct classes of
metabolites common to a variety of dietary flavonoids were selected for investigation:
hippuric acid (HA, 98%), homovanillic acid (HVA), and 5-phenylvaleric acid (5PVA, 99%)
were obtained from Sigma (St. Louis, MO). A native flavanol, (−)-epicatechin (EC,
Sigma), was used as a positive control; note that the three selected metabolites can be
obtained by metabolism of EC and related compounds [9]. Structures of these
compounds are shown in Fig. 1B. All compounds were tested over a range of 0–100
μM (depending upon the specific assay) in water or DMSO, with equal final
concentrations of DMSO in cell media for all treatments. Generally, doses of 5–25 μM
were employed, which are easily obtainable in circulation for metabolites but which
represent the extreme upper end of what is attainable for native flavonoids [13,34].
Microbial metabolites, similar to those of native flavonoids, exhibit pharmacokinetic
curves that depend on a variety of factors and circulating concentrations necessarily
fluctuate over time based on consumption frequency. The levels employed herein are
attainable following flavonoid consumption but are not continuously present, similar to
those of native dietary flavonoids. Furthermore, while compounds and doses were
uniform across experiments, differences in some aspects (treatment times, etc.) were
necessary due to the use of established, robust experimental protocols for each
model system.

2.2. Skeletal muscle experiments

Skeletal musclemetabolism experiments were conducted per previously published
methods [35,36], with modifications. Primary human muscle cells were cultured for
measuring palmitate and glucose oxidation. Cultures of primary human muscle cells
were obtained from a singler subject who provided written informed consent under an
approved protocol by Virginia Polytechnic Institute and State University Institutional
Review Board (approval #11–770). The subject was a healthy Caucasian male, age 22
years, with a BMI of 23.6 and 20.9% body fat.

2.2.1. Skeletal muscle substrate metabolism
Cells were grown in low glucose DMEM supplemented with 10% fetal bovine serum

and SkGM SingleQuots (Lonza, Walkersville, MD, USA). Upon reaching~80% confluence
in standard 12-well plates, cells were differentiated for 7 days in 2% horse serum. All

experiments were performed on day 7 of differentiation following overnight serum
deprivation. The compounds tested were treated for 24 h prior to assessment of
substrate metabolism. Fatty acid oxidation was assessed by measuring and summing
14CO2 production (complete) and 14C-labeled acid-soluble metabolites (incomplete)
from the oxidation of [1-14C] palmitic acid (American Radiolabeled Chemicals, St. Louis,
MO, USA). Briefly, cells were incubated in media containing radiolabeled substrate
along with the compound at 5 or 10 μM, or vehicle only (0 μM, 0.1% DMSO) for 3 h at 37
°C, 5% CO2. Following incubation media was removed and acidified with 45% perchloric
acid to elute gaseous 14CO2. 14CO2 was trapped in 1 M NaOH over the course of 1 h. The
NaOH was then placed in a liquid scintillation counter and counted. Data were
expressed as means±S.E.M. and is normalized to total protein content. Glucose
oxidation was assessed by measuring 14CO2 production from the oxidation of [U-14C]
glucose (American Radiolabeled Chemicals, St. Louis, MO, USA) in a manner similar to
fatty acid oxidation expect for the substitution of glucose in place of palmitic acid.
Compounds were tested at 10 and 25 μM.

2.2.2. Skeletal muscle cell respiration
Oxygen consumption rate (OCR) wasmeasuredwith our established protocols [37]

using a XF96 Seahorse Extracellular Flux Analyzer (Agilent Technologies, Santa Clara,
CA, USA). C2C12 myoblast studies are commonly used by our groups as a fast and
practical model to screen for compound efficacy. Because differentiating cells into
myotubes takes 7 days continuously in the SeaHorse plate, we utilized themyoblasts as
a more feasible approach. Cultured C2C12 muscle cells were seeded at a density of
1.5×104 per well in supplemented DMEM media [4.5 g/L D-Glucose, L-Glutamine, and
110 mg/L Sodium Pyruvate supplemented with 10% Fetal Bovine Serum (FBS) and 1%
Penicillin Streptomycin (PSA)] on a Seahorse XF96 Cell Culture Microplate. Cells were
then incubated overnight at 37 °C in 5% CO2 to allow for adherence. Following
adherence, cells were pretreated for 4 hwith 10% FBS/1% PSA DMEM containing the test
compounds (5 and 10 μM) or vehicle only (≤0.1% DMSO). After the 4-h pretreatment,
500 μM H2O2 was added to injure the cells, and the microplate was subsequently
incubated for an additional 4 h. Following incubation, the cells were washed with
supplemented XF media (XF base media plus 1 mM pyruvate, 2 mM glutamine, 10 mM
glucose) twice before adding a final volume of 180 μL per well. A XF Cell Mitochondrial
Stress Test was completed to assess the bioenergetic status of the cells by injecting ATP
synthase inhibitor oligomycin (1 μg/mL), inner membrane uncoupler fluorocarbonyl
cyanide (FCCP, 2 μM), and complex III inhibitor antimycin A (2 μM). Oxygen
consumption rate data were normalized by subtracting non-mitochondrial rates of
respiration (after antimycin A), and are expressed as pmol O2 per minute per 1.5 x 104

cells. Mitochondrial coupling efficiency was calculated by taking the ATP-dependent
respiration (baseline-oligomycin) and dividing by the basal rates for internal
normalization.

2.3. β-Cell experiments

β-cell metabolism experiments were conducted per previously publishedmethods,
with modifications [38,39].

2.3.1. INS-1832/13 β-cell culture
Cell culture was performed per our established protocols [40–44]. The INS-1

derived 832/13 rat β-cell line was maintained in complete RPMI 1640 medium with L-
glutamine and 11.2 mM glucose supplemented with 50 U/ml penicillin, 50 μg/ml
streptomycin, 10 mM HEPES, 10% fetal bovine serum, and INS-1 supplement, as
previously described. For all glucose-stimulated insulin secretion and respiration assays
using the 832/13 β-cells, cells were plated at 0 h, treated with test compounds at 24 h,
and harvested at 48 h. Stock solutions of test compounds were made at 100 mM, and
diluted in media for assays at final concentrations of 0–100 μM (0.1% DMSO in all
treatments).

2.3.2. Glucose-stimulated insulin secretion
Glucose-stimulated insulin secretion (GSIS)was performed as previously described

[40]. Briefly, INS-1832/13 β-cells were plated and grown to confluency in standard 24-
well plates. Upon reaching confluency, cells were cultured with test compounds at
0–100 μM in complete media for 24 h. Following the 24 h treatment, cells were washed
with PBS and preincubated in secretion assay buffer (SAB) for 1.5 h (114 mM NaCl,
4.7mMKCl, 1.2mMKH2PO4 1.16mMMgSO4, 20mMHEPES, 2.5mMCaCl2, 0.2% BSA, pH
7.2) containing 2.5 mM glucose. GSIS was performed by incubating quadruplicate
replicate wells of cells previously cultured with test compounds in SAB containing 2.5
mM glucose for 1 h (basal), followed by 1 h in SAB with 16.7 mM glucose (glucose
stimulation), followed by collection of the respective buffers, as previously described.
For total insulin content, β-cells stimulated with 16.7 mM glucose for 1 h were lysed in
RIPA buffer with protease inhibitors (Life Technologies). Secreted insulin and total
insulin was measured in SAB using a rat insulin RIA kit (MP Biomedicals), and
normalized to total cellular protein concentration (determined by BCA assay), as
previously described.

2.3.3. INS-1832/13 β-cell oxygen consumption rate
Oxygen consumption rate (OCR) was measured using an XFp Extracellular Flux

Analyzer (Agilent Technologies). INS-1832/13β-cellswere seeded at 2.0 x 104 cells/well
in complete 832/13 RPMI 1640medium (L-glutamine, 11.2 mM glucose supplemented,
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50 U/ml penicillin, 50 μg/ml streptomycin, 10 mM HEPES, 10% fetal bovine serum, and
INS-1 supplement) on a Seahorse XFp Cell Culture Microplate. Cells were incubated
overnight and then treated with test compounds at 10 μM, 5 μM or 0 μM in complete
RPMI 1640 media. Following 24 h of culture with the compounds, cells were incubated
in 2.5 mM glucose SAB for 3 h. Following incubation, buffer was exchanged for 180 μL
fresh pre-warmed 2.5mMglucose SAB perwell. A XF Cell Mitochondrial Stress Test was
completed to assess the bioenergetic status of the cells by injecting glucose (16.7mM, in
order to examine respiration under glucose stimulation), oligomycin (4 μM), FCCP (2.5
μM), and antimycin A with rotenone (2.5 μM). Residual oxygen consumption was
determined following inhibition of complex III with the addition of rotenone and
antimycin A. This state of residual oxygen consumption served as a baseline correction
for all of the other states. All data were normalized to protein content of each well,
determined by BCA assay.

2.3.4. Western blotting
832/13 beta cells were plated in standard 6-welll plates, grown to confluency, and

cultured overnight in media containing each test compound at 10 μMor vehicle control
(0.1%DMSO in both). Cellswerewashed in PBS and harvested in RIPA buffer followed by
sonication. Protein concentrationwas quantified by BCA, and 30 μgwas run per sample.
Western blotting and transfer was performed as previously described [38,40,41]. Blot
were probed using the Anti Rt/Ms. Total OxPhos Complex Kit (1:250, Life Technologies,
Carlsbad, CA) which contains a cocktail of antibodies for the electron transport chain
(ETC) components ATP5A (Complex V), UQCR2 (Complex III), MTCO1 (Complex IV),
SDHB (Complex II) andNDUFB8 (Complex I). Blotwas imaged in the linear range using a
LI-COR Odyssey CLx (LI-COR Biotechnology, Lincoln, NE). Blotting was performed on
triplicate samples.

2.4. Statistics

All results are expressed asmean±S.E.M. For activity assays, data were analyzed by
1- or 2-way ANOVA as appropriate. For 2-way ANOVAs, if a significant main effect of
treatment compound dose was detected, Dunnett's post hoc test was performed within
the high-glucose treatments to compare each dose to the vehicle (0 μM) control. For
one-way ANOVAs, if a significant treatment effect was detected, Dunnett's post hoc test

was performed within each compound to compare each dose to the vehicle controls.
Significance was defined a priori as Pb.05. Statistical analyses were performed on Prism
v6.0f (GraphPad, La Jolla, CA).

3. Results and discussion

3.1. Skeletal muscle

3.1.1. Skeletal muscle metabolism
The ability of EC (+ control, native flavonoid) and three

representative metabolites (HA, HVA and 5PVA) to influence fatty
acid or glucose uptake and metabolism was examined in primary
human skeletal muscle cells. As shown in Fig. 2, these compounds
exhibited minimal ability to alter fatty acid oxidation. The only
statistically significant findings were that HA was able to increase
complete fatty acid oxidation at 25 μM (Fig. 2D) and increase the ratio
of complete:incomplete oxidation at 10 μM (Fig. 2P). While these
results suggest that HA has more potent activities than EC, overall the
enhancement of fatty acid oxidation does not seem to be a significant
mechanism of action for these metabolites. These results suggest that,
despite a reported finding thatmetabolites increased oleic acid uptake
in human skeletal muscle myotubes [25], alteration of fatty acid
oxidation in skeletal muscle may not be a primary mechanism by
which flavonoid microbial metabolites exert anti-diabetic and anti-
obesity activities.

Glucose oxidation results (Fig. 3) were more promising than fatty
acid oxidation. EC appeared to be the most potent stimulator of
glucose utilization, increasing activity at both 10 and 25 μM (Fig. 3A).

Fig. 2. Fatty acid oxidation in primary human skeletal muscle cells treated with either hippuric acid, homovanillic acid, 5-phenylvaleric acid, or epicatechin. Complete oxidation
represents evolution of 14CO2 from14C-labeled palmitate. Incomplete oxidation represents production of 14C-labeled acid-soluble metabolites (ASMs) from14C-labeled palmitate. Total
oxidation represents the sum of complete and incomplete oxidation. Values represent mean±S.E.M. from n=4 replicates, normalized to vehicle (vehicle expressed as 1). Data were
analyzed by one-way ANOVA. If a significant treatment effect was detected, Dunnett's post hoc test was performed within each compound to compare each dose to the vehicle control.
Significance vs. vehicle control is indicated by: *P ≤ 0.05, **P ≤ 0.01.
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While HVA had no apparent activity, both 5PVA and HA were able to
simulate glucose metabolism at 25 μM (Fig. 3B-D). While the EC
activity at lower concentrations suggests that it is more potent than
themetabolites on an equal concentration basis, it is important to keep
inmind that themetabolites tend to exist in circulation at higher levels
than thenative forms. Thus, the observed increase in glucose oxidation
for 5PVA and HA, combined with previous reports that microbial
metabolites stimulate glucose uptake [25], suggest promise for the
ability of these metabolites to exert significant benefits on blood
glucose levels in vivo.

3.1.2. Skeletal muscle cell respiration
The effects of EC and the three metabolites on respiration in

normal, uninjured C2C12 cells are shown in Fig. 4. We utilized a
peroxide stress paradigm since heightened mitochondrial ROS
burdens are observed in skeletal muscle from humans and animal
models of diabetes, often before the onset of overt systemic
hyperglycemia [45]. Respiration curves for controls and each dose,
including basal, leak (oligomycin) and maximal (FCCP) respiration,
are shown in Fig. 4A and B. None of the compounds tested significantly
enhanced basal respiration (Fig. 4C), ATP-dependent respiration
(Fig. 4E), maximal respiration (Fig. 4F), or respiratory reserve (the
difference between basal and maximal respiration, which reflects
reserve bioenergetic capacity available to the cell, Fig. 4G) compared
to the control at either 5 or 10 μM compared to vehicle control.
Coupling efficiencywas not influencedby any of the compounds at any
concentration, with the exception of 5PVA at 10 μM (Fig. 4H). HA and
5PVA both modestly enhanced ‘leak’ respiration at 10 μM (Fig. 4D),

suggesting either slightmitochondrial injury (potentially due tominor
pro-oxidant effects at these higher doses) or mitochondrial uncou-
pling. The data in uninjured cells generally suggest that EC and the
metabolites do not alter skeletal muscle respiration under normal
conditions at low doses, and indicate that do not appear to acutely
uncouplemitochondria or partially inhibit the respiratory chain (both
of which have been postulated as a strategy to treat obesity/diabetes
for decades) with the possible exception of HA and 5PVA at high
doses [46,47].

The effects of EC and the metabolites on C2C12 cells exposed to
peroxide challenge (i.e. injured) are presented in Fig. 5. Peroxide
treatment inducedmitochondrial injury as assessed by increased ‘leak’
respiration (respiration after oligomycin roughly doubled) (Fig. 5D)
and lower rates of maximal respiration (FCCP), ATP-dependent
respiration (Fig. 5E), respiratory reserve capacity (Fig. 5G), and
coupling efficiency (Fig. 5H) for H2O2 treated cells (red bars)
compared to control (blue bars). While there were some differences
in basal respiration, this can be due to slight respiratory uncoupling
due to the injury and should be interpreted with caution. Each of the
compounds studied significantly protected against peroxide-
mediated injury at 5 μM, reflected by reduced leak respiration, and
preserved maximal respiration respiratory reserve and/or coupling
efficiency at the same level as the uninjured control despite peroxide
challenge (Fig. 5D-H). As observed for uninjured cells, one metabolite
actually worsened cell injury as measured by leak respiration,
although in this case it was 10 μM HVA (as opposed to HA and PVA
in uninjured cells), again suggesting either cellular injury or
uncoupling. Interestingly, while HA and 5PVA increased leak

Fig. 3. Glucose oxidation in primary human skeletalmuscle cells treatedwith either hippuric acid, homovanillic acid, 5-phenylvaleric acid, or epicatechin. Oxidation represents evolution
of 14CO2 from 14C-labeled glucose. Values represent mean±S.E.M. from n=4 replicates, normalized to vehicle (vehicle expressed as 1). Data were analyzed by one-way ANOVA. If a
significant treatment effect was detected, Dunnett's post hoc test was performed within each compound to compare each dose to the vehicle control. Significance vs. vehicle control is
indicated by: *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001, ****P ≤ 0.0001.
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respiration in the absence of H2O2, there was only a slight additional
increase in leak respiration with H2O2 treatment. These data indicate
that HA and 5PVA may have pro-oxidant effects similar to H2O2, but
that these metabolites did not exacerbate leak respiration when
combined with H2O2 stress. Future studies that further examine the
effects of HA and 5PVA will advance our understanding of these
compounds on mitochondrial bioenergetics. The 10 μM dose was
generally ineffective for all compounds except HA, which partly
preserved respiratory reserve (Fig. 5E). These results suggest that EC
and the flavonoid microbial metabolites preserve skeletal mitochon-
drial function after oxidative insult, notably at lower micromolar
concentrations.

3.2. β-Cells

3.2.1. β-Cell glucose-stimulated insulin secretion
In addition to substrate utilization in skeletal muscle, β-cell

function is a critical target at all stages of diabetes development. We
sought to examine the impact of EC and representative flavonoid
metabolites on GSIS in a β-cell model (Fig. 6). We have previously
demonstrated that the epicatechin-rich fraction from cocoa enhances
β-cell GSIS at 25 μg/ml [38]. In the present experiment, EC was able to
enhance GSIS in INS-1832/13 β-cells but only at 100 μM (Fig. 6A),
which is not physiologically relevant, suggesting minimal relevance
for activity in vivo. Interestingly, all three microbial metabolites

Fig. 4. Corrected mitochondrial respiration data for C2C12 cells cultured acutely (4 h) in the presence of hippuric acid (HA), homovanillic acid (HVA), 5-phenylvaleric acid (5PVA), or
epicatechin (EC): oxygen consumption rate (OCR) curves for treatments at 5 μM (A) and 10 μM (B), basal respiration (C), leak respiration (after oligomycin, D), ATP-dependent
respiration (E), maximal respiration (after FCCP, F) respiratory reserve (maximal − basal, G), and coupling efficiency (ATP-dependent respiration/basal respiration, H). Oxygen
consumption rate data were normalized by subtracting non-mitochondrial rates of respiration (after antimycin A, not shown), and are expressed as pmol O2 per minute per 1.5×104

cells. Values represent mean±S.E.M. from n=8 replicates. Datawere analyzed by one-way ANOVA. If a significant treatment effect was detected, Dunnett's post hoc test was performed
within each compound to compare each dose to the vehicle control (H2O). Significance vs. vehicle control is indicated by: *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001, ****P ≤ 0.0001.
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demonstrated significant induction of GSIS at concentrations from
5–100 μM (Fig. 6B-D) except HA, which induced GSIS at 5–50 μM but
not 100 μM). These data demonstrate that the metabolites increase
GSIS at much lower (and physiologically relevant) concentrations
compared to EC, suggesting that the metabolites are more potent
stimulators of GSIS thannative EC. This fact, combinedwith the greater
bioavailability of microbial metabolites than the parent compound,
point towards the potential contribution of microbial metabolites to
the observed effects of dietary flavanoids.

To further investigate the effects of these compounds on INS-1832/
13β-cells, we examined the cellular insulin content under stimulatory
conditions (16.7 mM glucose) to determine if treatment impacted

insulin expression (Fig. 7). An increase in insulin content, concomitant
with an increase in insulin secretion would indicate greater insulin
expression, while a decrease in insulin content with no change in
insulin secretionwould indicate an impediment in insulin production.
EC exhibited small increases in insulin content (Fig. 7A), but the effect
was inconsistent across doses. Interestingly, increases in insulin
content were vastly different across the metabolites (Fig. 7B-D),
despite similarities observed in GSIS. 5PVA and HVA stimulated
greater insulin content, particularly at lower doses. HA exhibited a
slight increase in insulin content at 50 μM. These results are intriguing,
as they suggest distinct mechanism at play that impinges on β-cell
insulin secretion. The results for EC are consistent with our previous

Fig. 5. Correctedmitochondrial respiration data for H2O2-injured C2C12 cells cultured acutely (4 h) in the presence of hippuric acid (HA), homovanillic acid (HVA), 5-phenylvaleric acid
(5PVA), or epicatechin (EC): oxygen consumption rate (OCR) curves for treatments at 5 μM (A) and 10 μM (B), basal respiration (C), leak respiration (after oligomycin, D), ATP-
dependent respiration (E), maximal respiration (after FCCP, F) respiratory reserve (maximal − basal, G), and coupling efficiency (ATP-dependent respiration/basal respiration, H).
Oxygen consumption rate data were normalized by subtracting non-mitochondrial rates of respiration (after antimycin A, not shown), and are expressed as pmol O2 per minute per
1.5×104 cells. Values represent mean±S.E.M. from n=8 replicates. Data were analyzed by one-way ANOVA. If a significant treatment effect was detected, Dunnett's post hoc test was
performed within each compound to compare each dose to the vehicle control (H2O) as well as injury control (H2O + H2O2). Significance vs. vehicle control is indicated by: *P≤0.05,
**P≤0.01, ***P≤0.001, ****P≤0.0001; significance vs. injury control is indicated by: †P ≤ 0.05, ††P ≤ 0.01, †††P ≤ 0.001, ††††††P ≤ 0.0001.
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results demonstrating increased insulin secretion at high doses,
without concurrent increase in insulin content [38]. For 5PVA and
HVA we observed increased GSIS and increased cellular insulin
content. The increased insulin content could be due to greater insulin
gene expression, enhanced insulin processing, or improved insulin
stability. As has been previously shown, increased cellular insulin
content can be sufficient to enhance GSIS [48]. Therefore, the
enhanced insulin secretion from β-cells treated with these metabo-
lites, particularly at lower doses, may be due to an increased insulin
load, rather than modulation of the β-cell glucose sensing machinery.
The GSIS observed by HA occurs with minimal changes to insulin
content. The data suggest that flavonoid microbial metabolites may
exert significant effects on β-cell function by increasing both β-cell
insulin production and insulin secretion. These distinct mechanisms
suggest complementary and synergistic activities of various metabo-
lites present simultaneously following flavonoid consumption, and
thus warrant further investigation in vitro and in vivo.

3.2.2. β-Cell respiration
Given our previous data demonstrating enhanced β-cell mito-

chondrial respiration due to exposure to EC from cocoa [38,39], we
sought to define the effect of culture in the presence of EC and
microbial metabolites on β-cell mitochondrial respiration under basal
conditions (low glucose) and glucose stimulation (Fig. 8). Basal
respiration ratewas significantly increased by 10 μMEC, and appeared
to be somewhat reduced (albeit not statistically significantly) by 5 and
10 μMHA(Fig. 8C). The same resultswere also observed under glucose

stimulation and maximal respiration (although the level of glucose
induced respiration is surprisingly less thanwhat has been observed in
other studies) (Fig. 8D-E). None of the compounds tested significantly
affected respiratory reserve (Fig. 8F). It is important to note that the
low means and comparatively high S.E.M.'s for respiratory reserve in
this case are indicative of the fact that these cells were essentially
already operating near maximal respiration in the basal state (Fig. 8A-
B, F). Note that uncoupling and ATP-dependent respiration were not
plotted individually from these data due to differences in the question
being asked between the β-cells (do these compounds enhance
respiration as a means to improve β-cell function?) vs. the skeletal
muscle cells (do these compounds enhance respiration via uncoupling
as a means to improve energy expenditure, and do they protect from
injury?). The finding that EC enhances respiration is consistent with
our previous data [38,39]. Coupled with the GSIS data (Fig. 6), these
respiration data suggest several novel findings. First, EC does not
enhance GSIS except at extremely high doses despite enhancing β-cell
respiration at lower doses. Second, HA enhances GSIS despite
inhibition of β-cell respiration (although these reductions were not
statistically significant, this trend appears to be of practical signifi-
cance as suggested by Fig. 8C-E). Third, HVA and 5PVA enhance GSIS
despite not affecting β-cell respiration. Thus, these data demonstrate
that while each of the epicatechin metabolites enhances GSIS; their
individual mechanisms do not all increase insulin release through
modulating mitochondrial respiration. Therefore, the mechanisms by
which these compounds exert their effects are likely distinct and thus
warrant further investigation.

Fig. 6. Glucose-stimulated insulin secretion in INS-1 derived 832/13 ratβ-cells treatedwith either hippuric acid, homovanillic acid, 5-phenylvaleric acid, or epicatechin. Values represent
mean±S.E.M. from n=6 replicates. Data were analyzed by 2-way ANOVA. If a significant main effect of treatment compound dose was detected, Dunnett's post hoc test was performed
within the high-glucose treatments to compare each dose to the untreated (0 μM) control. Significance vs. untreated control is indicated by: *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001,
****P ≤ 0.0001.

102 B.F. Bitner et al. / Journal of Nutritional Biochemistry 62 (2018) 95–107



3.2.3. Expression of ETC components
To validate the changes that we observed in β-cell respiration after

treatment with EC or the gut metabolites, we measured protein levels
of select ETC components (Fig. 9). Similar to what was observed in our
mitochondrial respiration studies, only treatment with EC changed
protein levels of ETC components. These data validate our previous
findings that while the metabolites do enhance glucose stimulated
insulin secretion, it appears to be through extra mitochondrial
modifications.

3.3. Discussion

The premise of this study was to explore the possibility that the
unique activities of microbial flavonoid metabolites on peripheral
tissues may contribute to the observed bioactivities of native dietary
flavonoids. In other words, can dietary flavonoids exert significant
bioactivities despite poor bioavailability, or is bioavailability of the
native dietary species at peripheral target tissues indeed the primary
limiting factor for bioactivity in vivo?Our central hypothesis, spanning
this study and others in progress, is that the systemic, peripheral tissue
activities of microbial metabolites may account for a significant
portion of observed bioactivity following dietary flavonoid exposure
in vivo.

The present results demonstrate the potent activities of flavonoid
microbial metabolites, particularly for preservation of β-cell function,
enhancement of skeletal muscle glucose utilization and protection of
skeletal muscle respiratory function from oxidative injury, Therefore,
these data suggest that further investigation of the anti-diabetic

activities of flavonoid microbial metabolites is warranted. Addition-
ally, our data suggest that metabolites and native compounds may act
by distinct mechanisms, suggesting complementary and synergistic
activities in vivo. Specifically, our data demonstrate that the gut
metabolites enhance β-cell glucose stimulated insulin secretion more
effectively than EC. Furthermore, unlike EC, these metabolites appear
to do this without enhancing mitochondrial respiration or increasing
expression of mitochondrial electron transport chain components,
and with varying effects on β-cell insulin content. Insulin secretion is
dependent on ATP production in the β-cell due to glycolysis, TCA cycle
and the ETC. In addition, the increases in ATP closes K+ channelswhich
cause membrane depolarization and opening of Ca2+ channels which
allow Ca2+ influx. The modulation of these two channels is an area of
future interest in determining how the metabolites enhance glucose
stimulated insulin secretion. In skeletal muscle, these compounds
appear to enhance glucose utilization, but do not appear to enhance
respiration under normal conditions. Therefore,mitochondrial uncou-
pling does not appear to be a mechanism by which these compounds
can prevent obesity and glucose intolerance, with the exception of HA
and 5PVA at high doses. However, they do appear to significantly
protect respiratory function against oxidative injury. The objective of
these respiration experiments was to evaluate the impacts of the
selected compounds on overall respiration. Future mechanistic
experiments, including use of ETC complex inhibitors as well as
comparing intact cells, permeabilized cells and isolatedmitochondria,
will be useful to elucidate the specific mechanisms by which the
microbial metabolites exert these effects on respiration. Future work
will also provide new insight that address some of the current study

Fig. 7. Total insulin content of INS-1 derived 832/13 rat β-cells cultured in 16.7 mM glucose treated with either hippuric acid, homovanillic acid, 5-phenylvaleric acid, or epicatechin.
Values represent mean±S.E.M. from n=6 replicates. Data were analyzed by one-way ANOVA. If a significant treatment effect was detected, Dunnett's post hoc test was performed to
compare each dose to the untreated (0 μM) control. Significance vs. untreated control is indicated by: *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001, ****P ≤ 0.0001.
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limitations, such as examining compound efficacy in differentiated
muscle myotubes from mouse and human (to compliment myoblast
studies that were conducted herein).

The results presented here make significant additions to the small,
yet growing, body of published data indicating that flavonoid
microbial metabolites likely account for a significant fraction of
many observed bioactivities of dietary flavonoids, particularly those
with poor oral bioavailability of the native forms. These data help to
explain epidemiological and experimental data suggesting that some
dietary flavonoids (and potentially other classes of compounds, such
as curcuminoids)possess potent bioactivities despite poor oral
bioavailability. These results also suggest that the metabolites may
be equally important to, if not more important than (in some cases),

the native forms for in vitro mechanistic studies in cell culture models
that attempt to recapitulate effects in peripheral tissues (hepatic,
adipose, pancreatic, skeletal muscle, endothelial and other cell
models). This is particularly true at compound doses in the mid to
high μM range, which are commonly used for bioactives in cell culture
but which are much more likely to be obtained by the microbial
metabolites than the native dietary forms.

Moving forward, there is a need to further identify the most active
individual metabolites (or metabolite profiles) that confer systemic
benefits, to understand the characteristics of the microbiome that
facilitate generation of these profiles, and to understand how inter-
individual variability in microbial metabolism affects subsequent
metabolite profiles and bioactivities [49]. This knowledge will be

Fig. 8. Corrected mitochondrial respiration measured after culturing INS-1832/13 β-cells for 24 h in the presence of 0, 5 or 10 μM hippuric acid (HA), homovanillic acid (HVA), 5-
phenylvaleric acid (5PVA), or epicatechin (EC): (A) 0 (Ctrl) and 5 μM, (B) 0 (Ctrl) and 10 μM, (C) Basal respiration (2 min), (D) glucose-stimulated respiration (21 min), (E) maximal
respiration (61 min) and (F) respiratory reserve (maximal − basal). Oxygen consumption rate data were normalized by subtracting non-mitochondrial rates of respiration (after
antimycin A, not shown), and are expressed as pmol O2 perminute, normalizer per μg protein. Values represent mean±S.E.M. from n=5 replicates. Significance vs. untreated control is
indicated by: *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001, ****P ≤ 0.0001.
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critical for development of strategies to fully exploit the potential
health benefits of dietary flavonoids. While initial studies have used
antibiotics to eliminate the effect of the microbiome andmicrobiome-
derived metabolites [30,31], germ-free and other gnotobiotic models
will be instrumental in elucidation of the role of the microbiome in
mediating the beneficial effects of poorly-bioavailable flavonoids.
Furthermore, large-scale screening of several dozen (if not libraries of
several hundred) microbial metabolites in peripheral tissue cell
culture models will need to be performed in order to understand the
tissue-specific mechanisms by which these compounds exert their
activities. This will require advances in commercial availability of
some metabolites, specifically the valerolactones, which to our
knowledge are not currently available. It will also be important to
conduct full dose-dependence studies of these metabolites. Further-
more, in vitro anaerobic fecal fermentations of flavonoids, with
assessment of the bioactivity before and after fermentation in vitro
and in vivo (via i.p. administration of filter-sterilized supernatants)
will be useful to identify broad effects of microbial transformation.

It is important to note that we did not study valerolactones, which
are among the early microbial metabolites of flavonoids. These
compounds are present in high concentrations in circulation following
flavonoid intake, and represent important compounds that may
possess significant bioactivities. We did not study these compounds
due to the lack of commercial availability, which is a significant
obstacle for understanding their activities. Due to the provocative data
in the present work, future work is needed to generate, isolate, and
elucidate the activity of valerolactones. Two possible approaches
include isolation from in vivo or ex vivo fecal fermentation mixtures,

as well as synthetic approaches. These will need to be performed in
order to complete our understanding of the potential bioactivities of
flavonoid microbial metabolites.

It is also important to note that thesemicrobialmetabolites exist in
circulation in the unconjugated forms studied, as well as Phase-II
conjugates (sulfate, O-methyl and glucuronide forms) produced in
enterocytes and hepatocytes following their absorption [50]. While
the present work focused on the unconjugated forms, future work
needs to be performed to elucidate the bioactivities of the conjugated
forms. Such transformations can be performed using enterocytes,
hepatocytes, liver microsomes, or isolated conjugating enzymes. Such
studies will further advance the overall objective of the present work
which is to understand the bioactivities of the actual circulating profile
of compounds (unconjugated and phase-II conjugates of both native
dietary flavonoids and their microbial metabolites) as opposed to just
the native, unconjugated forms (i.e. the majority of existing studies).

4. Conclusion

In summary, our data demonstrate that flavonoid microbial
metabolites stimulate β-cell function, as well as glucose utilization
and mitochondrial respiration in skeletal muscle. These data support
the hypothesis that dietary flavonoids may exert significant activity
despite poor bioavailability via their microbial metabolites. This raises
the intriguing prospect that bioavailability of native flavonoids may
not be as critical of a limiting factor to bioactivity as previously
thought. If, in fact, bioavailability of native flavonoids is not as crucial
as currently thought, this would represent a paradigm shift in the
thinking regarding how to exploit the activities of flavonoids in the
diet. While development of strategies to enhance bioavailability of
native compounds should not be discontinued, exploration of
strategies that do not require bioavailability should receive extensive
consideration as a parallel complementary approach to solving the
same problem. Our overall logic for the proposed experimentsmoving
forward is thatwe are quickly approaching an asymptote (diminishing
novel returns) in terms of what we can learn from further studies
focusing on the activities of native flavonoids. New approaches are
now needed to answer the complex questions remaining.
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