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ABSTRACT 

The Effect of Whole Body Vibration on Exercise-Induced Muscle Damage  
and Delayed-Onset Muscle Soreness 

 
Ryan Darin Magoffin 

Department of Exercise Sciences, BYU 
Master of Science 

 
Current scientific evidence suggests that when whole body vibration (WBV) is used as a warm-
up prior to performing eccentric exercise, delayed-onset muscle soreness (DOMS) is mitigated 
and strength loss recovers faster. These benefits were observed primarily in nonresistance-trained 
individuals. The aim of this study was to determine if WBV could mitigate soreness and expedite 
strength recovery for resistance-trained individuals when used as a warm-up prior to eccentric 
exercise. Thirty resistance-trained males completed 300 maximal eccentric contractions of the 
quadriceps after warming up with (WBV) or without (CON) WBV. Both CON and WBV 
experienced significant isometric (27.8% and 30.5%, respectively) and dynamic (52.2% and 
47.1%, respectively) strength loss immediately postexercise. Isometric strength was significantly 
depressed after 24 hours in the CON group (9.36% p < 0.01), but not in the WBV group (5.8% p 
= 0.1). Isometric strength was significantly depressed after 48 hours in the CON group (7.18% p 
< 0.05), but not in the WBV group (4.02% p = 0.25). Dynamic strength was significantly 
decreased in both the CON and WBV groups both at 24 hours (19.1% p < 0.001, and 16.1% p < 
0.001, respectively), 48 hours (18.5% p < 0.01, and 14.5% p < 0.03), and 1 week postexercise 
(9.3% p = 0.03, and 3.5%, respectively). Pain as measured by visual analog scale (VAS) was 
significant in both CON and WBV groups at 24 and 48 hours postexercise, but the WBV 
experienced significantly less soreness than the CON group after 24 hours (28 mm vs. 46 mm p 
< 0.01 respectively), and 48 hours (38 mm vs. 50 mm p < 0.01). Pain as measured by pain 
pressure threshold (PPT) increased significantly in both groups after 24 and 48 hours, but there 
was no difference in severity of perceived soreness. The use of WBV as a warm-up may mitigate 
DOMS but does not appear to expedite the recovery of strength in the days following eccentric 
exercise in resistance-trained individuals. 
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INTRODUCTION 

Exercise-induced muscle damage (EIMD) is a common occurrence when individuals 

begin a new training program or perform unaccustomed physical activity. The soreness and 

decrease in functionality of the damaged muscle, which can last for several days, suggests that 

changes in the muscle have occurred. Indirect characteristics of muscle damage include: the 

decreased ability of the muscle to produce force (1, 3), changes in electromyogram (EMG) 

readings (27, 28), various levels of soreness (3), acute inflammation and swelling (33), stiffness 

of the muscle and joints (14, 33, 55, 57), increased creatine kinase (CK) levels in the blood (3), 

and changes in magnetic resonance image (MRI) intensity (9, 12, 41). Many of these 

characteristics are expressed less severely in individuals who participate in a regular exercise 

program, although soreness can still be present with novel exercise in trained or untrained people 

(43). Evidence that damage has occurred in the muscle can be determined by examining the 

muscle tissue in question. Some of these observations include: changes in immunohistological 

staining intensity of the structural skeletal proteins desmin (60) and dystrophin (37), increased 

satellite cell activation (57), disruption of the z-lines (8), increased expression of the Xin protein 

(44), extracellular matrix disruption (53), and inflammatory cell infiltration into the damaged 

muscle fibers (5, 40, 60).  

Various treatments and modalities have been used to mitigate soreness and speed up the 

restoration of muscle function, such as cryotherapy (18, 52), massage (22, 29), ultrasound (49), 

NSAIDs (35), and immobilization (61). The research determining the effectiveness of these 

various treatments has produced conflicting results, calling into question the frequent 

prescription of these strategies as a means to reduce symptoms and enhance the repair process of 

damaged muscle. 
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  A recent strategy that is purported to attenuate the symptoms of muscle damage is whole 

body vibration (WBV). Some have suggested that WBV stimulates greater recruitment of motor 

units and muscle spindles to elicit greater activation of the musculature (39, 42). Its reported 

benefits include increases in power (6), force production (7), vertical jump height (16, 17), total 

muscular work (2), and flexibility (16) in trained and athletic populations. In contrast, untrained 

individuals have seen decreases in force production following WBV training (20, 21). WBV has 

been shown to have either no effect (58) or a detrimental effect (4) when used as a postexercise 

treatment strategy for restoring strength of the muscle following a damaging bout of exercise. In 

contrast, Aminian-Far et al. reported that WBV, as part of a warm-up prior to eccentric exercise, 

reduced soreness, serum creatine kinase levels, and a loss of force-producing capabilities in the 

days following the exercise bout (1). These results suggest that WBV may reduce symptoms of 

muscle damage, although the damage protocol used was relatively small (60 eccentric 

contractions) and performed in untrained subjects.  

It is currently unknown why WBV may attenuate soreness. One theory is that WBV leads 

to greater synchronicity of the motor units, thereby more evenly distributing the load during 

exercise (1). Evidence for motor unit synchronicity is provided by Christensen et al. (13) who 

demonstrated increased force output with no change or depressed sEMG amplitude. Because 

there have been differences reported between trained (7) and untrained (21) individuals in 

response to WBV, vibration training cannot be prescribed as a means of decreasing or preventing 

muscle soreness and damage in trained populations. Further research in this area will help 

determine if WBV can reduce soreness and muscle damage in trained populations (4). Therefore, 

we have tested the effectiveness of using WBV as a means to prevent muscle soreness and 

damage prior to performing maximal eccentric exercise in a resistance-trained population.  
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Purpose Statement 

The purpose of this study was to determine what effect WBV, when used as a warm-up, 

has on indirect markers of muscle damage, including muscle strength, subjective ratings of 

soreness, total muscular work, thigh circumference, knee range of motion, and sEMG before and 

after eccentric exercise of the quadriceps in recreationally strength-trained subjects.  

Hypothesis 

We hypothesized that the WBV group would experience less soreness, attenuated 

increases in thigh circumference, smaller decreases in force production and sEMG amplitude, 

increased relative work done, and smaller decreases in range of motion compared to the CON 

group.  

METHODS 

Experimental Approach to the Problem 

 This study explored the effects of using whole body vibration (WBV) as a warm-up to 

attenuate knee-extensor muscle damage following a maximal eccentric exercise bout. Subjects 

were assigned randomly to either the experimental group or the control group, and performed 

300 maximal eccentric contractions of the knee extensors. The experimental group received 

whole body vibration (WBV) just prior to the exercise session while the control group did the 

same exercise without WBV (CON). The independent variable was treatment (WBV) or no 

treatment (CON), and dependent variables included soreness, sEMG, isometric and isokinetic 

strength, total work done, active knee flexion range of motion, thigh circumference, and pressure 

sensitivity as measured by an algometer. 
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Subjects 

Thirty college-aged males (age: 22.7 ±2.9 years; body mass: 82.35 ± 11.3 kg; stature: 

180.6 ± 5.6 cm) who regularly participated in recreational resistance training (defined for this 

study as continuously for 6 months with at least twice per week working the legs) were recruited 

to participate in this study. Subject number was determined by performing a sample size analysis 

in the software program G*Power 3.1.9.2 (Franz Faul, University of Kiel, Germany). With an 

estimated effect size of .71 (based on EMG data) (27) and power set at 0.8, we estimated a 

minimum total subject number of n = 26. 

To qualify, subjects must have had no recent history of injury in the past six months to 

the lower extremities. During the course of this study, each subject agreed not to participate in 

any treatment designed to alleviate the symptoms of muscle damage that they may have 

experienced, including massage, stretching, use of medications or any abnormal physical 

activity. Subjects also agreed to avoid strenuous activity 48 hours prior to and throughout the 1-

week follow-up period of this study. We received human subject approval from the university 

Institutional Review Board (IRB) prior to beginning the study, and all subjects gave their written 

informed consent. 

Pre-Exercise Testing 

Subjects for the study were screened to ensure they were injury-free for the past six 

months in the lower extremities and had been resistance training at least twice a week for the 

past six months. Those subjects who qualified read and signed an IRB approved informed 

consent form. Each subject received a detailed explanation from the researchers of the exercise 

and testing procedures. Researchers discussed in detail the procedures of the study, including any 

risks associated with performing a high volume of exercise. At least 48 hours prior to baseline 
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testing, subjects were familiarized with the maximal voluntary isometric contraction (MVIC) 

protocol by coming in for three consecutive days and undergoing five MVICs each day to 

improve learning of the task and stabilize performance during testing of the MVIC with sEMG 

(25). Subjects familiarized themselves with positioning on the vibration machine for the warm-

up protocol. All subjects agreed to refrain from strenuous physical activity for 48 hours prior to 

the first visit and through the duration of this study (1 week). 

 Baseline measurements of soreness (VAS and algometer), ROM of knee joint flexion, 

and thigh circumference were taken. The subject then warmed-up on a cycle ergometer for 5 

minutes at 70 watts before using the Biodex System 4 Pro (Shirley, NY, USA) dynamometer 

chair to test maximal isokinetic and isometric strength of the quadriceps and maximal activation 

of the vastus lateralis and vastus medialis using sEMG. This constituted visit 1, which took place 

at least 48 hours prior to visit 2. Visits 3 (24 hours postexercise), 4 (48 hours postexercise), and 5 

(1 week postexercise) consisted of the same testing protocol as visit 1. We measured soreness, 

ROM and thigh circumference at the beginning of visit 2 to confirm the baseline measures 

obtained in visit 1. 

Experimental Warm-Up  

For visit 2, subjects assigned to the experimental group stood on the whole body 

vibration platform for 5 bouts of 60 seconds (40 Hz and amplitude setting on “high”) on the 

Power Plate Pro5 (Northbrook, IL, USA) separated by 30 seconds of active rest (casual walking) 

as a warm-up for the exercise to follow. The control group performed the same warm-up 

protocol, only the vibration unit was not active. 
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Damaging Exercise Protocol 

 Following warm-up, the subjects were seated and secured by chest, waist, and leg straps 

in the Biodex dynamometer chair and began the eccentric exercise protocol. The exercise bout 

included 30 sets of 10 maximal, voluntary, eccentric contractions of the right knee extensors. 

The speed of the eccentric contraction was 120 degrees/second. Resistance exercise volume (300 

repetitions) was selected based on previous research (4) showing that this volume was sufficient 

to cause damage to the knee extensors in trained subjects. After 100, 200, and 300 repetitions, 

respectively, maximal isometric strength and sEMG were measured. Isokinetic strength and 

sEMG also were measured after 300 repetitions. 

Soreness  

A Visual Analog Scale (VAS), consisting of a 100 mm line with ends “no pain at all” (0 

mm) and “worst pain imaginable” (100 mm), was used for subjective rating of muscle soreness. 

The subjects rated perceived soreness by performing two single leg squats lowering their body to 

sit in a chair so that their knees and hips reached 90 degrees flexion in the seated position (31). 

The subjects then rated their perceived soreness by placing a single vertical line through the 

VAS, which has been shown to be a reliable measure that soreness is present (32).  

Pressure pain threshold (PPT) was measured by the J-Tech Commander Echo Algometer 

(Midvale, UT, USA) which has also been shown to be a reliable method of measurement for 

soreness (34). PPT was measured at three sites (vastus medialis, vastus lateralis, and rectus 

femoris). The electrode placement sites were the measurement sites on the vastus medialis and 

vastus lateralis. Measurement of the rectus femoris was taken 2 inches proximal the most distal 

visible point of the rectus femoris. PPT recordings were done in a seated position in the hip and 
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knee joint at approximately a 90-degree angle. Assessment of soreness occurred at the beginning 

of each visit. 

Range of Motion 

 Active range of motion of knee flexion was measured using a goniometer. The subjects 

lay prone on an examining table and actively flexed the knee as far as possible. Measurement 

was obtained at peak flexion by measuring the angle of fibula with the midline of the femur as 

described by Norkin and White (45) and used by Dabbs et al. (19). 

Thigh Circumference 

 Thigh circumference was measured with a cloth measuring tape and measurements were 

taken from the point that is 40% of the distance measured from the base of the patella to the 

anterior superior iliac spine (same point as the PPT). Subjects were in the long-sitting position on 

an examining table with relaxed quadriceps (1). 

Maximal Strength 

Familiarization of the MVIC and isokinetic contraction protocols on the Biodex took 

place before visit 1. For baseline strength testing on visit 1, subjects’ legs were prepared for 

sEMG (see sEMG measures for details). Subjects warmed-up by cycling for 5 minutes on a cycle 

ergometer at 70 watts, after which they sat in the Biodex and were secured by chest, waist, and 

leg straps. The subjects performed a maximal isokinetic concentric strength test at 60 degrees/ 

second for three repetitions. After three minutes of rest, the subjects performed three MVICs 

lasting 5 seconds each with the knee joint flexed at a 60-degree angle on the Biodex 

dynamometer. Baseline maximal isometric and isokinetic strength assessments took place at least 

48 hours prior to exercise, immediately postexercise, 24 and 48 hours postexercise, and 1 week 

postexercise. Maximal torque for each contraction type was determined by finding the peak 
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torque production during the three repetitions of each respective test. Additional maximal 

isometric strength measurements were obtained after 100, 200, and 300 repetitions during the 

damaging exercise protocol. 

Surface Electromyography (sEMG) Measures 

 Following the bicycle warm-up and before strength testing, sEMG electrodes were placed 

on the vastus lateralis (VL) and vastus medialis (VM) of the involved leg. Before attaching 

electrodes the skin was shaved, abraded with sandpaper, and cleaned with an alcohol preparation 

pad to reduce skin impedance. Electrode placement on the VL was at 40% of the distance from 

the base of the patella to the anterior superior iliac crest, in line with the longitudinal axis of the 

muscle. Placement of the second electrode was on the distal quarter of the VM. Outlines of the 

electrodes were traced with permanent marker to ensure consistent placement of electrodes on 

subsequent testing days. 

Surface electromyography (sEMG) data were collected at 1000 Hz via Delsys Bagnoli 

Desktop EMG (Natick, MA, USA). The Delsys electrode contains two 99.9% pure silver bars 

that are 10 mm in length and spaced 10 mm apart. The analog EMG data were filtered using 

standard band-pass real-time processing with cutoffs of 20 and 450 Hz. The common mode 

rejection ratio is > 80 dB with a gain of 1000. 

 Amplitudes of the sEMG data were smoothed using the root mean square (RMS) method 

and a 20-ms moving window. The sEMG amplitude was normalized to the RMS value of the 

resting sEMG recorded prior to each strength test. Peak sEMG was computed from the sEMG 

signals during a time interval of 3 seconds (isometric) and 0.5 seconds (isokinetic) centered at 

the time instant of the maximal force for each contraction type. Peak amplitude was found using 

Delsys EMGworks Software 4.0 (Natick, MA, USA). 
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Total Work and Work Rate Decline 

Total work done was calculated by determining intercept and slope of decline of the 

working sets. 

Statistical Analyses 

 Since we were unsure of the form of the treatment effect over time, we analyzed the data 

using a cell means model with repeated measurements. The dependent variable was the 

difference of the strength measurement taken at least 24 hours prior to the treatment being 

administered, and the strength measurements taken at the four postexercise times: (1) 

immediately posttreatment, (2) 24 hours posttreatment, (3) 48 hours posttreatment, and (4) 1 

week posttreatment. 

Thus, we had six cell means to estimate, 2 treatments times, and 4 measurements 

posttreatment. Since multiple measurements were taken of each subject, we needed to account 

for both within- and between-subject variance to most accurately estimate uncertainty. 

Such a formulation was well suited to using a Bayesian approach. In the Bayesian frame- 

work, the model consists of the scaled product of the likelihood of the data given the parameters 

and prior probability densities for each of the parameters (11, 23). Current practice to analyze 

such a model is to implement some form of Markov chain Monte Carlo (MCMC) procedure to 

produce samples from the posterior distributions of interest (24, 51). We used the program JAGS 

(48) to generate the samples from the posterior distributions using MCMC (38). The sampling 

chains were then moved to the program R (The R Foundation, Vienna, Austria) for further 

analyses (54). Treatment differences were determined using 95% credible intervals on the 

posterior distributions of the ti. 
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RESULTS 

Muscular Strength 

There is evidence that WBV had a positive effect on the recovery of maximal isometric 

strength (see Figure 1). There was no difference between the control and treatment groups at 

baseline and both groups significantly decreased in strength from baseline at 100 repetitions 

(18.5% and 16%, respectively), 200 repetitions (29.1% and 30.4%, respectively), and 

immediately postexercise (27.8% and 30.5%, respectively). Within-group analysis showed the 

control group significantly decreased in strength from baseline by 9.36% (p < 0.01) and 7.18% (p 

< 0.05) at 24 and 48 hours, respectively. However, within the WBV group, strength decreases 

from baseline at both 24 and 48 hours (5.8% p = 0.1, and 4.02% p = 0.25, respectively) were not 

found to be statistically significant. There were no significant differences between groups at any 

time point. 

Dynamic strength decreased significantly from baseline in both control and vibration 

groups immediately postexercise by 52.2% (p < 0.001) and 47.1% (p < 0.001), respectively (see 

Figure 2). The control group experienced decrements in strength from baseline of 19.1% (p < 

0.001) at 24 hours, 18.5% (p < 0.001) at 48 hours, and 9.3% (p = 0.03) after 1 week. The 

vibration group experienced decrements in strength from baseline by 16.1% (p < 0.001) at 24 

hours, 14.5% (p = 0.002) at 48 hours, and recovered to within 3.5% (p = 0.4) after 1 week. There 

were no significant differences between groups at any time point. 

Soreness as Measured by VAS 

While both groups experienced significant increases in soreness from baseline at 24 and 

48 hours postexercise, the treatment group experienced significantly less perceived soreness than 

the control group at 24 hours (p-value < 0.01 ) and 48 hours (p-value < 0.01) (see Figure 2). The 
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control group increased in soreness to 46 mm and 50 mm at the respective time points. The 

treatment group increased in soreness to 28 mm and 38 mm at the respective time points. The 

treatment group’s perceived soreness was significantly less than that of the control group at both 

24 hours (p < 0.01), and at 48 hours (p < 0.01). Both groups returned to near baseline levels 1 

week postexercise.  

Soreness as Measured by PPT 

The control group increased in soreness at both 24 hours (p < 0.001) and 48 hours (p < 

0.001) and returned to baseline after 1 week. The vibration group experienced increased soreness 

at both 24 hours (p < 0.001) and 48 hours (p = 0.02) and returned to baseline after 1 week. The 

groups did not differ from each other at any time point (see Figure 3). 

Total Work and Work Rate Decline 

There was no difference found in beginning work output (p = 0.77) or work rate decline 

(p = 0.64) relative to the treatments, thus total work was similar between groups.  

Thigh Circumference and Knee Range of Motion 

There was no significant difference in thigh circumference at any point within or between 

groups (see Table 1). There were no significant differences between groups for range of motion 

(ROM). There were significant decreases in ROM at 24 and 48 hours for both groups (see Table 

1).  

Surface Electromyography (sEMG) 

Significant differences in sEMG values were not observed over time in either group for 

the vastus lateralis, nor were significant differences found between groups (see Figure 4). The 

sEMG values of the vastus medialis significantly declined after 100 and 200 repetitions in the 

control group (p < 0.01 and p < 0.05, respectively). Differences were not observed at any other 
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time point in the control group (see Figure 5). There were no significant differences in sEMG 

values at any time point for the vibration group, nor any difference found between groups at any 

time point. 

DISCUSSION 

Prior research suggests that WBV can attenuate soreness and the loss of strength that is 

usually associated with eccentric exercise in untrained subjects (1). Our study investigated if 

similar results would be found in resistance-trained subjects using a more intense muscle 

damaging protocol. Many of the existing performance enhancement studies have utilized trained 

subjects or athletes, so a study designed to determine the potential effects of WBV within the 

context of muscle soreness seemed warranted with this population.  

Our results show that vibration decreased perceived soreness using the VAS but not the 

PPT scores. The VAS scores significantly increased in both groups at 24 and 48 hours post 

exercise, and were accompanied by a loss of active-knee range of motion in both groups. 

However, VAS scores at both 24 and 48 hours significantly differed between groups, with the 

vibration group experiencing significantly lower levels of perceived soreness compared to the 

control group. When soreness was measured by PPT, the pounds of pressure required to elicit 

soreness decreased similarly for both the WBV and CON groups. This measurement was taken 

from one particular spot on each of the three superficial quadriceps muscles. Subjectively, 

several subjects commented that they were very sensitive to the touch, just not in the areas we 

designated to be tested. This may account for the observation that there was no difference 

between groups when measuring PPT. Since delayed-onset muscle soreness can manifest in a 

large generalized area, testing multiple sites over the same muscle would probably help the 

validity of the PPT measurement. When measuring with the VAS, the subjects were actively 
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moving the muscle through a ROM, whereas there was no active lengthening of the muscle when 

measured using PPT. This could have contributed to the discrepancy between the results of the 

two methods as well. 

Our results indicate that WBV expedited the recovery of isometric strength after the 

damaging protocol and supports the previous work of Aminian-Far et al. (1). It has been 

suggested that strength loss is an indirect measure of muscle damage (4, 30). Our subjects were 

required to perform 300 maximal eccentric contractions of the quadriceps muscle group to elicit 

measureable muscle damage. This volume (300 repetitions) has been shown to elicit significant 

strength loss and an increase in soreness for resistance-trained individuals (4) and is similar to 

other studies which have investigated a variety of variables associated with muscle damage (5, 

31). In our study, both groups fatigued as the exercise bout progressed, but only the control 

group showed significant isometric strength loss at 24 and 48 hours postexercise (9.36% and 

7.18%, respectively). Strength loss in the vibration group was insignificant at both 24 and 48 

hours (5.8% and 4.02%, respectively). Although it appears that WBV contributed to the faster 

recovery of strength in the treatment group, there was no significant difference found between 

the treatment and control groups. 

The isokinetic strength decreases at 24 hours, 48 hours, and 1 week postexercise were 

more severe than the isometric strength losses seen at the same time points. Tufano et al. also 

reported a decline in isometric strength compared to dynamic strength when measuring the 

quadriceps in the days following eccentric exercise. They suggested that a possible training 

effect of the isometric testing protocol could be partially responsible for this observation (56). 

Close et al. reported that concentric and eccentric strength recover at varying rates following a 
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damaging exercise bout (15). These studies combined with our results suggest that isometric, 

eccentric, and dynamic strength recover at different rates. 

Three hundred maximal eccentric quadriceps contractions have been shown to elicit up to 

a 24% decrease in maximal torque for up to 24 hours in resistance-trained individuals (4). Our 

results do not support such a drastic decrease in isometric torque-producing capabilities. 

Nevertheless, we did report decreased MVIC torque production of 9.36% in the control group 

while the vibration group experienced only a 5.8% decrease in maximal torque production. Our 

strength and sEMG data seem to show less damage than that of Barnes et al. when using 

resistance-trained subjects (4). This discrepancy may be explained by the speed of the eccentric 

contractions required in our exercise protocol. Our subjects performed 300 maximal eccentric 

contractions of the knee extensors at a speed of 120 degrees/second. Barnes et al. prescribed a 30 

degrees/second contraction speed in their study using the same number of repetitions. This much 

slower contraction speed of the Barnes study means those subjects spent a longer time in 

eccentric contraction. Our subjects’ comparatively shorter amount of time under tension may 

explain the lower magnitude of strength loss we observed. 

Why WBV may help mitigate strength loss and soreness induced by exercise is unknown. 

One theory is that WBV can enhance gamma activation and muscle spindle sensitivity, which 

would lead to higher motor-unit recruitment (10, 50). A resultant lower firing threshold of motor 

units (36) has been hypothesized to reduce the stress placed on individual muscle fibers by 

recruiting more motor units, which spreads the contractile stress across a larger number of 

muscle fibers and lowers the individual stress each fiber experiences (7). If this in fact happens, 

we would expect to see an increased sEMG signal transmitted during a maximal contraction, 
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however, following exposure to WBV, acute increases in strength and power have been seen in 

resistance-trained individuals, while sEMG amplitude remained unchanged (25). 

We looked at sEMG measures of the vastus lateralis and vastus medialis hoping to 

observe any neurological changes WBV may have caused. If any neurological changes were 

evident between groups during the exercise bout, we could theorize how WBV may protect 

against strength loss and soreness. Thus, sEMG and maximal isometric voluntary contractions 

(MVIC) were performed following each block of 100 repetitions of the eccentric protocol. We 

observed that peak sEMG values for the vastus lateralis did not change significantly after 100, 

200, or 300 repetitions in either group. Whereas the strength measures significantly decreased in 

both the treatment and control groups after 100 repetitions (15.98% and 18.58%, respectively), 

200 repetitions (30.35% and 29.06%, respectively), and immediately postexercise (30.45% and 

27.79%, respectively). This is consistent with other data showing decreased efficiency 

(decreased torque output with no change in sEMG measures) in motor unit recruitment at the 

onset of fatigue (13).  

For the vastus medialis, the control group exhibited a significant decrease in sEMG 

amplitude after 100 and 200 repetitions when measuring sEMG, while the vibration group 

showed a similar trend, but it was not statistically significant. The sEMG measurements 

immediately postexercise were not significantly different from baseline in either group.  

Strength loss without a subsequent loss of motor unit recruitment was seen in both the 

vastus lateralis and vastus medialis muscles in the treatment group, and the vastus lateralis of the 

control group. This is consistent with the work of Hamlin and Quigley who reported an increased 

MVIC sEMG/torque ratio immediately after performing 20 minutes of eccentric stair stepping 

(26). Why our control group’s vastus medialis sEMG readings decreased through the exercise 
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protocol is unknown. It is possible that our MVIC test angle (60 degrees) affected the 

performance of the vastus medialis since prior research has shown 70–90 degrees to be optimal 

for vastus medialis sEMG (46).  

In the days following the exercise bout (24 hours, 48 hours, and 1 week), no differences 

in peak sEMG in either muscle or group were observed when compared with baseline 

measurements. This is in contrast to Plattner et al. who reported a significant decrease in peak 

sEMG amplitude for a maximal voluntary contraction of the biceps brachii muscle in the days 

following a bout of muscle damaging exercise (47). However, the Plattner et al. study used 

nonresistance-trained subjects, making them more susceptible to muscle damage than resistance-

trained individuals. The protective qualities of the repeated bout effect in resistance-trained 

individuals (43) may also have come into play with our subjects to protect them from the 

significant damage typically seen in those who participate in high-volume eccentric exercise. 

Furthermore, the larger muscle mass of the combined quadriceps also may have added a 

protective effect as compared to the smaller biceps brachii. 

Our sEMG measurement had two possible limitations. First, we had to replace the 

electrodes after each block of 100 repetitions because the adhesive was ineffective due to 

increased perspiration of the subjects. To decrease variability in electrode replacement we 

outlined the electrode with marker to ensure it was replaced as close as possible to the previous 

placement, but measurement error has been reported as high as 16% for within- or between-day 

sEMG recording for a maximal contraction (59). Thus, electrode positioning and change in skin 

moisture may have introduced sEMG measurement error. Second, our ability to detect a 

relationship between sEMG and strength could have been due to timing. Previous research 

suggests that WBV can positively influence power and force up to 10 minutes after WBV 
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stimulus in athletic populations (7). By the time we measured MVIC and sEMG after 100 

repetitions approximately 15 minutes had passed since the subject had received vibration. If a 

relationship between sEMG and strength occurred, we did not detect it with our tests, possibly 

because the effect had dissipated by the time the first 100 repetitions were completed. 

Total work done over the first 100 repetitions was not significantly different between 

groups, nor was the rate of decline in total work output different between groups. Based on 

previous research showing that WBV can cause acute increases in strength in resistance-trained 

individuals (6, 7) and increased sEMG amplitude, (7) we expected the WBV group to have 

started at a higher work output and for total work done to be higher than the CON group, but this 

was not the case. We did not test sEMG or strength immediately after administration of WBV, so 

we cannot confirm or refute the previous research showing increases in motor unit activation or 

strength. 

PRACTICAL APPLICATIONS 

This study supports the use of WBV as a warm-up strategy prior to exercise to aid in the 

attenuation of soreness. The VAS results are consistent with the idea that a possible protective 

effect against muscle soreness may result from the use of WBV as part of a warm-up prior to 

performing high volume eccentric exercise in resistance-trained individuals.  

We recognize several limitations to our study. First, the high volume eccentric exercise 

protocol we chose to use is not typical in a competent resistance-training program. Second, the 

control group warmed up by static squatting on a vibration platform instead of a more typical 

dynamic warm-up. Future research ought to use typical training exercises (i.e., squats, lunges) 

and training volumes to judge the practical use of WBV as a DOMS-preventing warm-up. Third, 

alternate WBV frequency, amplitudes, and time of exposure may be effective at preventing 
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strength loss and DOMS, however we only looked at 40 Hz with “high” amplitude 

(approximately 4mm). Future research should use variations of these variables.  
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Table 1 Measures for thigh circumference (cm) and active knee range of motion (degrees). 

Variable and Group Pre 24 Hours 48 Hours 1 Week 

Thigh Circumference, cm 

Control 

Treatment 

Range of Motion, degrees 

Control 

Treatment 

 

 51.3  4.7 

 55.8  4.6 

 

 132.3  7.4 

 135.2  4.5 

 

 51.4  4.7 

 55.9  4.6 

 

*127.9  7.6 

 *131  6 

 

 51.4  4.7 

 56  4.6 

 

**127.8  11.1 

 *129.5  6.2 

 

 51.3  4.7 

 55.8  4.6 

 

 132.4  9.4 

 134.8  6.2 

*Denotes significant difference from pre value (p < 0.001).  

**Denotes significant difference from pre value (p < 0.02). 
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Figure 1 Percent Changes in Maximal Voluntary Isometric Contraction 

**Denotes both groups significantly different from zero.  

*Denotes only control group significantly different from zero. 
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Figure 2 Percentage Changes in Isokinetic Strength.  

**Denotes both groups significantly different from zero.  

*Denotes only control group significantly different from zero. 
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Figure 3 Changes in Soreness as Measured on a Visual Analog Scale (VAS) 

*Denotes a significant difference from baseline for both control and treatment groups and a 

significant difference between groups. 
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Figure 4 Changes in Pressure Pain Threshold (PPT) 

Measured in lbs of pressure before exercise, 24 and 48 hours, and 1 week postexercise.  

*Denotes a significant difference from baseline for both control and treatment groups. 
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Figure 5 Normalized sEMG Values from the Vastus Lateralis 

Recorded before exercise, after 100 and 200 repetitions, postexercise, 24 and 48 hours, and 1 

week postexercise. 
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Figure 6 Normalized sEMG Values from the Vastus Medialis 

Recorded before exercise, after 100 and 200 repetitions, postexercise, 24 and 48 hours, and 1 

week postexercise.  

*Denotes a significant difference from baseline in the control group only. 
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