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ABSTRACT 
 

Ground Reaction Forces Through a Range of Speeds in Steeplechase Hurdling 
 

James Brian Tracy 
Department of Exercise Sciences, BYU 

Master of Science 
 

The men’s steeplechase event requires participants to jump over thirty-five 0.914-meter-
tall obstacles, 4 rigid barriers and 1 fixed barrier followed by a 3.66-meter-long water pit per lap, 
over a 3000-meter distance. This study investigated the effect of increasing running velocity, 
through a range of 5.33 m/s to 6.66 m/s, on takeoff and landing ground reaction forces, for males 
during steeplechase hurdling using a force plate embedded under a track surface. Subjects 
completed 1 trial within each of 6 different pace ranges in a random order, once with a hurdle 
following the force plate to measure the takeoff ground reaction forces and a second time with 
the hurdle prior to the force plate to measure the landing ground reaction forces. Within a 
repeated measures linear mixed model during takeoff, peak vertical force (r2 = 0.1968, p < 0.01) 
and horizontal propulsive impulse (r2 = 0.0287, p = 0.02) were positively correlated with 
increasing velocity, and ground time (r2 = 0.1904, p < 0.01) was negatively correlated with 
increasing velocity. Within a repeated measures linear mixed model during landing, vertical 
impact force loading rate (r2 = 0.0099, p < 0.01) was positively correlated with increasing 
velocity and ground time (r2 = 0.2889, p < 0.01), vertical impulse (r2 = 0.1704, p = 0.02), and 
horizontal braking impulse (r2 = 0.0004, p = 0.05) were negatively correlated with increasing 
velocity. As male steeplechasers prepared to hurdle at increasing speeds, they produced a greater 
peak vertical force on the takeoff step while decreasing the ground time during takeoff, and 
increasing the horizontal propulsive impulse to carry themselves beyond the hurdle. While 
landing from the hurdle at increasing speeds, the athlete decreased the amount of time spent on 
the landing stance and the vertical impulse, and increased the magnitude of horizontal braking 
impulse and vertical loading rate. The relationships of these variables:  takeoff peak vertical 
force, takeoff ground time, takeoff horizontal impulse, landing ground time, and landing vertical 
loading rate to increasing velocity were all comparable to overground running responses. The 
data differed from running by not indicating any change in hurdling takeoff horizontal braking 
impulse; however, the horizontal braking impulse did increase on hurdling landing. It was 
expected to decrease on hurdling landing due to the foot landing more underneath the center of 
mass after hurdling compared to running. The decrease in landing vertical impulse as speed 
increased also differed from normal running steps. We suggest that further research include 
kinematic measures to better understand the relationship between these variables as hurdling 
velocity increases. 
 
 
 
 
 
 
 
Keywords: steeplechase, ground reaction force, hurdling, track



ACKNOWLEDGEMENTS 

I would like to thank Dr. Iain Hunter for his mentorship and friendship throughout this 

process as well as my committee members, Dr. Matt Seeley and Dr. Sarah Ridge, for their time 

and effort to assist in my work. I would also like to thank my wife for her love and patience in 

this journey.



 

iv 

Table of Contents 

Title Page ......................................................................................................................................... i 

Abstract ........................................................................................................................................... ii 

Acknowledgements ........................................................................................................................ iii 

Table of Contents ........................................................................................................................... iv 

List of Tables ...................................................................................................................................v 

List of Figures ................................................................................................................................ vi 

Introduction ......................................................................................................................................1 

Methods............................................................................................................................................4 

 Participants ...........................................................................................................................4 

 Procedures ............................................................................................................................4 

 Statistical Analysis ...............................................................................................................9 

Results ..............................................................................................................................................9 

 Takeoff Ground Reaction Forces .........................................................................................9 

 Landing Ground Reaction Forces ......................................................................................10 

Discussion ......................................................................................................................................12 

 Takeoff Ground Reaction Forces .......................................................................................12 

 Landing Ground Reaction Forces ......................................................................................13 

 Limitations .........................................................................................................................15 

 Training Program and Injuries ...........................................................................................15 

 Further Study .....................................................................................................................16 

Conclusion .....................................................................................................................................17 

References ......................................................................................................................................18 



 

v 

List of Tables 

Table 1 – Subjective Descriptives …………………………………………………………………4 

Table 2 – Pace Range Information for Collection Setup…………………………………………..7 

Table 3 – Takeoff Variable Descriptive Data ……………………………………………………..9 

Table 4 – Landing Variable Descriptive Data …………………………………………………...11



 

vi 

List of Figures 

Figure 1 – Steeplechase Track Setup ……………………………………………………………...1 

Figure 2 – Steeplechase Hurdle and Steeplechase Water Jump …………………………………..2 

Figure 3 – Data Collection Setup ………………………………………………………………….8 

Figure 4 – Takeoff Variable Scatterplots ………………………………………………………...10 

Figure 5 – Landing Variable Scatterplots ………………………………………………………..11 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

1 

1. Introduction 

 Questions about the limits of human physical performance have led to competitive events 

throughout history. Over time, a unique event developed in track and field called the 

steeplechase (Figure 1). The men’s event requires participants to jump over thirty-five 0.914-

meter-tall obstacles, 4 rigid barriers and 1 fixed barrier followed by a 3.66-meter-long water pit 

(Figure 2) per lap, over a 3000-meter distance.1 It is an event competed throughout the United 

States and internationally at Junior (under age 19) and Senior levels. 

 
Figure 1-Steeplechase Track Setup (courtesy of German Federation). The steeplechase is a 3000-
meter event approximately 7.5 laps long. The event involves 4 hurdles and 1 water jump per lap 
starting with hurdle 1. 
 

Most of the knowledge about steeplechase has come from relatively subjective coaching 

strategies; e.g., emphasis concerning specific racing skills, need for flexibility, coordination, and 

fearlessness.2,3,4,5,6,7,8 Only a few peer-reviewed scientific articles exist specific to the 

steeplechase; 1 investigating the energetic cost of steeplechase hurdling,9 a few identifying 

kinematics,10,11,12,13 and 1 investigating kinetics.14 A related study on track hurdling compared 

steeplechase hurdling to sprint hurdling mechanics,15 while other studies focused entirely on 

sprint hurdling.16,17,18,19,20,21 Some related studies that have focused on obstacle navigation 

outside of track and field performance have investigated running mechanics during the approach 

and clearance of obstacles22,23 and changes in running foot strikes as obstacle heights change.24 
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Figure 2-Steeplechase Hurdle and Steeplechase Water Jump (from German Federation). 
Obstacles are 0.914-meter tall for men and 0.762-meter tall for women. The hurdles are rigid 
allowing for little to no movement and the water jump is fixed in place. 
 

After the women’s steeplechase event was first competed during the 2005 World 

Championships, Hunter compared men and women steeplechasers and showed that, relative to 

men, women’s horizontal velocity decreased less during hurdling most likely due to the lower 

barrier heights while hurdling (0.914-meter for the men and 0.762-meter for the women).1,11 

However, the women’s horizontal velocity slowed more than the men’s during the water jump 

obstacle.12 Studying the effect of hurdling on oxygen consumption, Earl found that hurdling 

requires a greater V̇O2 response compared to open running by 2.6%, but that accelerating during 

the hurdle approach assists in maintaining horizontal velocity while not requiring a significant 

increase in energy expenditure.9 Another study that analyzed kinematic variables of steeplechase 

performance identified that the faster and slower male race groups were significantly different 

for hurdling variables such as obstacle pace, and flight distance; and for the water jump variables 
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significant differences were found for obstacle pace and loss of velocity. The faster athletes 

navigated the obstacles more quickly and lost a smaller percentage of their velocity due to the 

obstacle.13 This information provided potential sources for improving steeplechase performance. 

Several research studies focused on the ground reaction forces in running found that as 

speed increased the peak vertical ground reaction force increased, and as the peak vertical 

ground reaction force increased the ground time decreased.25,26,27 Most recently, researchers 

comparing open running ground reaction forces to steeplechase hurdling and water jump ground 

reaction forces found significantly higher vertical ground reaction forces on the body during 

takeoff and landing of steeplechase hurdle and water jump navigation compared to open running 

at a fixed pace.14 The effect that changes in pace will have on the ground reaction forces from 

steeplechase hurdling is not yet known. 

This study describes how the takeoff and landing ground reaction forces for male 

Division I collegiate level steeplechasers change with increasing pace. It was hypothesized that 

increases in pace would correspond with increases in peak vertical force, vertical impact force 

loading rate, vertical impulse, and horizontal propulsive impulse, and decreases in horizontal 

braking impulse and ground time during hurdle takeoff and landing. The ground reaction force 

measurements from this study, other studies, and future research could help provide coaches and 

athletes with the knowledge needed to design training protocols that will assist steeplechasers to 

safely experience ground reaction forces during the steeplechase through sport specific 

plyometric or resistance training programs. The data collected during this study might also serve 

as a model, a representation of ground reaction force for high-level steeplechasers performing at 

high speeds. 
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2. Material and Methods 

2.1 Participants 

 Pilot data analysis of the peak vertical ground reaction force provided estimates of 

measurement variability and expected differences from slowest to fastest speeds. These pilot data 

indicated that 12 subjects were needed to produce a power of 0.80 with alpha set at 0.05.  

Subjects were current or former (having competed in the last 2 years) NCAA Division I male 

steeplechase athletes recruited through personal correspondence and word of mouth to 

participate in this study (Table 1). Subjects ranged from personal best times of 8:36 to 9:39. 

Written informed consent was obtained for each participant prior to participation in the study, 

and the university institutional review board approved the protocol prior to data collection. 

Table 1 – Subject Descriptives 

Age 
(years) Height (m) 

Mass 
(kg) 

Left Leg 
Length (m) 

Right Leg 
Length (m) 

Personal Best 
(min:ss) 

Number of 
Seasons 

Career 
Races 

23 ± 2 1.79 ± 0.04 68.7 ± 4.3 0.93 ± 0.04 0.93 ± 0.04 8:59.5 ± 18.6 2.2 ±1.3 7.6 ± 5.9 
Mean ± standard deviation. Twelve subjects were used who were current or former (having competed in 
the last 2 years) NCAA Division I male steeplechase athletes. 
 
2.2 Procedures 

 This study was a cross sectional design collecting ground reaction forces at different 

running velocities for subjects in 1 session. Takeoff and landing trials were completed 

separately. Each trial measured either the ground reaction forces during the takeoff step of a 

hurdle motion or the landing step of a hurdle motion, but not both, because there was not access 

to a location with the capability to measure both the takeoff and landing of a single jump. Each 

trial velocity and takeoff or landing measurement was collected in a random order for each 

subject.  

 Subjects were recruited as outlined above and scheduled for a data collection session 

lasting approximately 60 minutes. Subjects reported to the indoor track facility where a force 
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plate was embedded under the track surface. At the beginning of a session, subjects were 

presented with the informed consent form and given time to read and understand the form. After 

written consent was given, the subjects filled out the subject information sheet and then began 

the warm-up procedure. In addition to reporting his name, date, age, height, and weight, the 

subject added his personal best time, the number of steeplechase seasons in which he had 

competed, the number of steeplechase races in which he had competed, and his preferred lead 

leg. 

 Subjects were allowed to warm-up at a self-selected pace around the indoor track for one-

half mile. Following the running warm-up, subjects performed a hurdle warm-up beginning with 

wall drills and then over hurdle drills familiar to steeplechase athletes. Each drill was 

demonstrated before the subjects were asked to complete the drill. 

The wall drills had 2 parts: lead leg drills and trail leg drills. The lead leg drills placed a 

hurdle (UCS Spirit, NV, USA) against a wall at the men’s barrier height of 36 inches and 

subjects performed a walking approach to the hurdle before extending the lead leg up and over 

the hurdle until the leg touched the wall over the hurdle simulating the lead leg motion of a 

hurdle. The subjects then backed up and repeated the procedure. The trail leg drills moved the 

hurdle 1 hurdle length from the wall allowing the subjects to stand next to the hurdle and lean 

forward to place both hands on the wall. The subjects lifted their hurdle side leg up and over the 

hurdle simulating the trail leg motion of the hurdle. The subjects then brought the leg back to the 

hurdle and repeated the procedure. In summary, the wall drills consisted of 5 lead leg drills for 

each leg and were followed by 5 trail leg drills for each leg. 

A hurdle was placed near the force plate where the data collection occurred. The 

placement of the hurdle was adjusted for each subject’s preference and trial speed to ensure that 
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the subject landed on the force plate. The subjects then changed into steeplechase racing shoes 

and practiced 2 or 3 running approaches with the hurdle positioned with the force plate to finish 

the warm up procedure. During the running approaches, the starting location was identified to 

assist the subjects in approaching the hurdle without breaking stride during the data collection. 

With the subject’s warm-up completed, he was then prepared to begin the data collection portion 

of the testing procedure. 

The trial order for each subject was initially determined through a random order 

generation. Each subject then attempted to follow the given order; however, to avoid risk of 

injury from fatigue due to excessive hurdling, a trial was counted whether or not it was at the 

correct pace if that pace had not yet been completed. The subject then attempted to continue the 

generated order again while still allowing for pacing mistakes. The pace ranged from a 4:00-

minute pace to a 5:00-minute pace per 1600 meters and was divided into six 10-second intervals 

resulting in pace ranges of 4:00–4:10, 4:10–4:20, 4:20–4:30, 4:30–4:40, 4:40–4:50, and 4:50–

5:00. Successful trials within each pace range were measured for both a takeoff and a landing. 

These velocities included the range of elite steeplechasers’ finishing velocities to collegiate 

steeplechasers’ slower lap velocities representing the realistic paces seen during a steeplechase 

competition (Table 2). A trial did not count if the hurdle was hit during navigation or the wrong 

leg was used as the lead leg. A total of 3 attempts (among 3 subjects) were excluded due to 

hitting the hurdle and 22 attempts (among 8 subjects) were excluded due to leading with the 

wrong leg. An average of 24.3 ± 3.1 attempts was needed per subject to complete the 6 takeoff 

measures and the 6 landing measures. No subject completed the trials in the same order. Six 

subjects completed the trials beginning with the takeoff measures and six subjects beginning 

with the landing measures. 
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Table 2 – Pace Range Information for Collection Setup 
Time per 1600m 

(min:s) 
Time per 400m 

(s) 
3000m Steeplechase 

Time (min:s) 
Velocity 

(m/s) 
20 Meter Time 

(s) 
4:00 60.0 7:30 6.66 3.00 
4:10 62.5 7:49 6.40 3.13 
4:20 65.0 8:07 6.15 3.25 
4:30 67.5 8:26 5.93 3.37 
4:40 70.0 8:45 5.71 3.50 
4:50 72.5 9:04 5.52 3.62 
5:00 75.0 9:23 5.33 3.75 

Pace ranged from 4:00 pace to 5:00 pace, per 1600 meters, and was divided into six 10 second 
intervals resulting in pace ranges of 4:00–4:10, 4:10–4:20, 4:20–4:30, 4:30–4:40, 4:40–4:50, and 
4:50–5:00. These velocities included the range of the elite steeplechaser’s finishing velocities to 
the collegiate steeplechaser’s slower lap velocities representing the realistic paces seen during a 
steeplechase competition. 
 

Timing lights (Brower Timing Systems, UT, USA) were placed 20-meters apart with the 

first 10-meters occurring prior to the end of force plate and the second 10-meters following the 

force plate to calculate the velocity of the trial (Figure 3). Trials were categorized using the 20-

meter time ranges reported in Table 2. 

This study utilized a 60cm by 90cm Bertec force plate (Bertec Corporation, OH, USA) 

mounted into the surface of an indoor track collecting at 1000 Hz to measure the takeoff and 

landing ground reaction forces. A hurdle (UCS Spirit, NV, USA) set at 0.914m tall was placed 

after the force plate to measure the ground reaction forces for hurdling takeoff and before the 

force plate to measure the ground reaction forces for hurdling landing. A cone was placed 5-

meters beyond the second set of timing lights as a finishing point to assist the subject in 

maintaining his velocity through the entire timing zone (Figure 3). 
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Figure 3-Data Collection Setup. Subjects accelerated during the approach before passing through 
the first set of timing lights 10-meters prior to the force plate. Subjects cleared the hurdle onto 
the force plate to measure landing ground reaction force and off the force plate to measure 
takeoff ground reaction force. Subjects attempted to maintain an even pace throughout the timing 
zone aided by a cone acting as a finishing mark 5-meters beyond the second set of timing lights. 
Trial pace was determined by the 20-meter time. 
 

A Sony Alpha a7S II Mirrorless Digital Camera (Sony Corporation, Tokyo, Japan) was 

placed facing perpendicular to the running direction capturing a sagittal plane view. The camera 

collected at 120 Hz to confirm foot placement on the force plate. 

 Force data were filtered using a fourth order 50 Hz low-pass zero-lag Butterworth filter.  

After processing the data, peak vertical force (PVF), vertical impact force loading rate (VLR), 

vertical impulse (VIM), horizontal braking impulse (HBI), horizontal propulsive impulse (HPI), 

change in velocity (CIV), and ground time (GT) were calculated using a custom macro in Visual 

Basic for Applications (Microsoft Corp, Seattle, WA). The point preceding a threshold of greater 

than 10 N for foot strike and the first point less than 5 N for toe off was used to calculate GT. 
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2.3 Statistical Analysis 

A repeated measures linear mixed model analysis was run using SAS (IBM Corp, Cary, 

TX) with the dependent variables versus running velocity. This determined the relationship 

between the ground reaction force variables and velocity. Alpha was set at 0.05. The repeated 

measures linear mixed model analysis predicts the velocities based upon the dependent variables. 

Within-subject correlations existed within our data set. The mixed model provides us with a 

method to predict these correlations in order to produce better estimates of the independent fixed 

effects.28 

3. Results 

3.1 Takeoff Ground Reaction Forces 

 Descriptive statistics for the takeoff variables in each pace range are listed in Table 3. 

PVF (r2 = 0.1968, p < 0.01) and HPI (r2 = 0.0287, p = 0.02) were positively correlated with 

velocity, while GT (r2 = 0.1904, p < 0.01) was negatively correlated with velocity (Figure 4). 

Table 3 – Takeoff Variable Descriptive Data 
Variable 4:00–4:10 4:10–4:20 4:20–4:30 4:30–4:40 4:40–4:50 4:50–5:00 

Velocity (m/s) 6.53 ± 0.07 6.25 ± 0.08 6.05 ± 0.08 5.80 ± 0.06 5.62 ± 0.07 5.44 ± 0.04 

PVF** (BW) 6.1 ± 1.2 6.0 ± 0.8 5.7 ± 0.8 5.4 ± 0.9 4.9 ± 0.8 4.8 ± 1.0 

GT** (s) 0.158 ± 0.007 0.165 ± 0.011 0.164 ± 0.011 0.172 ± 0.013 0.172 ± 0.013 0.174 ± 0.011 

VIM (BWs) 0.415 ± 0.023 0.417 ± 0.016 0.418 ± 0.018 0.429 ± 0.026 0.428 ± 0.021 0.425 ± 0.022 

HBI (BWs) -0.074 ± 0.026 -0.070 ± 0.023 -0.075 ± 0.026 -0.079 ± 0.022 -0.076 ± 0.026 -0.074 ± 0.022 

HPI** (BWs) 0.034 ± 0.010 0.032 ± 0.009 0.033 ± 0.015 0.031 ± 0.011 0.031 ± 0.010 0.029 ± 0.010 

CIV (m/s) -0.40 ± 0.27 -0.37 ± 0.23 -0.41 ± 0.35 -0.47 ± 0.19 -0.44 ± 0.28 -0.45 ± 0.23 

VLR (BW/s) 340.9 ± 113.1 327.0 ± 81.3 328.7 ± 83.5 315.8 ± 64.3 292.8 ± 82.8 276.4 ± 89.2 

Mean ± standard deviation. **Indicates statistically significant variables with increasing 
velocity. PVF (r2 = 0.1968, p < 0.01) and HPI (r2 = 0.0287, p = 0.02) were positively correlated 
with increasing velocity, while GT (r2 = 0.1904, p < 0.01) was negatively correlated with 
increasing velocity. 
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Figure 4-Takeoff Variable Scatterplots. Individual scatterplots for statistically significant 
variables correlated with increasing velocity. PVF (r2 = 0.1968, p < 0.01) and HPI (r2 = 0.0287, p 
= 0.02) were positively correlated with increasing velocity, while GT (r2 = 0.1904, p < 0.01) was 
negatively correlated with increasing velocity. 
 
3.2 Landing Ground Reaction Forces 

 Descriptive statistics for the landing variables in each pace range are listed in Table 4. GT 

(r2 = 0.2889, p < 0.01), VIM (r2 = 0.1704, p = 0.02), and HBI (r2 = 0.0004, p = 0.05) were each 

negatively correlated with velocity, while VLR (r2 = 0.0099, p < 0.01) was positively correlated 

with velocity (Figure 5). 

All subjects were able to complete a successful takeoff and landing trial within each pace 

range resulting in no missing data points for any subject. The assumptions for a repeated 

measured linear mixed model analysis are similar to those of linear regression, but we assume 

additional within-subject covariance. These assumptions seem reasonably well met by this data 

set. We do not feel the covariances of the dependent variables included are significant enough to 
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produce model instability and the data seem linear within the range of speeds observed in this 

study. 

Table 4 – Landing Variable Descriptive Data 

Variable 4:00–4:10 4:10–4:20 4:20–4:30 4:30–4:40 4:40–4:50 4:50–5:00 
Velocity (m/s) 6.53 ± 0.09 6.28 ± 0.07 6.03 ± 0.08 5.82 ± 0.06 5.60 ± 0.05 5.41 ± 0.06 

PVF (BW) 4.5 ± 0.9 4.1 ± 0.6 4.1 ± 0.7 4.2 ± 0.6 4.3 ± 0.9 4.3 ± 0.6 

GT** (s) 0.135 ± 0.011 0.141 ± 0.017 0.147 ± 0.019 0.149 ± 0.015 0.156 ± 0.015 0.164 ± 0.018 

VIM** (BWs) 0.290 ± 0.035 0.292 ± 0.053 0.302 ± 0.056 0.309 ± 0.039 0.331 ± 0.037 0.345 ± 0.044 

HBI** (BWs) -0.009 ± 0.002 -0.010 ± 0.003 -0.009 ± 0.003 -0.009 ± 0.002 -0.010 ± 0.002 -0.009 ± 0.002 

HPI (BWs) 0.046 ± 0.007 0.047 ± 0.007 0.047 ± 0.010 0.051 ± 0.008 0.050 ± 0.008 0.052 ± 0.008 

CIV (m/s) 0.36 ± 0.09 0.36 ± 0.07 0.37 ± 0.10 0.41 ± 0.08 0.40 ± 0.08 0.42 ± 0.07 

VLR** BW/s) 423.1 ± 108.8 375.3 ± 98.1 378.3 ± 95.9 371.7 ± 78.3 393.4 ± 103.2 389.1 ± 98.2 
Mean ± standard deviation. **Indicates statistically significant variables with increasing velocity. VLR (r2 = 
0.0099, p < 0.01) was positively correlated with increasing velocity and GT (r2 = 0.2889, p < 0.01), VIM (r2 = 
0.1704, p = 0.02), and HBI (r2 = 0.0004, p = 0.05) were negatively correlated with increasing velocity. 
 

 
Figure 5-Landing Variable Scatterplots. Individual scatterplots for statistically significant 
variables correlated with increasing velocity. VLR (r2 = 0.0099, p-value < 0.01) was positively 
correlated with increasing velocity and GT (r2 = 0.2889, p < 0.01), VIM (r2 = 0.1704, p = 0.02), 
and HBI (r2 = 0.0004, p = 0.05) were negatively correlated with increasing velocity. 
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4. Discussion 

 The purpose of this study was to investigate the effect of increasing pace on the ground 

reaction forces during steeplechase hurdling takeoff and landing. We observed a positive 

relationship between increasing velocity and takeoff PVF, takeoff HPI, and landing VLR and a 

negative relationship between increasing velocity and takeoff GT, landing GT, landing VIM, and 

landing HBI. These results confirm some of our hypothesized relationships and show that the 

relationship between increasing velocity and the takeoff and the landing measurements are 

different. Average takeoff and landing variable values from this study are comparable to the 

values measured by Kipp et al. after considering the faster average speed of this study.14 

4.1 Takeoff Ground Reaction Forces 

As expected, during hurdling takeoff the PVF increased and the GT decreased as the trial 

velocity increased which is consistent with other running related studies.25,26,27 Two of these 

studies also found that the HPI of running increased with increased velocity as did the HPI of 

these hurdling trials.26,27 In addition to the increase in HPI in running, Munro et al. noted an 

increase in HBI as the running speed increased while our study did not see a statistically 

significant change in takeoff HBI as the hurdling trial speed increased. This suggested that 

initiating the hurdling movement alters the step from the normal running pattern and tempers the 

change in HBI. With the increase in HPI and lack of HBI change, steeplechasers should be able 

to take off farther back, jump a little lower, and lose less horizontal velocity overall as their 

hurdle velocity increases. 

This analysis suggested that the athlete should prepare through a combined running and 

strength training program for greater PVF, to generate forces over less time, and to generate 

greater horizontal push off forces during the takeoff phase of hurdling when increasing velocity. 
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The majority of the variance explained by our model was by takeoff PVF and takeoff GT with 

takeoff HPI having a small R2 value. Despite being statistically significant, it is possible that 

takeoff HPI may have less practical significance. These preparations will allow athletes to 

increase their training and racing velocities for the best performance during this phase of 

hurdling. 

4.2 Landing Ground Reaction Forces 

The landing ground reaction force variable trends also followed the expected trends with 

decreased GT and increased VLR as velocity increased similar to overground running.27 

However, it was surprising to see that the hurdling VIM decreased as the trial velocity increased. 

The decreased VIM is highly related to the decreased ground time. It may also be related to the 

center of mass continuing to lower until the second support step, the step with the trail leg 

following the initial landing of the lead leg, as seen in sprint hurdling.17 One possibility for the 

decreased VIM on landing as velocity increased is that the athlete may not be in a position 

advantageous for generating the vertical forces to propel himself upward similar to running. Due 

to the need to safely navigate the rigid barrier, the subject may be landing with their body in a 

position that does not allow for efficient or effective production of vertical impulse similar to 

running. Also, as a runner increases their velocity, their PVF increases, but their GT 

decreases25,26; therefore, the VIM would decrease if the GT decreased more relative to the PVF 

increase. Another possibility is that in hurdling performance it is not necessary to generate a 

larger VIM as velocity increases as previously hypothesized. This could be related to the smaller 

impulse requiring a smaller energy cost; however, there could be an increase in energy cost 

occurring somewhere else upon landing due to the unusual landing position compared with 

running. This cost might come during the flight to get the body into a better landing position or 
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it’s also possible that the decreased VIM is the best way to land from hurdling at higher 

velocities. The net energy cost would have to be investigated to know which movements are 

ideal for overall movement economy. 

It was also surprising that HBI increased. Although Munro et al. did note a small increase 

in magnitude of HBI as speed increased in running, it was hypothesized that the HBI would be 

reduced on hurdling landing from the different body positioning of landing (the foot typically 

being farther under the hip in hurdling landing19) from a hurdle rather than from running.27 The 

foot landing more underneath the body during hurdling, sometimes directly under the center of 

mass, should result in less braking force. It is possible that the increased velocity made it more 

difficult to move the landing leg into a position underneath the body prior to landing from 

hurdling to reduce the HBI, although no kinematic measures were included in this study.  

During hurdling landing, this analysis suggested that the athlete should prepare to 

generate forces over less time, to generate smaller VIM likely through the smaller stance time, to 

overcome greater amounts of HBI, and to generate the PVF more quickly as the velocity 

increases. Similar to the takeoff variables, the majority of the variance was explained by the 

landing GT and landing VIM with landing VLR and landing HBI having small R2 values. More 

investigating is needed to determine the practical significance of these variables beyond the 

statistical significance. Preparing athletes to produce these changes as their training and racing 

velocities increase will allow them to produce their best performance through the landing phase 

of hurdling. 

This study investigated the kinetics of steeplechase hurdling, but does not address the 

kinematics related to these forces. Investigations into the kinematics may also reveal the effect of 

increasing speed on body positioning, in particular the center of mass trajectory. 
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4.3 Limitations 

Data were not taken from within a steeplechase competition; rather, collected in a simulated 

hurdle setting. It is likely that technique would vary a little in a race due to fatigue, excitement of 

the race situation, or having other competitors around. For safety, data were collected using a 

hurdle rather than a traditional steeplechase barrier. While the heights are the same between the 

hurdles and the barriers, athletes may have modified their technique slightly since the hurdles are 

less of a risk for injury. Data could not be collected for takeoff and landing for a single jump 

which required 2 separate statistical analyses.  However, we were still able to find sufficient 

statistical power to answer the questions of interest due to having multiple trials of each 

condition. 

4.4 Training Program and Injuries 

 Previous research already showed greater forces in steeplechase hurdling compared with 

treadmill running.14 We now also know how these forces change as hurdling speeds increase. In 

preparation for a steeplechase season, and while increasing speed as fitness improves, 

steeplechasers should be careful to follow principles of adaptation to stress allowing the body to 

recover from stress and build strength. Training plans included in the buildup to a season of 

steeplechasing and throughout the competitive season, including drills and exercises that 

strengthen the muscles, the tendons, and the bones expected to be affected by hurdling, should 

help minimize injury risk while building strength and power.  

Plyometric training has been shown to increase lower leg power and knee extensor 

strength in male soccer players,29 decrease ground contact time during an agility test,30,31 and 

improve measures of neuromuscular power and control.32 Lateral hopping plyometrics produced 

benefits for leg power through higher peak force, peak rate of force development, and impulse 
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compared to lateral speed plyometrics which produced benefits for foot strike frequency through 

shorter ground contact times.33 Many runners incorporate plyometrics into their training 

programs and these data suggest the plyometrics are of greater importance in steeplechase 

training. Resistance and plyometric training will also prepare the body to withstand the forces 

that occur above normal running.34,35,36,37 

As velocity increased, many of the changes in ground reaction force variables of hurdling 

were similar to the changes noted in running as velocity increased. As a result, training focused 

on better performance at higher running velocities will benefit the athlete in steeplechase 

hurdling performance as well. However, because some differences were noted, the steeplechase 

athlete will still benefit from steeplechase hurdling-specific workouts and exercises to prepare 

specifically for the steeplechase event. 

4.5 Further Study 

 Our statistical analysis showed significant correlations between many variables. The best-

fitting models for takeoff and landing were used in this discussion. Some excluded variables 

appeared to be related to changes in velocity, but were determined to be nonsignificant when the 

more significant variables were included in the model first. Therefore, although the excluded 

variables in each analysis are not as strongly connected with changes in velocity as the ones 

reported, they still warrant further investigation and should be considered as meaningful 

variables to steeplechase hurdling performance. 

 This study adds to the knowledge of the steeplechase event through the effect of 

increasing velocity on ground reaction force variables; however, there is much left to learn about 

steeplechase performance. Other areas of study that would also contribute to the understanding 

of the steeplechase event would be how changes in velocity influences the kinematics of 
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steeplechase hurdling, the ground reaction forces during water jump obstacle navigation, the 

variability of the ground reaction forces during hurdling and water jump clearance, how the 

approach steps and second support landing steps interact with the obstacle navigation, and how 

different training protocols may affect the ground reaction forces and event performance. 

5. Conclusion 

 This study was the first to examine how ground reaction force variables change in 

steeplechase hurdling as velocity increases. As male steeplechasers prepare to hurdle at 

increasing speeds, they produce a greater PVF on the takeoff step while decreasing the GT 

during takeoff, and increasing the HPI to carry themselves beyond the hurdle. While landing 

from the hurdle at increasing speeds, the athlete decreased the amount of time spent on the 

landing stance, decreased the VIM, and the magnitude of HBI and VLR increased. The greater 

forces resulting from increased velocity requires runners to carefully adapt to the faster race 

paces towards which they are training in order to protect themselves from injury. Since the forces 

are changing, different body positions are likely occurring as well. Thus, steeplechasers may 

need training time focused on technique in addition to physiological conditioning as they 

progress to greater velocities. 
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