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ABSTRACT 
 

The Effects of Experimental Anterior Knee Pain on 
Bilateral Ground Reaction Forces 

During Running 
 

Emily Rachel Cronk 
Department of Exercise Sciences, BYU 

Master of Science 
  

 The purpose of this study was to examine the independent effects of anterior knee pain 
(AKP) on bilateral ground reaction force (GRF) during running, with a focus on GRF applied to 
the uninvolved leg, which, prior to this study, had never been evaluated. Twelve volunteers 
completed three data collection sessions, that corresponded to one of three conditions (control, 
sham, and pain), in a counterbalanced order. For each session, subjects ran for five minutes. For 
the pain and sham sessions, respectively, hypertonic and isotonic saline were infused into the 
infrapatellar fat pad of the right leg during the running, while no infusion was involved in the 
control session. GRF data were collected during the final 30 seconds of running. Functional 
statistics were used to determine the effects of session and leg (right and left) on vertical and 
anterior-posterior GRF throughout the stance phase of running. A mixed model ANOVA was 
used to determine the effect of session and leg on vertical GRF load rate, impulse due to vertical, 
propulsive, and braking GRFs. A repeated measures ANOVA was used to determine the effect of 
session and time on subject-perceived pain. Alpha was set to 0.05 for all statistical comparisons. 
Unexpectedly, no significant session × leg interaction existed for vertical GRF at any time point 
during stance phase of running. Similarly, the experimental AKP did not affect impulse due to 
vertical GRF or load rate for the vertical GRF. There was, however, a significant session × leg 
interaction for anterior-posterior GRF. For the pain session, involved-leg braking GRF was 11% 
greater than uninvolved-leg braking GRF during the first 9% of stance phase. There was also a 
significant between-session difference for involved-leg braking impulse (p = 0.023) and 
uninvolved-leg propulsive impulse (p = 0.027). The mean involved-leg braking impulses were 
11.3 Ns (± 0.6), 13.2 Ns (± 0.6) and 13.2 Ns (± 0.6) for the pain, control, and sham sessions, 
respectively. Mean uninvolved-leg propulsive impulses were 14.8 Ns (± 1.3), 13.6 Ns (± 1.3), 
and 13.5 Ns (± 1.3) for the pain, control, and sham sessions, respectively. These differences in 
anterior-posterior GRF might reflect a compensatory unloading of the involved leg due to AKP. 
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Introduction 

Knee pathology and the related knee pain are common.18,54,55 Knee pain affects one in 

four people over the age of 55,54 and the knee is the most commonly injured joint for athletes.18 

Specifically, anterior knee pain (AKP) is one of the most common knee problems,18 particularly 

in runners.55 AKP etiology is unclear. Proposed causes of AKP include, but are not limited to, 

increased patellar mobility,62 elevated patellofemoral stress,25 and decreased patellofemoral 

contact area.25 

It is thought that individuals who suffer from AKP employ various compensatory 

strategies to unload the involved (i.e., painful) leg, in an attempt to decrease pain.7,13,38,50 These 

compensatory strategies could involve altered joint kinetics24,27,36,42,50 and kinematics,38,60 as well 

as abnormal neural activation characteristics.14,29,42 Many of these neuromechanical alterations 

are reflected in altered ground reaction force (GRF) that is transmitted to the involved leg. GRF 

has been used to reflect altered neuromechanics for the entire lower extremity. For example, 

arthrogenic muscle inhibition, due to AKP, alters GRF.23,26,36,50 AKP inhibits quadriceps 

activation, thereby reducing knee extension torque, vertical GRF, and braking GRF.23,26,36,41,50 

Other muscles that may also be inhibited by AKP include the gastrocnemius and gluteus medius, 

which contribute to the propulsive and vertical GRFs.20,24,36 If allowed to persist, abnormal GRF, 

applied to the involved leg, might lead to other pathologies (e.g., knee joint effusion, 

patellofemoral joint crepitus, and abnormal patellar tracking).45 

While the effects of AKP on the involved leg have been documented, effects of AKP on 

the uninvolved (i.e., pain-free) leg have not. Examining the effects of AKP on the uninvolved leg 

is important because as individuals unload the involved leg,7,13,38,50 a greater load is likely 

applied to the uninvolved leg, which could potentially cause pathologies for the uninvolved leg. 
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In addition to pain, other factors are also associated with knee pathology (e.g., joint 

effusion,57 muscle weakness,35 and inflammation4), which make the independent effects of AKP 

difficult to study. For this reason, experimental AKP models have been developed to learn more 

regarding the independent effects of AKP. These models involve hypertonic saline that is placed 

in the infrapatellar fat pad.7,20,28,50 Pain is produced by the hypertonic saline due to the higher 

concentration of salt in the saline compared to normal body fluids. It is thought that the AKP that 

results from these models effectively represents neuromechanical effects of AKP; for example, 

experimental AKP lowers frontal and sagittal plane knee joint moments,26 impairs postural 

control,28 and inhibits involuntary and voluntary quadriceps activation patterns.42 Other 

characteristics of experimental AKP (e.g., distribution patterns and quality of pain) have also 

been shown to represent clinical AKP.8 

The purpose of this study was to examine the independent effects of AKP on bilateral 

GRF during running, with a focus on the GRF applied to the uninvolved leg. We hypothesized 

that, relative to pain-free running, experimental AKP would increase vertical GRF that is 

transmitted to the uninvolved leg, as well as increase vertical GRF load rate and impulse 

transmitted to the uninvolved leg (indicating increased load to the uninvolved leg). We also 

hypothesized that experimental AKP would decrease braking GRF for the involved leg, as well 

as increase propulsive GRF for the uninvolved leg. 

Methods 

Subjects 

 Twelve volunteers between the ages of 18 and 40 participated in this study. Several 

statistical power analyses, each based on a previously studied GRF characteristic, such as peak 

braking GRF and peak vertical GRF,50 and n = 12 subjects who experienced three conditions,50 
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suggested that sufficient power (> 0.80) could be expected with this sample size. The same 

previous research indicated that we could expect effect sizes that range from 0.8 to one.50 This 

sample size and the associated expected statistical power are based on 95% confidence and rely 

on assumptions of normal distribution and consistent variance for the dependent variables. 

Subjects were required to have no history of (1) lower extremity injury in the six months prior to 

participation in this study, and (2) knee-related surgery in their lifetime. Further, subjects were 

required to be running at least 10 miles per week at the time of data collection in order to 

increase the likelihood that they would be able to complete the data collection protocol. To 

ensure that subjects met these criteria, they were assessed by a questionnaire that involved all of 

the aforementioned criteria. 

Experimental Protocol 

 Subjects completed three data collection sessions in the same biomechanics laboratory. 

Each session corresponded to one of three conditions (control, sham, and pain), with each 

session being held 48 hours apart. Conditions were administered in a counterbalanced order. 

Subjects were instructed to refrain from exercising before and throughout data collection, 

starting 48 hours prior to the first data collection session and lasting until they had completed all 

three sessions. Before any of the data collection sessions, subjects met with researchers once to 

become familiar with the research protocol and provide informed consent. Prior to the collection 

of any data, all data collection procedures were approved by the appropriate institutional review 

board. 

 For each data collection session, subjects reported to the laboratory in the same pair of 

their own athletic shoes. Subjects then changed into running shorts that were provided by the 

researchers. Female subjects completed each session in running shorts, shoes, and their own 
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sports bra, while male subjects completed each session in just running shorts and shoes. To 

warm-up, subjects walked on the instrumented treadmill (ATMI, Watertown, MA, USA) for five 

minutes at a self-selected walking speed, at a speed that was representative of their typical 

walking speed. Next subjects ran for five minutes on the treadmill at one of three speeds (3.0, 

3.5, or 4.0 m/s). Subjects were instructed to select the highest of the three speeds that they could 

comfortably run for five continuous minutes. The same selected running speed was used for each 

session, as determined during the first data collection session. 

 For each data collection session, upon completion of the warm-up, subjects laid supine on 

a treatment table. For the sham and pain sessions, the infusions (sham: a continuous infusion of 

isotonic solution (0.9% NaCl) into the right infrapatellar fat pad; pain: a continuous infusion of 

hypertonic solution (5.0% NaCl)) were initiated at this point. Prior to each needle stick, the skin 

was shaved and prepared with an iodine swab and alcohol wipe. A 20-gauge flexible catheter 

(Becton Dixon Medical Systems, Sandy, UT) was then inserted into the infrapatellar fat pad of 

the right leg. The catheter was inserted from the lateral side of the leg in an inferio-medial 

direction to a depth of one cm. The catheter was placed immediately posterior to the patellar 

tendon, in the middle of the infrapatellar fat pad, as has been done previously.20,28,50 Diagnostic 

ultrasound (General Electric, Wauwatosa, WI) was used to evaluate correct placement of the 

catheter during pilot testing, though it was not used during data collection. The catheter was 

placed in the right leg for every subject for each session. A plastic 76-cm connection tube was 

used to connect the catheter to a 30-mL syringe and portable syringe pump. For the duration of 

the run during the sham and pain sessions, the pump was held in a miniature fanny pack provided 

for the subjects to wear during these data collection sessions. The fanny pack was not worn 

during the control session. Subjects were blinded about which solution had been prepared for 
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infusion. Once the infusion had begun, subjects laid supine for two minutes, sat for two minutes, 

and stood for two minutes. These six minutes helped subjects to become familiar with the 

infusion and consequent experimental knee pain, and minimize the chance of a vasovagal 

response (i.e., the subjects becoming light-headed and passing out). None of the subjects 

experienced a vasovagal response due to the infusion. During the control session, subjects 

followed the same familiarization protocol, although an infusion was not involved. 

 For each data collection session, following the six-minute familiarization period, subjects 

performed 10 minutes of exercise, five minutes of running and five minutes of walking, on the 

instrumented treadmill. Between subjects, the walk and the run were performed in a 

counterbalanced order, with each subject performing the walk and the run in their designated 

order for all three sessions. Three-dimensional GRFs were recorded (2000 Hz) during the final 

30 seconds of the run. Although we observed walking, it is not presently reported or discussed, 

due to questionable accuracy of the data for several subjects. At the conclusion of the walking 

and running, subjects returned to the treatment table, the catheter was removed, and the subjects 

rested for 30 minutes. The control session was identical to the sham and pain sessions, except 

that there was no involved infusion. For each session, subject-perceived pain was measured 

every three minutes, from immediately prior to the needle stick to 30 minutes after the 

completion of the exercise, using a 10 cm visual analog scale (VAS). On the left end of the 

visual analog scale, ‘no pain’ was typed, while ‘worst possible pain’ was typed on the right end 

of the scale. The subject-perceived pain data was observed to ensure that the experimental AKP 

was perceived consistently by the subjects. Ten consecutive stance phases from the run were 

analyzed. Figure 1 is a schematic that describes the timeline that was followed for each data 

collection session. 
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Statistical Analysis 

 The independent variables for this study were session, leg, and time. The continuous 

dependent variables were vertical and anterior-posterior GRF. The discrete dependent variables 

were subject-perceived pain, load rate between initial contact and impact peak vertical GRF, and 

impulse due to the vertical GRF (throughout stance), and propulsive and braking GRF. Vertical 

and anterior-posterior GRF, across the entire stance phase, were compared between sessions 

(control, sham, and pain) and legs (right and left) using a functional analysis approach. This 

approach allows for the comparison of GRF across the entire stance phase, rather than only at 

discrete times. Subject-perceived pain was compared between sessions (16 times, from pre-

needle stick to 48 minutes post-needle stick), using a mixed model repeated measures ANOVA. 

Vertical GRF load rate and impulses (due to vertical, braking, and propulsive GRF) were 

compared between sessions and legs using a mixed models ANOVA. Alpha levels for all the 

statistical comparisons were set, a priori, at 0.05. 

Results 

Subject-Perceived Pain 

 We observed significant between-session differences for subject-perceived pain, at each 

VAS measurement time point, between minutes 9 and 36 (p < 0.05; Figure 2). During this 

duration, subject-perceived pain was greater during the pain session, relative to the sham and 

control sessions. There was no significant difference, at any time point, between the sham and 

control sessions. 

Vertical GRF Characteristics 

 There was no session × leg interaction for vertical GRF at any time point of stance 

(Figure 3). Further, no significant session × leg interaction was observed for vertical GRF load 
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rate (p = 0.961; Table 1) or impulse due to vertical GRF (p = 0.073; Table 1). There was, 

however, a significant main effect of leg (p = 0.049) for the impulse due to vertical GRF: when 

data were compared bilaterally, pooled from all three sessions, mean vertical GRF impulse was 

1.1% less for the involved leg, relative to the uninvolved leg. The effect size when comparing 

legs for the impulse due to vertical GRF was 0.06, which is a very small effect size. 

Anterior-Posterior GRF Characteristics 

 A significant session × leg interaction was observed for anterior-posterior GRF. For the 

pain session only, involved-leg anterior-posterior GRF was about 11% greater, relative to 

uninvolved-leg anterior-posterior GRF, during the first 9% of stance (p < 0.05; Figure 4D). 

Further, there was a significant between-session difference for involved-leg braking impulse (p = 

0.023). Mean involved-leg braking impulse for the pain session (11.3 Ns ± 0.6) was 14% less 

than for the control (13.2 Ns ± 0.6; 0.73) and sham (13.1 Ns ± 0.6; 0.63) sessions. There was also 

a significant between-session difference for uninvolved-leg propulsive impulse (p = 0.027). 

Mean uninvolved-leg propulsive impulse for the pain session (14.8 Ns ± 1.3) was 8% greater 

than for the control (13.6 Ns ± 1.3; 0.24) and sham (13.5 Ns ± 1.3; 0.28) sessions. 

Summary 

 As expected, the hypertonic saline infusion of the pain session significantly increased 

subject-perceived pain. However, the experimental AKP did not significantly affect vertical GRF 

during running. The experimental AKP did, however, significantly influence observed 

characteristics of anterior-posterior GRF, during running, in three ways. First, during the first 9% 

of the stance phase, for the pain session only, anterior-posterior GRF was about 11% greater for 

the involved leg, relative to the uninvolved leg. Second, the braking impulse for the involved leg 

was less for the pain session, relative to the control and sham sessions. Third, the propulsive 
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impulse for the uninvolved leg was greater for the pain session, relative to the control and sham 

sessions. 

Discussion 

 We conducted this study to evaluate the independent effects of AKP on bilateral GRF 

during running, with a focus on the uninvolved leg (i.e., the leg that did not experience pain). 

Numerous studies exist regarding the effects of AKP on the involved leg;1,30,38,39,41,60 however, 

the effects of AKP on the uninvolved leg have yet to be documented. Further, few studies have 

looked at the effects of AKP during running.6,9,20,50 Since AKP is one of the most common knee 

problems,18 especially in runners,55 this is an important area of study. This novel study is 

important because it is the first to quantify independent effects of AKP on bilateral GRF during 

running (we did so using the experimental AKP model). 

We hypothesized that, relative to pain-free running, experimental AKP would increase 

vertical GRF transmitted to the uninvolved leg, throughout stance, as well as increase the vertical 

GRF load rate and impulse due to vertical GRF for the uninvolved leg. We also hypothesized 

that experimental AKP would decrease braking GRF for the involved leg, as well as increase 

propulsive GRF for the uninvolved leg. The present results failed to support the first hypothesis 

related to vertical GRF: AKP did not independently increase vertical GRF applied to the 

uninvolved leg, nor did AKP increase vertical GRF load rate or impulse due to vertical GRF for 

the uninvolved leg. Although we did see a significant main effect of leg for the impulse due to 

vertical GRF, it is not likely clinically or functionally significant due to the small effect size of 

0.06 that is associated with it. The present results did, however, support both of the hypotheses 

regarding anterior-posterior GRF: AKP independently decreased braking GRF for the involved 

leg. Further, AKP independently increased propulsive GRF for the uninvolved leg. For the 
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braking GRF, when comparing the pain session to the control and sham sessions, we saw effect 

sizes of 0.73 and 0.63, respectively. These are moderate effect sizes. We also saw effect sizes of 

0.24 and 0.28 when comparing the pain session to the control and sham sessions, respectively, 

for the propulsive GRF. These are small effect sizes. 

Although the present data cannot definitively identify specific causes of the observed 

alterations in anterior-posterior GRF, neuromechanical compensations that have previously been 

associated with AKP fit with the observed anterior-posterior GRF alterations. Previous 

researchers have described several compensatory strategies that are associated with unloading of 

the involved leg during AKP,1,38.44,60 including altered neural activation patterns14,24,27,42 which 

can alter anterior-posterior GRF. For example, several studies have indicated that AKP inhibits 

quadriceps activation, and decreased quadriceps activation would likely reduce braking 

GRF.24,27,36 As stated previously, the present results indicate a decrease in braking GRF for the 

involved leg and an increase in propulsive GRF for the uninvolved leg during the pain session. 

The decrease in braking GRF for the involved leg could be due to AKP inhibiting quadriceps 

activation. 

This study adds to the existing body of literature regarding the use of experimental AKP 

to examine the independent effects of AKP on various knee pathologies. As there are numerous 

other factors associated with knee pathology in addition to pain (e.g., joint effusion57 and 

inflammation4), the study of the independent effects of AKP is difficult. As such, experimental 

AKP models have been developed to study the independent effects of AKP. While some studies 

have used an injection technique to administer hypertonic saline into the infrapatellar fat 

pad,7,27,28,29 fewer studies have used a continuous infusion of hypertonic saline.20,50 This is the 

first study that utilized the continuous infusion method to examine bilateral running GRF. The 
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present results strengthen the idea that this infusion model can effectively induce experimental 

AKP during dynamic physical activity, including running. This study also corroborates previous 

research20,50 in supporting the idea that the continuous infusion model can be effectively used to 

induce experimental AKP for a relatively extended duration: for the present pain session, AKP 

levels were consistent during the entire infusion (17 minutes; Figure 2). 

 The magnitude of subject-perceived pain appears to sufficiently represent clinical AKP 

(Figure 2); however, it is unclear whether other characteristics of this experimental AKP are 

representative of clinical AKP. Previous research supports the idea that experimental AKP 

induced by hypertonic saline is representative of joint pain related to knee pathology by 

indicating that the quality and distribution of pain elicited by hypertonic saline are similar to 

clinical AKP.8  

The results of this study have potential clinical implications. It is important for 

rehabilitative clinicians to clearly understand how bilateral mechanics can be altered as a result 

of AKP; such alterations can potentially cause pathologies for the uninvolved leg. With this 

knowledge, clinicians could potentially treat AKP more effectively and comprehensively. 

Several studies have shown that at the conclusion of a bilateral strengthening program, 

individuals with AKP experienced a decrease in pain, as well as an increase in strength and 

function.19,22 The present results support the idea that clinicians should consider strengthening 

exercises for the involved and uninvolved legs during AKP rehabilitation. In addition to the idea 

of strengthening an impaired involved-leg quadriceps, which has previously been associated with 

AKP, clinicians might also consider treating the muscles that are associated with anterior-

posterior GRF. For example, the gastrocnemius has been shown to be inhibited by AKP, which 

contributes to propulsive GRF.20,24 As AKP patients increase certain loads applied to the 
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uninvolved leg (e.g., increased propulsive GRF) while compensating for involved-leg AKP, 

some uninvolved-leg musculoskeletal structures (e.g., the gastrocnemius) may be overloaded and 

experience related chronic injury. Strengthening the muscles that could be overworked may help 

prevent pathologies that could arise. 

 In conclusion, this novel study is important for several reasons. It is the first study to 

observe the independent effects of AKP on bilateral GRFs during running. The findings of this 

study indicate that there was a decrease in braking GRF for the involved leg and an increase in 

propulsive GRF for the uninvolved leg as a result of the experimental AKP. The experimental 

AKP did not influence any of the vertical GRF characteristics. This study adds to the current 

body of literature by elucidating some of the independent, bilateral effects of running in the 

presence of unilateral AKP. 
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Table 1. Vertical GRF Load Rate and Impulse. 

 Control Pain Sham 

 Uninvolved 
Leg 

Involved 
Leg 

Uninvolved 
Leg 

Involved 
Leg 

Uninvolved 
Leg 

Involved 
Leg 

Load 
Rate 

23293.7 N/s 
(948.4) 

23437.7 N/s 
(790.4) 

23287.1 N/s 
(1114.5) 

23643.1 N/s 
(987.8) 

23655.1 N/s 
(870.8) 

23667.9 N/s 
(895.9) 

Impulse 252.9 Ns 
(6.1) 

252.4 Ns 
(5.6) 253.3 Ns (6.0) 246 Ns 

(5.7) 
251.1 Ns 

(6.1) 
250.7 Ns 

(5.7) 
 
Vertical GRF load rate during the early loading phase of stance, as well as comparisons for the vertical GRF 
impulse. No significant session × leg interaction existed for the load rate, nor was there any difference between 
sessions (control, pain, and sham) or legs (involved and uninvolved) for the load rate. There was no significant 
difference between the control, pain, and sham sessions (p = 0.073). Values in the table are reported as mean 
(standard error).  
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Figure 1. Timeline of events for data collection, for all sessions.  
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Figure 2. Subject-perceived anterior knee pain, across time for each session, from immediately prior to 
needle stick (Time Zero) to 30 minutes post-exercise. Each point indicates average subject-perceived pain 
at a specific time, with vertical bars representing 95% confidence intervals (control session confidence 
intervals were not included, to increase clarity). Asterisks indicate points in time where the subject-
perceived pain for the pain session was significantly greater than for the control and sham sessions. 
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Figure 3. Ensemble means (all subjects), for the right and left legs, for smoothed vertical GRF across the 
entire stance phase of running, for the control (3A), pain (3C), and sham (3E) data collection sessions. 
Although not shown here, there was no significant session × leg interaction for vertical GRF, at any point 
in time. Further, there was no significant bilateral difference due to the experimental anterior knee pain, 
for vertical GRF, for any session (3B – control; 3D – pain; and 3F – sham). 
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Figure 4. Ensemble means (all subjects), for the right and left legs, for smoothed anterior-posterior GRF 
across the entire stance phase of running, for the control (4A), pain (4C), and sham (4E) data collection 
sessions. Although not shown here, there was a significant session × leg interaction between the control 
and pain sessions during the first 5% of stance phase; however, there were no other significant session × 
leg interactions for any other sessions for the anterior-posterior GRF. Further, there was a significant 
bilateral difference due to experimental anterior knee pain, for anterior-posterior GRF, during the first 5% 
of stance phase, for the pain session, as indicated by the shaded box (4D). For the control and sham 
sessions, there was no significant bilateral difference due to experimental anterior knee pain, for anterior-
posterior GRF (4B – control; and 4F – sham). 
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