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A B S T R A C T

This paper presents a method for the image instance segmentation of the moisture marks of shield tunnel lining
using a mask-region-based convolutional neural network (Mask R-CNN) algorithm. The authors’ previously
proposed fully convolutional network (FCN) framework and the moisture-mark detection framework have been
combined into a unified Mask R-CNN framework. A total of 5031 images covering five scales were collected and
annotated to train this deep-learning (DL)-based algorithm to identify the moisture marks in images. Three steps
are detailed for instance segmentation: feature extraction, the generation of region proposals, and moisture-mark
identification. A high-quality segmentation mask for the moisture marks is generated, and the moisture-mark
area is obtained by counting the pixels with a value of 1 in the polygon generated for moisture marks during the
test process of the trained Mask R-CNN model. The proposed method is validated by an experimental study, and
the results are compared with those obtained by the authors’ previous FCN method and two conventional
methods—the region growing algorithm (RGA) and Otsu algorithm (OA). The accuracy, F1 score, and inter-
section over union (IoU) for the proposed method are superior than those for the FCN, RGA, and OA with respect
to 503 test images. The inference time for the proposed method is considerably shorter than that for the FCN and
RGA and slightly longer than that for the OA.

1. Introduction

A metro shield tunnel is commonly used to relieve the traffic pres-
sure on the ground. When a metro shield tunnel degrades owing to
ageing or environmental disturbances, various defects such as moisture
marks will develop and deteriorate during the service time. Water
leakage is considered the most significant structural issue of the metro
tunnels in Shanghai, China (Wang et al., 2011). The failure to detect
water leakage in advance caused the large deformation of a metro
tunnel in Shanghai in 2008 (Huang et al., 2017a). Moisture marks are
formed by water ingress through the segmental joints or cracks in
concrete. Once the intrusive water exceeds a certain limit of volume or
area, it may serve as a warning of the serious deterioration of a tunnel
(Dawood et al., 2018). Therefore, to ensure safety, human-based onsite
inspection is regularly conducted at midnight over a limited duration
(Ai et al., 2016; Huang et al., 2017b). The accuracy and precision of
inspection by the naked eye significantly depend on the trained in-
spectors and inevitably bias the evaluation of the tunnel’s conditions.
Owing to the disadvantages of human-conducted onsite inspections,
computer-vision-based methods have been used to detect moisture
marks. Ukai and Nagamine (2011) used an image smoothing technique

and dynamic threshold value processing to extract the moisture marks
in images. The detection algorithm focused on the pixel grey values.
However, objects present on the tunnel lining, such as segmental joints
and pipes, generally have similar pixel grey values. Thus, these dis-
tractors were easily incorrectly identified as moisture marks.

Dawood et al. (2018) used image pre-processing techniques and an
artificial neural network (ANN) to detect and quantify the moisture
marks in an image, respectively. The detection and quantification re-
sults could satisfy the needs of engineering inspection. Similarly, Hu
et al. (2010) used an ANN to distinguish moisture marks from the
background of an image. A satisfactory detection result was obtained;
however, the performance will be significantly reduced when the
background and light reflection are more complex.

Terrestrial laser scanning (TLS) and mobile laser scanning (MLS)
have been used for tunnel inspection owing to their good performance
for archiving intensive point cloud data. Tan et al. (2016), Xu et al.
(2018), and Wu and Huang (2018) have used corrected intensive point
data obtained by TLS or MLS to detect moisture marks and have com-
bined three-dimensional (3D) point clouds to quantify moisture marks.
Yu et al. (2018) proposed a method that integrates laser scanning and
infrared thermal imaging to diagnose moisture marks.
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Computer-vision-based methods will produce a large amount of
image data including an image with defects and an image without de-
fects. Therefore, the efficient detection of defects from the large image
database has become a new challenge for engineers. Previous studies on
defect detection are based on image processing techniques (IPTs)
(Abdel-Qader et al., 2003; Nishikawa et al., 2012; German et al., 2012).
These IPTs, however, are difficult to adapt to the complex environment
of tunnels in service, e.g. the changes in lighting and shadows in dark
tunnels.

Deep learning (DL) has received a considerable amount of attention
in recent years. It discovers the intricate structure of large datasets by
using a backpropagation algorithm (LeCun et al., 2015). Convolutional
neural networks (CNNs), a DL-based architecture, are designed to
process data that come in the form of multiple arrays, such as images.
There have been numerous applications of CNNs in civil engineering for
the detection of structural defects (Soukup and Huber-Mörk, 2014; Cha
et al., 2017a), and they have proven to be very effective.

Recently, based on a deep CNN framework, models have been de-
veloped and have rapidly improved object detection and semantic
segmentation results. These DL models have been applied to civil en-
gineering. Cha et al. (2017b) modified and trained a faster region-based
CNN (Faster R-CNN) model (Ren et al., 2017) to detect five types of
surface damage (concrete cracks, medium- and high-level steel corro-
sion, bolt corrosion, and steel delamination) and achieved good results.
Xue and Li (2018) adopted a fully convolutional network (FCN) and
region-based FCN (R-FCN) (Dai et al., 2016) to classify and detect de-
fects (crack and moisture marks), respectively. The above studies fo-
cused on defect detection; however, the sizes of the defects, such as the
area of moisture marks, were not quantified. More specifically, the sizes
of defects are difficult to obtain solely on the basis of the above DL-
based methods. Huang et al. (2018) employed an FCN (Long et al.,
2015) for the semantic segmentation of cracks and moisture marks.
However, the location of a defect on the tunnel lining usually is difficult
to determine owing to the background of the image. Additionally, the
areas of different moisture marks in one image are difficult to obtain.
Hence, the goal of our work is to build an instance segmentation fra-
mework to overcome the above obstacles.

Instance segmentation combines two main tasks: object detection
and semantic segmentation. The first task is to classify individual ob-
jects and localise each object using a bounding box, and the second task
is to classify each pixel into a fixed set of categories without differ-
entiating object instances (Fig. 1). A mask-region-based convolutional
neural network (Mask R-CNN) is a recently developed DL algorithm
that can deal with the instance segmentation task (He et al., 2017). This
method efficiently detects the objects in an image while simultaneously
generating a high-quality segmentation mask for each instance. Mask R-
CNNs have been used in some fields for the delineation and classifica-
tion of ice-wedge polygons (Zhang et al., 2018), environmental mon-
itoring and exploration (Zurowietz et al., 2018), and the recovery of a
droplet’s 3D shape (Lu et al., 2018) and have proven to be very

effective.
Because the aim of our study is image instance segmentation for

moisture marks, a Mask R-CNN is adopted and trained to fulfil the re-
quirements of the specific environments of the tunnels in service. Before
a detailed introduction of the Mask R-CNN used in this study, an image
dataset containing 5031 images for the instance segmentation of
moisture marks is first discussed. The image dataset is enlarged using
images containing moisture marks annotated with LabelMe (Wada,
2016). After establishing image datasets, three steps—feature extrac-
tion, the generation of region proposals, and moisture-mark identifi-
cation—are introduced in detail to explain the Mask R-CNN model. The
polygon that is output during the test process is used to generate a mask
and calculate the area of the moisture marks. The accuracy, F1 score,
intersection over union (IoU), and inference time of the proposed Mask
R-CNN are compared to those of an FCN, the region growing algorithm
(RGA), and the Otsu algorithm (OA) with respect to the test images.
Then, the reasons why different results were obtained by these four
methods are briefly discussed. Finally, the concluding remarks are
mentioned at the end of this paper.

2. Dataset of tunnel lining defects

The detection and segmentation tasks strongly rely on large
amounts of labelled image data and computing power. Previously, a
significant issue associated with the use of a CNN was the requirement
of a vast amount of labelled image data and the associated high com-
putational cost, but this issue has been overcome through the devel-
opment of labelling techniques and parallel computation using graphics
processing units (GPUs). Nevertheless, there are few well-annotated
open-source datasets that contain information about tunnel moisture
marks at present. Therefore, it is crucial to collect a sufficient number of
images containing moisture marks to achieve the image instance seg-
mentation of moisture marks.

2.1. Image acquisition of the metro shield tunnel lining

Metro tunnel inspection is often conducted at midnight and must be
completed within 2–3 h in order to guarantee the daily operation of the
metro tunnel. Therefore, it is difficult to collect large numbers of images
of the tunnel lining surface in a short duration. As a result, images must
be acquired with a high efficiency and precision. However, existing
tunnel inspection equipment cannot meet these requirements. The
Moving Tunnel Inspection (MTI-200a) equipment previously developed
by the authors can meet the requirements of metro tunnel inspection
and image acquisition. This MTI system comprises six high-resolution
linear charge coupled device (CCD) cameras, 12 light-emitting diodes
(LEDs), a computer, a monitor, an encoder, and a battery, as shown in
Fig. 2. The MTI system is relatively light and easy to move. A captured
image has a high quality and can be cropped and labelled directly. The
details of this equipment can be found elsewhere (Huang et al., 2017c,

Fig. 1. Process of image recognition: (a) raw image, (b) object (moisture mark) detection, (c) semantic segmentation, and (d) instance segmentation.
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2018).

2.2. Establishment of image datasets

Inspection tasks were carried out in Shanghai metro lines 1, 2, 4, 7,
8, 10, and 12. The captured images were stored with a resolution of
1,000× 7,448 pixels within each camera. Images with a resolution of
3,000× 7,448 pixels were obtained by stitching the captured images.
Then, the images were cropped to a resolution of 3,000×3,724 pixels,
and the images containing moisture marks were selected. To ensure that
the size of an image corresponds to the size of the moisture marks, the
selected images were further cropped to five scales with different re-
solutions: 800×800, 1200× 1200, 1600× 1600, 2000×2000, and
2400×2400 pixels. Finally, all selected images were annotated by
LabelMe. The moisture marks were annotated along boundaries by
drawing a polygon. When the polygon was completely drawn, a label
was written into the dialogues, as shown in Fig. 3. Consequently, an
annotation file containing the moisture marks’ width, length, and other
information was generated, and the annotation file was converted into a
format similar to that for the Microsoft COCO dataset (Lin et al., 2015)
through Python. Fig. 4 shows part of the annotated images.

The dataset containing annotated images is named the Tunnel
Lining Moisture Marks in Context (TLWLCO) dataset. The format of the
annotation file of TLWLCO dataset is similar to that of the Microsoft
COCO dataset. The TLWLCO dataset contains 5,031 annotated images
covering five scales of resolution: 800×800, 1200× 1200,

1600×1600, 2000× 2000, and 2400×2400 pixels. It was divided
into training, validation, and testing datasets. Following a study by
Shahin et al. (2004), 90% of the data (i.e. 4,528 images) were used for
calibration, and 10% of the data (i.e. 503 images) were used for testing.
The calibration data were further divided into 80% for training (i.e.
3,622 images) and 20% for validation (i.e. 906 images). The Mask R-
CNN will automatically perform horizontal flipping (Fig. 5) of the
training and validation sets for data augmentation.

2.3. Unique properties of the moisture marks

Moisture marks possess unique properties including the colour,
texture, and edge information (Dawood et al., 2018). Such properties
differentiate moisture marks from other concrete surface defects. The
colour and edge information are the two important indicators for object
recognition. Moisture marks are darker than other objects owing to the
low reflectance, where the edges of the moisture marks have larger
gradient grey values. In addition, the texture is another crucial in-
dicator. Moisture marks have a smooth and fine texture, unlike other
surface defects such as spalling, which displays a coarse texture in an
image. It is these three unique properties that motivate the use of Mask
R-CNN segmentation algorithm. This algorithm allows a machine or
computer to be fed with raw image data and to automatically discover
the representations needed for moisture-mark detection. An image
comes in the form of an array of pixel values. Given the pixels, the
convolutional layer of the Mask R-CNN can easily identify the edges of
moisture marks by comparing the brightness values of neighbouring
pixels. The next convolutional layers detect motifs by spotting the
particular arrangements of edges and the texture of the moisture marks.
The subsequent convolutional layers assemble motifs into larger com-
binations that correspond to parts of the moisture marks. Finally, this
description of an image in terms of the moisture-mark part can be used
to recognise the moisture marks in the image. The key of the Mask R-
CNN model is that these layers of features of moisture marks are
learned from data using a self-learning procedure. Thus, a well-trained
Mask R-CNN model can segment moisture marks from the background
of an image, regardless of the distractors such as segmental joints,
pipes, and bolt holes.

3. Framework for the image instance segmentation of moisture
marks

To localise moisture marks in images while simultaneously gen-
erating high-quality segmentation masks for them, the Mask R-CNN is
modified and used. The original Mask R-CNN consists of a Faster R-CNN

Fig. 2. (a) Schematic of MTI-200a and (b) photograph of MTI-200a in a tunnel.

Fig. 3. Moisture marks annotated by LabelMe.
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for classification and bounding-box regression and an FCN for pre-
dicting segmentation masks. The details of the Mask R-CNN are ex-
plained in this section. For clarity, the three steps are (i) the extraction
of the features of moisture marks over an entire image with a con-
volutional backbone architecture, (ii) the generation of proposals of
moisture marks with a region proposal network (RPN), and (iii) the
classification, bounding-box recognition, and mask prediction of
moisture marks with a head architecture.

3.1. Step 1: extraction of the features of moisture marks with a backbone
architecture

A deep CNN is often used as a backbone architecture to compute the
feature hierarchies of moisture marks layer-by-layer. The CNN’s feature
hierarchy produces feature maps with different spatial resolutions but
introduces large semantic gaps caused by the different depths of the
CNN’s convolutional layer. High-resolution maps have low-level fea-
tures, whereas low-resolution maps have high-level features. Recent
research on moisture-mark recognition (Huang et al., 2018; Xue and Li,
2018; Cha et al., 2017a, 2017b) used CNNs to produce a single high-
level coarser-resolution feature map from which the moisture marks
were predicted (Fig. 6(a)). Thus, it misses the opportunity to re-use the
higher-resolution maps of the feature hierarchy. However, for some
small moisture marks, the semantic features may be lost when the CNN

executes pooling to the last layer. Therefore, the higher-resolution maps
with low-level features are important for recognising small objects such
as small moisture marks.

Feature pyramid networks (FPNs) (Lin et al., 2017) are a solution to
the aforementioned problem. They leverage the pyramidal shape of a
CNN’s feature hierarchy while creating a feature pyramid that has
strong semantics at all scales without sacrificing the representational
power, speed, or memory. Therefore, an FPN is used as the backbone
architecture of the Mask R-CNN in this study to extract the features of
moisture marks in images. An FPN combines low-resolution semanti-
cally strong features with high-resolution semantically weak features
via a top-down pathway and lateral connections (Figs. 6(b) & 7). As a
result, a feature pyramid that has rich semantics at all levels is quickly
built from a single input image scale.

Fig. 7 shows the structure of an FPN. A 1×1 convolutional layer is
attached to conv5_x layer. After convolution by it, the coarsest resolu-
tion feature map is produced, which has the semantically strong fea-
tures of moisture marks. Then, the spatial resolution is up-sampled by a
factor of two. The up-sampled map is then merged with the corre-
sponding bottom-up map (which passes through a 1× 1 convolutional
layer to reduce the channel dimensions) by element-wise addition. This
process is implemented until the finest resolution map is generated.
Finally, a 3×3 convolutional layer is appended to each merged map to
generate the final feature map in order to reduce the aliasing effect of

Fig. 4. Annotated images.

Fig. 5. Raw image (left) and horizontally flipped image (right) for data augmentation.
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up-sampling. The final generated set of feature maps is called {P2, P3,
P4, P5}, where moisture-mark prediction are independently carried out
at each level (Fig. 6(b)).

3.2. Step 2: generation of region proposals for moisture marks with a region
proposal network

Object detection networks depend on region proposal algorithms to
hypothesise object locations, and the computation of region proposals is
a bottleneck for the running time of detection networks. An RPN solves
this problem and enables nearly cost-free region proposals by sharing
features with the backbone architecture. An RPN is constructed via a
small subnetwork (FCN). The small subnetwork is evaluated with dense

3×3 sliding windows on top of a single-scale convolutional feature
map output by the backbone architecture, performing object/non-ob-
ject binary classification and bounding-box regression. This is realised
by a 3× 3 convolutional layer, followed by two sibling 1× 1 con-
volutions for classification and regression (Fig. 8). At each sliding-
window location, anchors with multiple pre-defined scales (three scales
and three aspect ratios {1:2, 1:1, 2:1}) are simultaneously predicted
(Fig. 8). These anchors are used as classification and regression refer-
ences.

In this study, an FPN is used to compute the features of moisture
marks in images and produce feature maps with four scales {P2, P3, P4,
P5}; therefore, it is not necessary to have multi-scale anchors on a
specific level. The anchors of the aspect ratios {1:2, 1:1, 2:1} are also
used at each level. Thus, there are 12 anchors in total over the pyramid
(Fig. 9).

At the training stage, a total of 2,000 proposals per FPN level are
first selected. However, these 2,000 RPN proposals highly overlap each
other. To reduce redundancy, non-maximum suppression (NMS) (Ren
et al., 2017) is adopted for the proposal regions based on their class
scores. Finally, the top-256 ranked proposals are selected for classifi-
cation, bounding-box regression, and segmentation.

3.3. Step 3: moisture-mark identification with the head architecture

Fig. 10 shows the structure of the Mask R-CNN including the
backbone architecture, RPN, and head architecture. A backbone ar-
chitecture (FPN) takes an entire image containing moisture marks as its
input. The FPN first processes the whole image with several convolu-
tional and max pooling layers to produce feature maps with four scales.
Then, the RPN uses these feature maps to produce a set of moisture-
mark proposals. With the cross-boundary anchors ignored and NMS
adopted, the top-256 ranked moisture-mark proposals based on their
class scores are selected for the region of interest (RoI) align layer (He
et al., 2017). Then, for each moisture-mark proposal, an RoI align layer
extracts a fixed-length feature vector from the feature map. Each fea-
ture vector is fed into a sequence of fully connected layers for classifi-
cation and bounding-box regression by the head architecture. The mask
branch (FCN) simultaneously generates a high-quality segmentation
mask for each RoI in parallel with the existing branch for classification
and bounding-box regression.

During training, the multi-task loss is defined for each sampled RoI
as L= Lcls+ Lbox+ Lmask. The classification loss is

= −L p u p( , ) logcls u (1)

where pu is the predicted probability of class u being an object and p is
computed by a softmax function over the outputs of a fully connected
layer.

For bounding-box regression, the loss is expressed as

(a) Single map (b) Feature pyramid network 
Fig. 6. Feature pyramid. Thicker blue outlines denote semantically stronger features. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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the predicted bounding box for class u and vi is that for the ground-truth
box. A detailed description of Lbox and Lcls can be found in a paper by
Girshick (2015).

A per-pixel sigmoid is applied to predict the class label, which is
used to select the output mask, and Lmask is defined as the average
binary cross-entropy loss. This definition of Lmask allows the network to
generate masks for every class without competition among classes and
is key for good instance segmentation results (He et al., 2017).

3.4. Training the Mask R-CNN model

In order to modify and train a Mask R-CNN model for the image
instance segmentation of moisture marks, experiments were conducted

on a computer equipped with one Intel Core i7-5820K central proces-
sing unit (CPU), 64 GB of random access memory (RAM), and two
GeForce GTX 1080 GPUs (24 GB of graphics memory). The proposed
method was implemented based on Detectron, which is a software
system by Facebook AI Research that implements state-of-the-art object
detection algorithms. The calculation software environment was set
with Python 2.7.14, CUDA 8.0, and cuDNN6.0.

Implementation details of the proposed method. An input image
was re-sized such that its shorter side has 800 pixels. Synchronous
stochastic gradient descent (SGD) (LeCun et al., 1998) was used to train
the model on two GPUs. Each mini-batch involves two images per GPU
and 256 RoIs per image. The weight decay and momentum were set to
0.0001 and 0.9, respectively. The learning rate was 0.005 for the first
30,000 iterations and 0.0005 for the next 10,000 iterations, and was
decreased by 10 at 40,000 iterations. The numbers of RoIs per image
used for training and testing were 256 and 1000, respectively. The in-
itial loss was 6.909. This value sharply decreased to 1.968 after 20
iterations and then slowly decreased after 20,000 iterations. After about
45,000 iterations per GPU, the loss function converged to 0.024, as
shown in Fig. 11. As a consequence, a set of optimal weights was ob-
tained and saved, i.e. the trained model was obtained. All the

Feature 
Map

Input

3×3conv

1×1conv

1×1conv

Proposals

RoI Pooling

softmax

bbox reg

softmax

bbox reg

RoIs

RPN

CNN
(VGG/ZF)

Fully Connected Layers

Fast R-CNN

•••

9 anchor 
boxes

moisture marks 0.92

Fig. 8. RPN of the Faster R-CNN with a traditional CNN backbone architecture.

Feature 
Map

Input

3×3conv

1×1conv

1×1conv

Proposals

RoI Pooling

softmax

softmax

bbox reg

RoIs

RPN

FPN

Fully Connected 
Layers

moisture marks 0.92

Fast R-CNN

•••

12 anchor 
boxes

P5
P4

P3 P2

Fig. 9. RPN of the Faster R-CNN with an FPN backbone architecture.

S. Zhao, et al. Tunnelling and Underground Space Technology 95 (2020) 103156

6



aforementioned parameters were using trial and error.
The source code for the Mask R-CNN was modified in order to

compute the area of the moisture marks. First, the FCN branch of the
trained Mask R-CNN output a closed polygon for the moisture marks in
the input image. Second, the values of pixels inside the polygon were
assigned values of 1, and the rest were assigned values of 0 to generate
a binary image before generating an image with the moisture marks
overlaid with a mask. Third, the moisture-mark area was calculated by
counting the total number of pixels with a value of 1 in the binary

image, as illustrated in Fig. 12.

4. Experimental evaluation

To examine the performance of the trained and modified Mask R-
CNN, 503 new images that were not used for training and validation
were used. The performance of the proposed method is also compared
with an FCN and two frequently used traditional methods: the RGA and
OA. An FCN is a framework that can perform semantic segmentation
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tasks with efficient learning and inference. A detailed description of its
advantages can be found in a paper by Long et al. (2015). The RGA is a
classical region-based image segmentation method that examines the
neighbouring pixels of initial seed points and determines whether these
neighbouring pixels should be added to the region (Kamdi and Krishna,
2012; Huang et al., 2018). The OA is a method that segments an image
into a foreground (e.g. moisture marks) and background via a
threshold. When the best segmentation threshold is used, the back-
ground should differ the most from the foreground. The OA finds the
best segmentation threshold by the maximum between-cluster variance
(the maximum variance between the pixels’ grey values) (Otsu, 1979).

4.1. Recognition results

The new images were fed into the trained Mask R-CNN. Before
overlaying a mask on the moisture marks in an image, the trained
model output a binary image. A value of 0 defines a non-moisture-mark

region, whereas a value of 1 represents the moisture-mark region. After
counting the total number of pixels with a value of 1, the moisture-mark
areas were printed at the bottom-left of the bounding box, as illustrated
in Fig. 13.

Fig. 14 shows part of the recognition results of the test images. The
results in Fig. 14 shows that the proposed Mask R-CNN provides clear
moisture-mark information. Although the RGA and OA provide some
moisture-mark information, they cannot provide more information
because of the effects of circumferential joints, longitudinal joints, bolt
holes, etc. Comparing the authors’ previous FCN model (Huang et al.,
2018) and the proposed Mask R-CNN model, both the Mask R-CNN and
FCN models provide clear moisture-mars information. However, the
concrete stain in the raw image (Fig. 14) is incorrectly identified as a
moisture mark by the previous FCN model.

In general, the experiment shows that the performance of the RGA
and OA is quite dependent on the image conditions. In contrast, the
proposed Mask R-CNN works quite well regardless of the image

Fig. 12. Quantification of moisture marks.

Fig. 13. Results of the segmentation of moisture marks by the Mask R-CNN.
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conditions.

4.2. Metrics of the algorithms for segmentation

In this study, three metrics, i.e. the accuracy, F1 score (Fawcett,
2006), and IoU (called IU in Long et al., 2015), are used to evaluate the
performance of different models. The event where a moisture-mark
pixel is segmented as a moisture-mark pixel is denoted as a true positive

(TP), the event where the background pixel is segmented as the back-
ground pixel is denoted as a true negative (TN), the event where the
background pixel is segmented as a moisture-mark pixel is denoted as a
false positive (FP), and the event where a moisture-mark pixel is seg-
mented as the background pixel is denoted as a false negative (FN).
Thus, the three metrics are computed as follows:

accuracy: (TP+ TN)/(TP+ TN+ FP+ FN)
precision: TP/(TP+ FP)
recall: TP/(TP+ FN)
F1 score: 2/(1/precision+1/recall)
IoU: TP/(TP+ FP+ FN)

where TP, TN, FP, and FN are the numbers of TPs, TNs, FPs, and
FNs, respectively.

The results of a comparison for the 503 test images are presented in
Table 1. The performance of the proposed method is quite significant
with an accuracy of 98.46%, which is much higher than those for the
RGA (91.90%) and OA (71.43%). The proposed method attains an F1
score of 94.66%, which is much higher than those for the RGA
(77.57%) and OA (50.27%). In terms of the IoU, the differences should
be particularly emphasised: the proposed method has an IoU of 90.04%
compared to 66.21% for the RGA and 35.79% for the OA. Comparing
the previous FCN algorithm with the proposed Mask R-CNN algorithm,
the accuracy, F1 score, and IoU of the previous FCN (94.81%, 89.52%,
and 81.03%) are slightly lower than those for the proposed Mask R-
CNN (98.46%, 94.66%, and 90.04%). In summary, the proposed
method has better performance for moisture-mark instance

(a) Raw images (b) Mask R-CNN (c) FCN (d) RGA (e) OA 
Fig. 14. Results of the segmentation of moisture marks by different algorithms.

Table 1
Metrics of different algorithms for segmenting moisture marks.

Method Accuracy F1 score IoU

RGA 0.9190 0.7757 0.6621
OA 0.7143 0.5027 0.3579
Previous FCN 0.9481 0.8952 0.8103
Proposed 0.9846 0.9466 0.9004

Table 2
Inference times of different algorithms for segmenting moisture
marks.

Method Inference time (s/image)

RGA 30.637
OA 0.081
Previous FCN 1.10
Proposed 0.107
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segmentation.

4.3. Inference time

If there is a large number of lining images, the total inference time
will be a crucial factor to consider. The inference times of four algo-
rithms are presented in Table 2. The inference time of the RGA is af-
fected by the image size; a larger image size results in a longer com-
putation time. Moreover, the inference time of the RGA is much longer
than those of the OA and proposed method.

The OA method has a low inference time but sacrifices the accuracy,
F1 score, and IoU. The inference time of the proposed method is only
1.3 times higher than that of the OA, but the accuracy, F1 score, and IoU
are about 1.4, 1.9 and 2.5 times as high as those of the OA, respectively.

The inference time of the proposed Mask R-CNN includes the times
for detecting the bounding box, detecting the mask, and adding the
mask to an image. Despite this, the inference time of the previous FCN
(1.10 s per image) is a little over 10 times longer than that of the pro-
posed Mask R-CNN. Thus, the proposed Mask R-CNN method is more
accurate and rapid than the FCN method for segmenting the moisture
marks in images.

The proposed method and previous FCN compute via GPUs, which
are very good for image data processing owing to the parallel compu-
tation of numerous vectors and matrices. However, the RGA and OA
usually compute via CPUs (Cha et al., 2017a; Yu et al., 2017). Thus,
when the background noise of an image is more complicated, its cor-
responding computation time is relatively long.

5. Discussion

The differences in the recognition results among the four algorithms
are discussed in this section. The RGA is a method that examines the
neighbouring pixels of the initial seed points and determines whether
these neighbouring pixel should be added to the region. The process is
shown in Fig. 15. Point 1 is first selected as the seed point (Fig. 15(a)).
The threshold difference between this seed point and the neighbouring
pixels is 1. Then, Point 5 is added to the segmentation region and se-
lected as next seed point because the grey value of Point 5 is closest to
that of the seed point among the neighbouring points (Points 2–5)
(Fig. 15(b)). If the threshold difference is less than 1, the region does
not grow. Now, the mean grey value of the segmentation region is
225.5. Therefore, Point 7 will be selected as the next seed point during
the second cycle (Fig. 15(c)). This process is carried out until the dif-
ference between the next neighbouring point and the segmentation
region is more than 1. The RGA largely depends on the selection of the
first seed point and the grey values of the neighbouring pixels. How-
ever, the grey values of moisture marks are nearly the same as those of
circumferential joints, longitudinal joints, and bolt holes. As a result,
segmental joints and bolt holes may be recognised as moisture marks.

Segmentation with the OA is also based on the grey-value

characteristics. It finds the best segmentation threshold by maximising
the variance between pixels’ grey values. Because it is influenced by the
segmental joints and other objects in an image, the OA has a poor
performance for identifying moisture marks. This indicates that separ-
ating the moisture marks from the background only through the grey
value of a pixel results in poor performance.

An FCN is trained end-to-end and pixels-to-pixel on semantic seg-
mentation by efficient dense feedforward computation and back-
propagation. It can be combined with a Faster R-CNN, forming a unified
Mask R-CNN framework to perform instance segmentation masks.

Unlike the RGA and OA, the proposed Mask R-CNN computes the
features of moisture marks through self-learning, which is an iterative
process in which the loss function is decreased by the SGD algorithm.
This process is iterated until the loss function converges and a set of
optimal weights is obtained and saved. In the test process, the obtained
weights are directly used to predict moisture marks. Therefore, it is not
surprising that the proposed method is able to achieve good results.

6. Conclusions

This paper provides a method for the image instance segmentation
of moisture marks of shield tunnel lining. Instance segmentation is
carried out in two main steps. First, the segmentation dataset must be
created. The images used to create the dataset utilised in this study
were acquired by MTI-200a. The images were annotated by LabelMe,
and the annotation file was converted into a format similar to that of
the COCO dataset through Python. Second, the Mask R-CNN needs to be
modified and trained to identify moisture marks. The hyperparameters
suitable for specific problems can be obtained from experiments, and
the source code for the Mask R-CNN was modified in order to compute
the area of the moisture marks. The modified Mask R-CNN was then
trained on the created dataset until the loss function converged.

For 503 test images, the proposed method achieves a relatively low
inference time but has much better performance with regards to the
accuracy, F1 score, and IoU, which are all higher than those of two
frequently used methods—the RGA and OA. The accuracy, precision,
and recall of the proposed Mask R-CNN method are also slightly higher
than those of the FCN method with a lower inference time. The mod-
ified algorithm based on the Mask R-CNN is helpful for rapidly and
accurately recognising the moisture marks of shield tunnel lining in
terms of the accuracy, precision, recall, and inference time.

However, the above results are based on a training and validation
dataset with a total of 4,528 images. In the future, more images can be
acquired by MTI-200a. The TLWLCO database can be enlarged to fur-
ther increase the accuracy and robustness of the proposed method.
Further, image instance segmentation for cracks will be realised by
combining the responses at the Mask R-CNN’s FCN branch with a fully
connected conditional random field (CRF).

Fig. 15. Region growing process: (a) marking a number of pixels, (b) corresponding grey values of the marked pixels, and (c) the direction of region growth.
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