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A B S T R A C T

The local behavior of segment-to-segment interfaces has a significant influence on the overall structural behavior
of segmental tunnel rings subjected to ground pressure. This is quantified by means of structural simulations,
combining analytical solutions of the linear theory of slender circular arches with time-dependent and nonlinear
interface models for unreinforced and bolted interfaces. The time-dependent behavior results from creep of
concrete and the nonlinear behavior from interfacial separation, crushing of concrete, and yielding of steel.
Structural sensitivity analyses are performed with respect to the coefficient of lateral ground pressure. The
influence of creep of concrete at unreinforced interfaces on the overall structural behavior is demonstrated,
based on the interface models by Gladwell and Janßen. Furthermore, the elastic limits and the bearing capacities
of segmental tunnel rings are quantified both for unreinforced and bolted interfaces. The corresponding interface
law is based on the Bernoulli-Euler hypothesis and on linear-elastic and ideal-plastic behavior of both concrete
and steel. In order to underline the reliability of the computed bearing capacities, a bearing-capacity test on a
real-scale segmental tunnel ring is re-analyzed. It is concluded that (i) creep of concrete at the interfaces results
in an increase of the structural displacements, while the distributions of the inner forces remain practically the
same, (ii) interfacial bolts improve the serviceability of segmental tunnel rings, because they ensure the position
stability of the lining, and (iii) the bearing capacity of segmental tunnel rings subjected to ground pressure can
be estimated reliably, based on the combination of realistic interface models and analytical solutions of the
linear theory of slender circular arches.

1. Introduction

During construction and service, segmental tunnel linings must
withstand different types of loading. During excavation, the tunnel
boring machine creates thrust by pushing hydraulic cylinders against
the already completed part of the lining. The resulting axial loading of
the tunnel lining calls, in the context of structural analysis, for three-
dimensional Finite Element simulations (Kasper and Meschke, 2004).
After installation of the lining, the annular gap between the ground
mass and the lining is filled with cementitious mortar, in order to
minimize soil settlements (Fargnoli et al., 2013). During injection, the
grouting pressure results in a considerable radial loading (Ding et al.,
2004; Kasper and Meschke, 2006; Kavvadas et al., 2017). In shallow
tunneling, the grouting pressure might be even twice as large as the
earth pressure (Han et al., 2017). As the mortar hardens progressively,
the radial loading of segmental tunnel linings evolves with time (Ninić

and Meschke, 2017). In addition, the time-dependent behavior of the
ground mass and of the concrete have a significant influence on the
loading acting on segmental tunnel rings. Long-term stress relaxation of
concrete reduces the axial forces of segmental tunnel linings sig-
nificantly (Arnau et al., 2012). Creep of the ground mass eventually
leads to a ground pressure distribution very similar to the initial in-situ
stress state (Lee et al., 1999). In the resulting scenario of small axial
forces and, thus, dominating radial loading, the failure of segmental
tunnel rings is strongly influenced by the failure of the segment-to-
segment interfaces (Luttikholt, 2007; Luttikholt et al., 2008), see Fig. 1.
This sets the scene for the present paper which aims at studying the
influence of interfacial joints on the structural behavior of segmental
tunnel linings. The investigation is not only concerned with the bearing
capacity of segmental tunnel linings, but also with regular long-term
service conditions, including creep of concrete at segment-to-segment
interfaces.
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In some loading scenarios, it is important to consider the interaction
between neighboring tunnel rings. One example is large axial loading
(Galván et al., 2017), particularly in case of tunnel rings with im-
perfectly arranged segments (Blom et al., 1999) and/or in case of tunnel
linings with misaligned longitudinal joints of neighboring rings (Do
et al., 2014; Liu et al., 2018). Another example is partial transfer of
dead load from newly installed segments to the already stabilized
neighboring ring of segments (Winkler et al., 2004). Significant ring-to-
ring interaction is also activated by ground pressure, which varies
significantly in the axial direction (Wang et al., 2014), as is encountered
in the context of localized radial loading (Arnau and Molins, 2012,
2015). Vice versa, in case of (i) small axial loading, (ii) radial loading
which is almost uniform in the longitudinal direction, and (iii) neigh-
boring rings with aligned longitudinal joints, it is reasonable to restrict
the investigation to the analysis of single tunnel rings. This is the sce-
nario investigated in the present paper.

Available analytical models for structural analysis of tunnel rings
are typically focusing on ground pressure. Initially, such models were
simply based on closed rings, without explicit consideration of segment-
to-segment interfaces (Morgan, 1961; Muir Wood, 1975). Due to its
simplicity, the approach became so popular that it was extended to-
wards consideration of earthquake loads (Penzien and Wu, 1998). In
addition, many efforts were made in order to provide “correction fac-
tors” for tunnel rings consisting of a specific number of segments and a
specific arrangement of interfacial joints (Lee and Ge, 2001). Finally,
segment-to-segment interfaces were explicitly considered, based on an
interface law in the form of a linear relation between the bending
moment and the relative rotation angle and on the assumption that the
relative rotation angles at the joints result in rigid body motions of the
segments (El Naggar and Hinchberger, 2008). The present paper is a
continuation of this line of research, based on consideration of either
time-dependent or nonlinear interface behavior.

The structural behavior of individual segmental tunnel rings is
particularly sensitive to relative rotation angles (but significantly less
sensitive to radial and circumferential dislocations) developing at seg-
ment-to-segment interfaces (Do et al., 2013). The relative rotation an-
gles are nonlinear functions of the bending moments and the normal
forces, which are transmitted across the interfaces. Classical interface
models were developed by Gladwell (1980) and Janßen (1983). Both
models are based on the assumption of linear material behavior of
concrete. Nonetheless, both models are nonlinear, because they are
capable of describing loss of full-face segment-to-segment contact, re-
sulting in partial segment-from-segment separation. Materially non-
linear interface models were derived in the context of combined ex-
perimental-computational approaches, see, e.g., (Tvede-Jensen et al.,
2017; Caratelli et al., 2018) for unreinforced interfaces, and (Li et al.,
2015; Liu et al., 2017) for bolted interfaces. Different structural layouts
of segment-to-segment interfaces were analyzed in detail (Majdi et al.,
2016), and the benefits resulting from the replacement of traditional
concrete by steel-fiber reinforced concrete were demonstrated (Gong
et al., 2017).

The present paper aims at quantifying the influence of the local
behavior of segment-to-segment interfaces on the overall structural
behavior of segmental tunnel rings subjected to ground pressure. To
this end, time-dependent and nonlinear interface models are combined
with linear “transfer relations”, representing analytical solutions of the
governing equations of the linear theory of slender circular arches
(Zhang et al., 2017). This modeling approach (i) supports a pre-
dominantly analytical mode of structural analysis and (ii) limits, to the
greatest possible extent, numerical and iterative solutions of nonlinear
subproblems.

As for structural analyses, a tunnel ring, consisting of six reinforced
concrete segments, is studied. Structural sensitivity analyses are carried
out with respect to the coefficient of lateral ground pressure, K. Starting
from isotropic loading ( =K 1), the value of K is progressively decreased
down to =K 0.5. Three types of structural sensitivity analyses are
performed in order to study (i) the influence of creep of concrete in the
interfacial regions on the overall behavior of the investigated segmental
tunnel ring, (ii) the intensity of the ground pressure related to the elastic
limit of the segmental tunnel ring, and (iii) the intensity of the ground
pressure related to the bearing capacity of the segmental tunnel ring.

The first type of structural sensitivity analysis refers to unreinforced
interfaces. The role of creep of concrete in the interfacial regions is
studied, based on the interface models by Gladwell and Janßen.
Gladwell’s model rests on linear-elastic behavior of concrete. The the-
oretical basis of Janßen’s model, in turn, are recommendations for the
design of unreinforced concrete hinges, which were developed in the
field of integral bridge construction by Leonhardt and Reimann (1965).
They assumed that the total compliance of concrete, related to its elastic
and creep deformation, is twice as large as the elastic compliance, see
also (Schlappal et al., 2017). Along this line of reasoning, Janßen’s
model can be used to account for creep of unreinforced interfaces, al-
beit in a simplified manner. Finally, Janßen’s model is extended, in the
sense of a first approach, towards consideration of long-term creep of
concrete. The resulting time-dependent interface model is used for
quantifying the long-term evolution of the ovalization of the cross-
section of a segmental tunnel lining, following from creep of concrete at
interfaces during regular structural service.

The other two types of structural sensitivity analysis refer to the
determination of the elastic limit and the bearing capacity of a seg-
mental tunnel ring, subjected to ground pressure. Analyzing two similar
tunnel rings, one with unreinforced interfaces and the other with bolted
interfaces, allows for studying the influence of interfacial steel bolts on
the overall structural behavior of a segmental tunnel ring. In order to
assess the reliability of the model-predicted bearing capacity, a real-
scale test on a segmental tunnel ring with bolted interfaces (Liu et al.,
2016) is re-analyzed. In the respective test, the structure was loaded by
point loads, simulating anisotropic ground pressure. After a propor-
tional load increase, the vertical loading was held constant and the
lateral loading was progressively reduced, until the bearing capacity
was reached.

The paper is structured as follows. Section 2 provides a brief over-
view over the transfer relations employed for structural analysis of
segmental tunnel rings. Section 3 refers to the interface models. The
models by Gladwell and Janßen are briefly described. A model for
nonlinear material behavior of concrete and steel is derived, and its
predictive capability is assessed quantitatively. In Section 4, the transfer
relations are combined with the interface models in the framework of
structural sensitivity analysis. Interfacial creep, elastic limits, and
bearing capacities of segmental tunnel rings are studied as a function of
the coefficient of lateral ground pressure. Section 5 is devoted to the
assessment of the reliability of the model-predicted bearing capacities.
Section 6 contains the conclusions drawn from the results of the pre-
sented analyses.

Fig. 1. Segment-to-segment interfaces (also referred to as “longitudinal joints”)
and ring-to-ring interfaces (also referred to as “circumferential joints”).
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2. Structural analysis of segmental tunnel rings using transfer
relations

2.1. Transfer relations

Structural analysis of segmental tunnel rings may be based on
transfer relations, representing analytical solutions of the governing
equations of the linear theory of slender circular arches (Zhang et al.,
2017). These equations read as (Zhang et al., 2017)
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In Eqs. (1)–(6), R EA, , and EI denote the radius of the axis of the arch,
the extensional stiffness, and the bending stiffness, respectively. Fur-
ther, denotes the circumferential coordinate, stands for the cross-
sectional rotation, u and v denote the radial and the circumferential
displacement, respectively, N M, , and V stand for the axial force, the
bending moment, and the shear force, respectively, qr and q denote the
distributed external loading in the radial direction and in the cir-
cumferential direction, respectively. The analytical solution of Eqs.
(1)–(6) is cast into a matrix-vector representation, introduced by Rubin
and Vogel (1993), representing “transfer relations”. They read as
(Zhang et al., 2017)
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The components T13 to T46 of the transfer matrix read as (Zhang et al.,
2017)
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The vector on the left-hand-side of Eq. (7) contains the six kinematic

and static variables, referring to the cross-section at an arbitrary value
of the angular coordinate . The vector on the right-hand-side of Eq. (7)
contains six integration constants. They represent six kinematic and
static variables, referring to the initial cross-section (index “i”), i.e. to
the circumferential position = 0. The top-left six-by-six submatrix of
the transfer matrix in Eq. (7) refers to the solution for an unloaded
segmental tunnel ring (Zhang et al., 2017). The summation symbols in
the last column of the transfer matrix in Eq. (7) refer to the super-
position of so-called “load integrals”. The latter represent analytical
solutions for (i) the relative rotation angles at segment-to-segment in-
terfaces, (ii) the ground pressure, and (iii) radial point loads.

2.2. Analytical solutions for relative rotation angles

The load integrals for a relative rotation angle, j, at the interface
= j, read as (Zhang et al., 2017)

=u R H( ) sin( ) ( ),L
j j j (9)

=v R H( ) [1 cos( )] ( ),L
j j j (10)

= H( ) ( ),L
j j (11)
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where H ( )j stands for the Heaviside function.

2.3. Analytical solution for the ground pressure

The vertical and the horizontal component of the ground pressure
are denoted as v and h, respectively, see Fig. 2(a). At any circumfer-
ential position along the external boundary of the segmental tunnel
ring, the principal normal stresses v and h are transformed into radial
normal stresses rr and shear stresses r , using the transformation
equations for plane stress states (Young and Budynas, 2002), see
Fig. 2(a). The resulting expressions for rr and r are multiplied by the
axial length of the segments, B, delivering the distributed line loads qr
and q acting on the segmental ring as

= + +q B
2 2
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=q B
2

sin2 ,v h
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see also Fig. 2(b) and (c).
The load integrals for the ground pressure are obtained by speci-

fying Eqs. (1)–(6) for Eqs. (13) and (14), by following the step-by-step
integration strategy described in (Zhang et al., 2017), and by con-
sidering homogeneous initial conditions. They read as
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2.4. Analytical solutions for radial point loads

For validation purposes, a real-scale test will be analyzed, in which
a segmental tunnel ring was subjected to radial point loads. The load
integrals for a radial point load P, acting at position p, read as (Zhang
et al., 2017):
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2.5. Identification of integration constants

The six integration constants u v M, , ,i i i i, Ni, and Vi , forming the
vector of state variables on the right-hand-side of Eq. (7), are identified

as follows. The kinematic variables u v,i i, and i refer to a rigid body
motion of the segmental tunnel ring (Zhang et al., 2017). Without loss
of generality, it may be set equal to zero

= = =u v 0.i i i (27)

As for the identification of the three static variables Mi, Ni, and Vi , three
geometric continuity conditions are formulated for the closed segmental
tunnel ring (Zhang et al., 2017). To this end, the transfer relations are
specified for = 2 , resulting in a relation between the state variables
at the initial and the final (index “f”) cross-section. Since the final cross-
section is equal to the initial cross-section, the geometric compatibility
conditions are obtained as = =u u v v,f i f i, and =f i. This delivers
three linear equations for M N,i i, and Vi . Their solutions read as
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Eqs. (7)–(30) render an analytical structural analysis of segmental
tunnel rings possible, provided that (i) material behavior of the seg-
ments is linear-elastic, (ii) the external loading is known, and (iii) the
relative rotation angles at the interfaces were measured, see, e.g., the re-
analysis of a real-scale test, documented in (Zhang et al., 2017). If the
relative rotation angles are unknown, interface models are needed to
compute them.

3. Interface models

Interface models provide mathematical expressions for relative ro-
tation angles at segment-to-segment interfaces, , as functions of the
bending moment M and the compressive normal force N, transmitted
across these interfaces. Thereby, the ratio between the bending moment
and the normal force is referred to as the eccentricity e of the interface:

Fig. 2. Decomposition of ground pressure into radial and circumferential components: (a) vertical ground pressure v and lateral ground pressure h, (b) distribution
of the radial loading, qr , and (c) distribution of the circumferential loading, q r; and denote the coordinates of the polar coordinate system and R stands for radius
of the axis of the segmental tunnel ring.
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=e M
N| |

. (31)

Small eccentricities indicate full-face contact between neighboring
segments, while larger eccentricities result in partial segment-from-
segment separation.

3.1. Interface model by Gladwell (1980)

The interface model by Gladwell (1980) refers to the elastic contact
problem of a rectangular flat punch, pressed unsymmetrically into a
half space. The surface of the punch, exhibiting the width b and the
height h, is equal to the initial interfacial contact area between two
neighboring segments.

Gladwell’s model describes full-face contact between neighboring
segments for eccentricities e h| | /4. The corresponding relative rota-
tion angles increase linearly with increasing bending moment, and they
are independent of the eccentricity (Gladwell, 1980)

=
E b h

M e h32 (1 ) , | | /4,c

c

2

2 (32)

where Ec and c denote Young’s modulus and Poisson’s ratio of plain
concrete.

Gladwell’s model describes segment-from-segment separation for
eccentricities in the interval < <h e h/4 | | /2. The corresponding relative
rotation angles increase linearly with increasing bending moment and
nonlinearly with increasing eccentricity (Gladwell, 1980)

=
E b h e

h
h

e

M h e h32 (1 )
4

2 | |
1

, /4 | | /2.c

c

2

2
2

(33)

According to Eq. (33), the relative rotation angle tends to infinity as the
eccentricity approaches the maximum value, h/2,

± ±e h/2 . (34)

see also Fig. 3(a).

3.2. Interface model by Janßen (1983)

The interface model by Janßen (1983) is based on design formulae
for unreinforced concrete hinges by Leonhardt and Reimann (1965).
The latter were derived, based on linear distributions of the compres-
sive stresses in the contact region.

Janßen’s model describes full-face contact between neighboring
segments for eccentricities e h| | /6. The corresponding relative rota-
tion angles increase linearly with increasing bending moment, and they

are independent of the eccentricity (Janßen, 1983)

=
E b h

M e h12 , | | /6.
c

2 (35)

Janßen’s model describes segment-from-segment separation for ec-
centricities in the interval < <h e h/6 | | /2. The corresponding relative
rotation angle increases linearly with increasing bending moment and
nonlinearly with increasing eccentricity (Janßen, 1983)

=
E b h e

h
e

h

M h e h12
27| |
2

1 2| |
, /6 | | /2,

c
2

2

(36)

see Fig. 3(b). Again, the relative rotation angle tends to infinity as the
eccentricity approaches h/2, see Eq. (34).

3.3. Nonlinear model for bolted interfaces, considering linear-elastic and
ideal-plastic material behavior of concrete and steel

Inspired by the available interface models, see, e.g., (Li et al., 2015; Liu
et al., 2017; Tvede-Jensen et al., 2017; Caratelli et al., 2018), a nonlinear
interface model is developed for bolted segment-to-segment interfaces, see
Fig. 4(a). Linear-elastic and ideal-plastic material behavior is assumed for
both steel and concrete, see Fig. 5, where Ec and Es denote Young’s moduli
and Ffc and fy stand for the elastic-limits of concrete and steel, respectively.
Actually, fy is the yield stress of steel, fc the uniaxial compressive strength of
the concrete, and F is a strength-increase-factor, to be explained in the
following paragraph. Before that, it is emphasized that the concrete only
transmits compressive stresses across the interface. The transmission of
tensile stresses is impossible, because of separation of the two segments. The
steel bolt, in turn, transmits only tensile forces across the interface, because
it is fixed by screws at both ends. Separation of these screws from the
surrounding concrete prevents the development of compressive forces in the
bolt, see Fig. 4(a).

Concrete is linear-elastic up to a stress level that is F-times larger than the
uniaxial compressive strength fc, see Fig. 5(a). The modeling approach is
motivated by the findings of Kalliauer et al. (2017), who simulated re-
inforced concrete hinges, subjected to eccentric compression. By analogy to
reinforced concrete hinges, also segment-to-segment interfaces represent
necks in reinforced concrete structures. The stress trajectories must run
around these necks. This results in triaxial compressive stress states in the
interface region. The corresponding confinement pressure results in an in-
crease of the strength of concrete relative to its uniaxial compressive
strength. The triaxial-to-uniaxial compressive strength ratio, F, can be esti-
mated reliably on the basis of Eurocode-recommendations for partially
loaded areas (Marx and Schacht, 2010; Kalliauer et al., 2017; European
Committee for Standardization, 2014):

Fig. 3. Interface model of (a) Gladwell (1980); and (b) Janßen (1983): relation between the dimensionless bending moment and the relative rotation angle as a
function of the eccentricity e h/ .
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=F B
b

3 ,
(37)

where B and b denote the width of partially loaded areas and of the
“maximum” distribution area, respectively. Herein, they are equal to the
width of the segment and of the interface, respectively.

Modeling of ideal-plastic compressive failure of concrete, see
Fig. 5(a), is also motivated by the findings of Kalliauer et al. (2017).
They performed three-dimensional Finite Element simulations of
bearing-capacity tests on concrete hinges subjected to eccentric com-
pression. The simulation results have shown that the ductile structural
failure of concrete hinges is a consequence of the surprisingly ductile
material failure of concrete subjected to compressive multiaxial stresses.

The mathematical formulation of the nonlinear interface model is de-
rived under the assumption that segment-to-segment interfaces are sub-
jected, in a displacement-controlled fashion, to an axial shortening and
to a relative rotation angle , see Fig. 4(b). In the following, corresponding
expressions for the normal force N and the bending moment M are derived.
Following Leonhardt and Reimann’s approach, this derivation is based on
the Bernoulli-Euler hypothesis. In other words, it is assumed that all cross-
sections in the interface region remain plane at any time. This results in a
linear distribution of the axial strains along the height of the interface,
which is resolved by the radial coordinate r

= +r
d d

r R( ) ( ),c
c c (38)

see Fig. 4(c). In Eq. (38), dc denotes the effective length of the interface,
which is equal to the distance of the reinforcement cages of the two con-
nected segments, see Fig. 4(a). The steel bolts run across the interface. They
are tightened by screws at both ends. The length of the bolts is equal to the
screw-to-screw distance, denoted as ds, see Fig. 4(a). As for the

quantification of the axial strain of the bolts, s, the change of length of the
bolts, s, is set equal to the change of length of the surrounding concrete,

r( )c s , where rs denotes the radial coordinate of the bolts:

= = = =d d r r d
d

r( ) ( ) ( ).s s s c c s c s s
c

s
c s (39)

The axial normal stresses of the concrete and the steel follow from inserting
the strains (38) and (39) into the constitutive laws illustrated in Fig. 5. This
results (i) in a linear (or bilinear) distribution of compressive normal stresses
of concrete, in the contact region of the segment-to-segment interface,
where compressive strains of concrete prevail, i.e. <r( ) 0c , and (ii) in a
constant stress of the bolts, see Fig. 4(d). Finally, the stress resultants M and
N follow from the standard relations (Zhang et al., 2017)

=M r R A·( )d
A (40)

and

=N Ad .
A (41)

The expressions for M and N are available in Appendix C. Full-face segment-
to-segment contact is described for eccentricities e h| | /6, by analogy to
Leonhardt and Reimann’s approach. The bolts are not active ( = 0s ) and
the normal stresses of concrete simply read as = Ec c c, with c according
to Eq. (38). Inserting the stress state into Eq. (40) delivers the following
linear relation between M and

= d
E b h

M e h12 · , | | /6.c

c
3 (42)

Once the eccentricity increases such that segment-from-segment
separation takes place, the nonlinear interface model is evaluated nu-
merically as follows. Eqs. (38)–(41) are combined with the constitutive
laws illustrated in Fig. 5. This establishes a relation between the pre-
scribed input values of and , on the one hand, and the stress
resultants M and N, on the other hand. Many different combinations of

and are used as input in order to compute corresponding values
of M and N. Input and output values are stored in look-up tables. As for
the simulation of load-controlled tests, pairs of values of N and M are
used as input for these tables in order to determine the corresponding
value of the sought relative rotation angle.

In order to demonstrate the performance of the nonlinear interface
model, it is employed for simulation of the structural behavior of a
bolted interface subjected to eccentric compression right up to its load-
carrying capacity. The relevant geometric and material properties of the
studied interface are listed in Table 1. Since the bolts are positioned at a
distance es below the centerline of the interface, see Fig. 4(a), the mo-
ment-rotation relation of the interface depends on the sign of the ap-
plied bending moment. A negative bending moment leads to a larger
bearing capacity of the interface, compared to a positive bending mo-
ment (see Fig. 4(a) for the definition of a positive bending moment).

Fig. 4. Interface between two steel-reinforced concrete segments, connected by an eccentrically positioned steel bolt: (a) structural dimensions and directions of
positive stress resultants, (b) prescribed deformation of the interface region, (c) strain distribution, and (d) stress distribution.

Fig. 5. Linear-elastic and ideal-plastic material behavior of (a) concrete and (b)
steel; E f, , ,c c c c, and F, denote the normal stress, the normal strain, Young’s
modulus, the uniaxial compressive strength, and the triaxial-to-uniaxial
strength ratio of concrete, respectively, while E, ,s s s, and fy stand for the
normal stress, the normal strain, Young’s modulus, and the yield strength of
steel, respectively.
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This expected behavior is reproduced by the results obtained from the
simulation of eight different eccentric compression tests, with di-
mensionless eccentricities, e h/ , amounting to ± 0.30, ± 0.45, ± 0.62,
± 0.62, and ± 1.22, see the solid lines in Fig. 6.

The nonlinear interface model suggests that the initial stiffness of
the bolted interface decreases with increasing eccentricity, because
larger eccentricities result in a more pronounced separation of the two
connected segments. Still, at small intensities of the compressive
loading, the relative rotation angle increases linearly with increasing
loading. This linear behavior is related to (i) the constant eccentricity,
(ii) the constant segment-to-segment contact area, and (iii) linear-
elastic material behavior of both concrete and steel. The nonlinear parts
of the graphs in Fig. 6 are the consequence of (i) nonlinear material
behavior, i.e. of crushing of the concrete and yielding of the steel, and
(ii) changes of the segment-to-segment contact area induced, at con-
stant eccentricity, by the material nonlinearities. Crushing of concrete
starts in the outermost region on the compressed side of the interface.
Further increase of the loading results in the growth of a “crushing
zone”, in the direction of the centerline of the interface, by analogy to
the growth of “yielding zones” in the theory of plastic hinges. The
bearing capacity of the interface is reached asymptotically, once the
bolt is yielding and concrete is crushing along the entire contact region
between the two connected segments, see the finally approached pla-
teaus in Fig. 6.

The predictive capabilities of the nonlinear interface model are as-
sessed, based on experimental data from Liu et al. (2017). The tested
assemblies consisted of two reinforced concrete segments. Loading was

prescribed such that the segment-to-segment interface was subjected to
eccentric compression. In the first test the constant dimensionless ec-
centricity e h/ amounted to +0.62 and in the second test to −1.22, see
the dashed lines in Fig. 6. The model predictions agree well with the
experimental data. This corroborates the usefulness of the developed
interface model and provides the motivation to employ it for structural
simulations of segmental tunnel rings.

4. Combination of transfer relations and interface laws for
structural analysis of segmental tunnel rings subjected to ground
pressure

The exemplarily analyzed segmental tunnel ring is similar to the
structure studied by Zhang et al. (2017). The ring consists of six precast
reinforced concrete segments, see Fig. 7. The geometric properties of
the structure are listed in Table 1. The angular coordinate defines the
positions on the ring. The origin of is located at the crown (Fig. 7).
The six interfaces are located at = °81 , = ° = °73 , 1382 3 ,

= ° = °222 , 2874 5 , and = °3526 . The material properties of concrete
and steel are listed in Table 1.

As for the structural analysis, the segmental tunnel ring is subjected
to ground pressure (Fig. 2). The sensitivity of the structural behavior
with respect to the coefficient of lateral ground pressure, K, will be
investigated. Thereby, K is defined as the ratio between the horizontal
ground pressure and the vertical ground pressure,

=K .h

v (43)

The structural problem at hand is symmetric with respect to the vertical
axis running through the center of the segmental tunnel ring. Therefore,
the six interfaces are grouped into three pairs: two in the crown region,
two in the lateral region, and two in the bottom region. The behavior of
these interfaces will be modeled, based on the nonlinear interface laws
described in Section 3. The segments between the interfaces, in turn,
will be modeled, based on the linear transfer relations described in
Section 2. The structural analysis requires determination of the relative
rotation angles of all three groups of interfaces in a consistent manner
with the interface models of Section 3.

4.1. Combined analytical-numerical solution procedure

The starting point of the nonlinear structural analyses are the ex-
pressions for the static variables at the crown, see Eqs. (28)–(30). They
are inserted into the transfer relations (7). The resulting expression is
specified for seven sets of load integrals. One set refers to the known
ground pressure, see Eqs. (15)–(20). The other six sets refer to the
unknown relative rotation angles at the six interfaces, ,1 2, …, 6,
see Eqs. (9)–(12). Making use of the aforementioned symmetry, 6 is
set equal to 1, 5 to 2, and 4 to 3. This reduces the number of

Table 1
Properties of the bolted interfaces tested by Liu et al. (2017).

width of the segments B = 1.2 m
height of the segments H= 0.35 m
radius of the segmental tunnel ring R = 2.93 m

width of the interface b = 1.0 m
height of the interface h = 0.24 m
effective length of the interface dc = 0.06 m

eccentricity of the bolts es = 5.5 cm
diameter of the bolts Ds = 30 mm
length of the bolts ds = 0.40 m
number of bolts at each interface Ns = 2

Young’s modulus of the bolts Es = 200 GPa
yield stress of the bolts fy = 500 MPa

Young’s modulus of concrete Ec = 43.6 GPa
Poisson’s ratio of concrete c = 0.24
uniaxial compressive strength of concrete fc = 35.5 MPa
triaxial-to-uniaxial compressive strength ratio of concretea F = 1.90

a Following from Eq. (37).

Fig. 6. Performance of the nonlinear interface model considering linear-elastic
and ideal-plastic behavior of both concrete and steel, see the solid lines, and
experimental data from Liu et al. (2017), see the dashed lines.

Fig. 7. Cross-section of the analyzed tunnel ring consisting of six segments.
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unknowns from six to three. The obtained transfer relations are eval-
uated for the positions of the three interfaces, = j, =j 1, 2, 3. The
fourth and the fifth line of the evaluated transfer relations deliver the
following expressions for the bending moments Mj and the normal
forces Nj which are transmitted across the three sets of interfaces,

=j 1, 2, 3

=
+

+ + + +

M EI
R EA R EI

EA R v u

EAR EI EAR M

2 ( )
2 cos (2 ) sin (2 )

( 2 cos ) (2 ) ( ),

j j
L

j
L

j
L L

j

2

2 2

(44)
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+
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u v
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L

L
j

2

(45)

The Eqs. (44) and (45) mark the last step of the analytic/symbolic de-
rivation. Consideration of the nonlinear interface behavior requires a
numerical approach, described next.

The numerical calculation starts with inserting numerical values of
R EA EI B, , , , v, and h into the Eqs. (44) and (45). This delivers ex-
pressions for M1, M2, and M3 as well as for N N,1 2, and N3, which are
linear functions of the unknown relative rotation angles ,1 2, and

3, i.e.

= =
= =
= =

M M N N
M M N N
M M N N

( , , ), ( , , ),
( , , ), ( , , ),
( , , ), ( , , ).

1 1 1 2 3 1 1 1 2 3

2 2 1 2 3 2 2 1 2 3

3 3 1 2 3 3 3 1 2 3 (46)

First numerical estimates of the relative rotation angles are obtained
under the assumption of full-face segment-to-segment contact. De-
pending on the choice of the interface model, the corresponding linear
interface law is given either by Eq. (32), or Eq. (35), or Eq. (42). In-
serting the expressions for M M,1 2, and M3 according to Eq. (46) into the
relevant linear interface law, results in a set of three linear equations for
the three unknown relative rotation angles. The corresponding solution
is straightforward.

In order to check whether or not the assumption of full-face seg-
ment-to-segment contact was justified, the numerical values of

,1 2, and 3 are inserted into the expressions (46). The resulting
numerical values of M1 and N M,1 2 and N2, as well as M3 and N3 allow for
quantifying the eccentricities at the three interfaces, see Eq. (31).
Provided that the computed eccentricities are small enough such that
full-face contact is maintained, the first numerical estimates of ,1 2,
and 3 represent the final solution of the structural problem.

If the computed eccentricities imply that at least one of the three
pairs of interfaces develops partial segment-from-segment separation,
the problem at hand is nonlinear and calls for an iterative determina-
tion of the relative rotation angles. The three pairs of computed nu-
merical values of the eccentricities and bending moments are inserted
into the respective interface law. This allows for computing improved
numerical estimates of the relative rotation angles. They are inserted
into Eq. (46), followed by calculation of the eccentricities according to
Eq. (31). This procedure is repeated until the eccentricities calculated at
the end of two successive iteration steps do not change anymore. The
iteration converges quickly.

4.2. Assessment of the role of interfacial creep on the structural behavior of
segmental tunnel rings

The following structural sensitivity analysis refers to a comparison
of the interface models by Gladwell and Janßen. In both models, linear
material behavior of concrete is assumed. The model of Gladwell is
based on linear-elastic behavior of concrete. The model of Janßen, in

turn, accounts for a characteristic part of concrete creep, as explained
next.

Schlappal et al. (2017) investigated the time-dependent behavior of
concrete hinges subjected to sustained eccentric compression. They
analyzed the measured evolution of the relative rotation angles, based
on the models by Gladwell (1980) and Leonhardt and Reimann (1965).
The relative rotation angles, measured right after the end of the loading
phase, are reproduced reliably by the linear-elastic model of Gladwell.
The model of Leonhardt and Reimann, in turn, describes larger rotation
angles, reached some 16 h after the end of the loading phase (Schlappal
et al., 2017). This underlines that the model by Leonhardt and Reimann
accounts for elastic interface behavior and for creep of concrete, de-
veloping during short-term structural testing.

With respect to long-term serviceability, Leonhardt and Reimann
assumed (i) that creep would asymptotically reach a final value, and (ii)
that the finally reached total compliance of concrete, related to both
instantaneous elastic and delayed creep deformation, would be twice as
large as the instantaneous compliance. Therefore, they recommended to
divide the elastic stiffness of concrete by a factor of 2. This underlines
that the model of Leonhardt and Reimann accounts, albeit in a sim-
plified manner, for creep of concrete hinges. The model of Janßen re-
presents an adaptation of the model of Leonhardt and Reimann for
segment-to-segment interfaces used in mechanized tunneling. Dividing
the value of Young’s modulus of concrete by a factor of 2, and inserting
the obtained reduced value into Eqs. (35) and (36) allows for con-
sideration of creep of interfaces in the spirit of Leonhardt and Reimann.

The interface models by Gladwell (1980) and Janßen (1983) are
applied to the segmental tunnel ring of Fig. 7. Gladwell’s model is
evaluated with the realistic value =E 43.6 GPac , while Janßen’s model
is evaluated with =E 21.8 GPac in order to account for the reduced
stiffness of interfaces resulting from creep of concrete. The structural
behavior under the action of ground pressure with different values of
the coefficient of lateral ground pressure is studied. The numerical
calculations are carried out as described in Section 4.1. Starting with
isotropic loading ( =K 1), the value of K is progressively decreased.

The interfacial eccentricities are nonlinear functions of K, see Fig. 8.
As for isotropic loading ( =K 1), the interfacial eccentricities vanish.
Lowering the value of K, the absolute values of the eccentricities in-
crease particularly at the crown interfaces and the lateral interfaces.
Full-face contact is lost at these interfaces for values of K around 0.77
(Gladwell’s model) and 0.84 (Janßen’s model). Further reduction of K
leads to separation also at the bottom interfaces. This is predicted by
Gladwell’s model for =K 0.60, and by Janßen’s model for =K 0.69.
Once K reaches the value 0.54, the interfacial eccentricities predicted by
both models grow so large that a kinematic mechanism arises.

The load-carrying behavior of the tunnel ring is illustrated in more
detail for =K 0.722. This is related to e h| |/ 1/3 and, thus, to the limit
of applicability recommended by Leonhardt and Reimann (1965). This
limit refers to the situation that half of the initial contact area has got
lost. In addition, the vertical ground pressure v is considered to be
equal to 1.217 MN/m2. This corresponds to the elastic limit of the
segmental tunnel ring subjected to ground pressure with =K 0.722, as
will be shown in Section 4.3.

The distributions of the stress resultants M N, , and V, as well as the
deformed configuration are evaluated with the transfer relations, see
Fig. 9. Based on the identified relative rotation angles, the functions
M N( ), ( ), and V ( ) are obtained by simple evaluation of the transfer
relations, see Eq. (7). Both interface models suggest very similar dis-
tributions of the inner forces, see Fig. 9(a)–(c). The convergences in the
vertical and the horizontal directions, predicted by Janßen’s model, are
by 61 % and 73 % larger compared to those predicted by Gladwell’s
model, see Fig. 9(d).

Under long-term loading by constant ground pressure, creep of
segment-to-segment interfaces results in an increase of (i) the interfacial
eccentricities, see Fig. 8, (ii) the related relative rotation angles, and,
thus, (iii) of the structural displacements, see Fig. 9(d). This is the
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motivation to study the temporal evolution of the ovalization of the
circular cross-section of the tunnel ring in a continuous fashion. To this
end, Janßen’s model is extended towards consideration of the time-
dependent behavior of concrete. Because the bending moments are
virtually constant and in agreement with (i) the underlying assumption
of a linear stress distribution in the segment-to-segment contact area,
see Section 3.2, and (ii) the assumption of linear creep of concrete, the
elastic compliance, E1/ c, is replaced in Eqs. (35) and (36) by the creep
compliance function of the B4 model, J t t( , )0 , see Appendix B for more
details:

= J t t
b h

M e h12 ( , ) · , | | /6,0
2 (47)

= J t t

b h e
h

e
h

M h e h12 ( , )
27| |
2

1 2| |
· , /6 | | /2.0

2
2

(48)

Eqs. (47) and (48) represent an approximate approach, because the
evolution of the interfacial eccentricities results in an evolution of the
size of the compressed zones and, thus, the normal stresses are not
strictly constant throughout the analyzed period of time. Considering,
as before, = 1.217 MN/mv

2 and =K 0.722, the nonlinear structural
problem is solved for several time instants, covering a period of
100 years. At the end of this period, the time-dependent ovalization
displacements will have reached more than 60 % of the displacement at
the initial time instant. Leonhardt and Reimann’s recommendation of
performing a time-independent analysis, which is based on an elastic
compliance multiplied by a factor of 2, refers to a duration of ground
pressure action of 1.26 years, see the white-filled circles in Fig. 10(a).
Given that creep of concrete is nowadays known to increase progres-
sively, without approaching an asymptotic limit, suggests to increase
the elastic compliance rather by a factor of 3 instead of 2.

Given that creep has a significant influence on the structural dis-
placements, but only a small influence on the distributions of the inner
forces, provides the motivation to compute elastic limit values of the
ground pressure for different values of K in context of time-independent
structural analysis. Thereby, the behavior of the unreinforced interfaces
is compared with the performance of bolted interfaces.

4.3. Elastic limit analysis: unreinforced interfaces vs. bolted interfaces

The following structural sensitivity analysis refers to the elastic
limits of segmental tunnel rings with (i) unreinforced interfaces and (ii)
bolted interfaces, respectively. Both cases are described, based on the
nonlinear interface model of Section 3.3. The nonlinearities resulting
from segment-from-segment separation are taken into account. How-
ever, the analysis is restricted to linear material behavior of concrete
and steel, such that either the onset of crushing of concrete or the onset
of yielding of steel defines the elastic limit.

As long as the material behavior of concrete and steel is linear-
elastic, the structural behavior of a segmental tunnel ring is a linear
function of the ground pressure. This implies that the nonlinear solution
scheme described in Section 4.1 needs to be applied only once for any
specific value of K. An arbitrary intensity of the ground pressure may be
chosen for this task. Determination of the eccentricities at the interfaces
is a nonlinear problem, which is solved iteratively as previously

Fig. 8. Interfacial eccentricities as a function of the coefficient of lateral ground pressure: results from structural sensitivity analysis of the segmental tunnel ring of
Fig. 7: (a) Gladwell’s model evaluated with =E 43.6 GPac and (b) Janßen’s model evaluated with =E 21.8 GPac in order to account for the influence of long-term
creep of concrete at the interfaces.

Fig. 9. Structural behavior of the analyzed segmental tunnel ring subjected to
ground pressure, with =K 0.722 and = 1.217 MN/mv

2: (a) normal force, (b)
bending moment, (c) shear force, and (d) deformed configuration; red lines
refer to Gladwell’s model, evaluated with =E 43.6 GPac , blue lines to Janßen’s
model, evaluated with =E 21.8 GPac , in order to account for the influence of
long-term creep of concrete at the interfaces. (For interpretation of the refer-
ences to color in this figure legend, the reader is referred to the web version of
this article.)
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described. The solution obtained for the considered value of K scales
linearly with the intensity of the ground pressure. This facilitates the
calculation of elastic limits. The elastic limit intensity of the vertical
ground pressure decreases with decreasing values of the coefficient of
lateral ground pressure, see Fig. 11.

Results from the performed sensitivity analysis provide detailed
insight into the structural performance of segmental tunnel rings with

unreinforced or bolted interfaces:

• As long as full-face contact prevails in all interfaces ( >K 0.851), the
bolts are not active. Therefore, unreinforced and bolted interfaces
result in the same structural behavior, see Fig. 11. Thereby, the
elastic limit of the segmental tunnel ring is governed by the onset of
crushing of concrete at the crown interfaces.

Fig. 10. Influence of creep of concrete at segment-to-segment interfaces on the structural behavior of the segmental tunnel ring of Fig. 7: temporal evolutions of (a)
the effective compliance of concrete according to the B4 model, see Appendix B, and (b) the convergences under the action of ground pressure with = 1.217v MPa
and =K 0.722; “+” and “−” refer to an increase and a decrease, respectively, of the initial diameter.

Fig. 11. Results from elastic limit analysis of the segmental tunnel ring of Fig. 7 as a function of the coefficient of lateral ground pressure; unreinforced interfaces: (a)
and (b); bolted interfaces: (c) and (d); interfacial eccentricities as a function of K: (a) and (c); elastic limit intensities of the vertical ground pressure as a function of K:
(b) and (d).
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• Separation starts at the crown interfaces at =K 0.851, and at the
lateral interfaces at =K 0.847, see the corresponding red circles in
Fig. 11. Reduction of K below 0.851 increases the separation of these
interfaces.

• The separation fronts at the two crown interfaces reach the bolts at
=K 0.790, see the cyan square in Fig. 11(d). Thus, tensile forces are

activated in the crown bolts. If K is further reduced, the structural
behavior of the tunnel ring with unreinforced interfaces is at least
slightly different from that with bolted interfaces.

• Because of load redistributions associated with a further decrease of
K, the degree of utilization at the lateral interfaces increases relative
to that at the crown interfaces. At =K 0.719, crushing of concrete at
the lateral interfaces starts to govern the elastic limits of the tunnel
ring, see the intersection of the dashed blue and the dashed green
curves in Fig. 11(b) and (d).

• The bolts of the lateral interfaces are activated at =K 0.659, see the
cyan square in Fig. 11(d). Still, at that value of K, both the interfacial
eccentricities and the elastic limits associated with the unreinforced
interfaces and with bolted interfaces, respectively, are still very si-
milar, compare Fig. 11(a) and (c) as well as Fig. 11(b) and (d).

• Separation in the bottom interfaces starts at =K 0.638, in case of
unreinforced interfaces, and at =K 0.633, in case of bolted inter-
faces, see the corresponding red circles in Fig. 11. As for the tunnel
ring with unreinforced interfaces, the onset of crushing of concrete
in the lateral interfaces continues to govern the elastic limit of the
structure, see Fig. 11(b).

• Progressive reduction of K results in an increase of the bending
moments in the segmental tunnel ring. At =K 0.638, the onset of
yielding of the bolts in the crown interfaces starts to be responsible
for the elastic limits of the tunnel ring with bolted interfaces, see the
intersection of the blue dashed and green dotted graphs in
Fig. 11(d).

• The bolts in the bottom interfaces get active at =K 0.608, see the
cyan square in Fig. 11(d). Around that value of K, the elastic limit of
the structure with unreinforced interfaces is surprisingly larger than
that of the structure with bolted interfaces, compare Fig. 11(b) and
(d).

• The unreinforced interfaces result in a kinematic mechanism of the
structure as K approaches 0.54. Thus, the elastic limit tends to zero,
see Fig. 11(b). For values of K smaller than 0.54, the bolts finally
become beneficial. Bolted interfaces prevent the development of a
kinematic mechanism. Still, the corresponding elastic limit in-
tensities of the vertical ground pressure are rather small, see
Fig. 11(d), and the eccentricities at the crown interfaces and the
lateral interfaces increase significantly with decreasing value of K,
see Fig. 11(c).

Two conclusions can be drawn from the presented results. On the one

hand, the differences of the elastic limit of tunnel rings with un-
reinforced interfaces and bolted interfaces, respectively, are surpris-
ingly small. This can be explained as follows: With or without bolts, the
bending stiffness of the interfaces remains very small compared to that
of the steel-reinforced concrete segments. On the other hand, the bolts
result in a decrease of the elastic limit intensity of the ground pressure,
for many values of K. This can be explained as follows: Segmental
tunnel rings are statically indeterminate structures. Thus, stiffer parts of
the structure “attract” internal forces. This explains why bolted inter-
faces attract slightly more internal forces than unreinforced interfaces.
Furthermore, it explains why bolted interfaces may exhibit smaller
elastic limits than unbolted interfaces.

In the context of the investigated elastic limits of segmental tunnel
rings, the use of bolted interfaces (rather than unreinforced interfaces)
was clearly beneficial in case of values of K smaller than 0.556. This
provides the motivation to check whether or not the benefit of bolts is
larger when approaching the bearing capacity of segmental tunnel
rings.

4.4. Bearing capacity analysis: unreinforced interfaces vs. bolted interfaces

The results of the elastic limit analyses are taken as the starting
point for the analysis of the bearing capacity. Thereby, nonlinear ma-
terial behavior of concrete and steel is considered as explained in
Section 3.3. The simulations refer to several values of K in the interval

K0.5 1.0. For each value of K, the intensity of the ground pressure
is increased until plastic hinges develop at two pairs of interfaces and
the structure fails by means of developing a kinematic mechanism. A
plastic hinge implies that the steel of the bolt is yielding and that
concrete has reached the crushing stress Ffc in the segment-to-segment
contact region.

The bearing capacity of segmental tunnel rings with unreinforced
interfaces and bolted interfaces decreases with decreasing coefficient of
lateral ground pressure, see Fig. 12(a) and (b). The bolts do not result in
a significant increase of the bearing capacity for values of K larger than
0.60. For bending-dominated scenarios of even smaller values of K, in
turn, the bolts result in a significant increase of the bearing capacity of
the segmental tunnel ring.

It is noteworthy that the mechanical behavior of the segments was
modeled, as linear-elastic. Nonlinear material behavior was assumed to
be restricted to the interface regions. Consequently, the structural si-
mulations are based on the assumption that the nonlinear behavior of
the interfaces governs the failure of segmental tunnel rings. This agrees
with conclusions by Luttikholt (Luttikholt, 2007; Luttikholt et al.,
2008). Still, it provides the motivation to check whether or not the
chosen modeling approach delivers reliable results of the bearing ca-
pacities. This check is carried out in the context of re-analyzing a
bearing-capacity test on a segmental tunnel ring.

Fig. 12. Results from bearing-capacity analysis of the segmental tunnel ring of Fig. 7: bearing-capacity intensities of vertical ground pressure as a function of the
coefficient of lateral ground pressure for segmental tunnel rings with (a) unreinforced interfaces, and (b) bolted interfaces.
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5. Is the overall bearing capacity of segmental tunnel rings indeed
governed by the local bearing capacity of segment-to-segment
interfaces?

In this section, a bearing-capacity test on a segmental tunnel ring,
subjected to radial point loads, is analyzed, based on the combination of
the linear transfer relations from Section 2 and the nonlinear interface
model for bolted interfaces from Section 3.3.

5.1. Bearing-capacity test on a segmental tunnel ring subjected to point
loads (Liu et al., 2016)

The tested ring is similar to the one analyzed in Section 4, see Fig. 7
and Table 1. Anisotropic ground pressure was simulated by 24 hy-
draulic jacks, exerting radial point loads onto the tunnel ring, see
Fig. 13(a). The point loads were equally distributed at angular positions

= ° = …p p( 1)·15 , 1, 2, , 24p . Three different intensities of point

Fig. 13. Bearing-capacity test on a segmental tunnel ring (Liu et al., 2016): (a) layout of the hydraulic jacks and (b) imposed jack forces.

Fig. 14. Re-analysis of the bearing-capacity test of the segmental tunnel ring: evolution of (a) the maximum compressive stresses of concrete, (b) the tensile stresses
of the bolts, (c) the relative rotation angles at the interfaces, and (d) the bending moments.
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loads were prescribed. Point loads P1 were acting in the top and bottom
regions, point loads P2 in lateral regions, and point loads P3 in the in-
termediate regions, see Fig. 13(a).

The load-controlled test was organized as follows. In the first 10
loading steps, the point loads were increased proportionally with ratios

=P P P: : 1.00:0.70:0.851 2 3 , up to the force levels =P 0.3001 MN,
=P 0.2102 MN, and =P 0.2553 MN, see Fig. 13(b). Subsequently, P1 was

held constant. The lateral point loads (P2) were decreased progressively
by 0.0028 MN/step. The intermediate point loads (P3) were set equal to
the average of P2 and P1. During this unloading phase, the test had to be
stopped at load step 21, because the displacements of the structure
grew so large that the development of a kinematic mechanism was
practically reached (Liu et al., 2016). At that last load step, the point
load amounted to =P 0.3001 MN, =P 0.1792 MN, and =P 0.2403 MN.

5.2. Model validation by comparing the predicted and the experimentally
obtained bearing capacity of the segmental tunnel ring

Structural analysis of the bearing capacity test is based on the linear
transfer relations. They are evaluated for 30 sets of load integrals. 24
sets refer to the known point loads, see Eqs. (21)–(26). The remaining
six sets refer to the unknown relative rotation angles of the six inter-
faces, 1, 2, …, 6, see Eqs. (9)–(12). The symmetry of the problem
at hand implies that =6 1, =5 2, and =4 3. Thus, the
number of unknowns is reduced from six to three. The transfer relations
are combined with the nonlinear interface model for bolted interfaces,
see Section 3.3. The numerical calculations are carried out as described
in Section 4.1.

The structural analysis provides insight into the nonlinear behavior
of the segmental tunnel ring, see Fig. 14. Already during the initial
loading phase, the point loads result in an amount of bending of the ring
such that significant segment-from-segment separation activates all
three groups of interfacial bolts, see the progressively increasing bolt
stresses in Fig. 14(b). Also, crushing of concrete starts already during
the initial loading phase: at the lateral interfaces at load step 7, and at
the crown interfaces at load step 9, see Fig. 14(a).

During lateral unloading, the structure undergoes a stepwise de-
gradation. At load step 16, the steel bolts of the crown interfaces start to
yield, see Fig. 14(b). At load step 17, crushing of concrete starts at the
bottom interfaces, see Fig. 14(a). At the final load step 21, the bolts in
both lateral and bottom interfaces start yielding simultaneously, see
Fig. 14(b). The rotation angles of the crown, the lateral, and the bottom
interfaces increase from load step 20 to load step 21 by 24 %, 22 %, and
35 %, respectively, while the bending moments transmitted across these
interfaces change only by −1 %, 5 %, and 5 %, respectively, see
Fig. 14(c) and (d). At load step 21, all six interfacial bolts were yielding
and the compressive stresses of concrete were almost uniformly dis-
tributed and equal to the maximum stress Ffc, see Fig. 15. This shows

that plastic hinges were formed at almost all interfaces. In order to
check whether or not it is possible to continue the structural simulation,
an additional load step was considered, but no convergence was found.
This agrees with the experimental observation that load step 21 was
indeed very close to the bearing capacity of the tested tunnel ring. In
other words, structural analysis based on linear transfer relations and a
nonlinear interface model is capable of determining bearing capacities.
This underlines that the overall bearing capacity of segmental tunnel
rings is indeed governed by the local bearing capacity of segment-to-
segment interfaces.

6. Conclusions

In the present paper, scenarios were considered where (i) relaxation
of concrete has significantly reduced the excavation-related axial forces
of segmental tunnel linings (Arnau et al., 2012), and (ii) creep of the
ground mass has led to a ground pressure distribution very similar to
the initial in-situ stress state (Lee et al., 1999). Structural analyses of
segmental tunnel rings were based on the combination of linear transfer
relations, representing analytical solutions of the linear theory of
slender circular arches (Zhang et al., 2017) with time-dependent and
nonlinear interface models. As for this new mode of structural analysis,
the following conclusions are drawn:

• The combination of transfer relations and interface models allows
for a predominately analytical mode of structural analysis.
Numerical and iterative solution procedures related to non-
linearities resulting from the interfaces are limited to the possible
minimum.

• The proposed mode of structural analysis is computationally effi-
cient. Consequently, it supports structural sensitivity analyses which
require the simulation of many different types of external loading.

Structural failure of a segmental tunnel ring consisting of six segments
(connected by six segment-to-segment interfaces) is the consequence of
development of a kinematic mechanism, in the framework of a stiffness
or a strength problem, as explained in the following.

• As for unreinforced interfaces, the studied segmental tunnel ring
develops inevitably a kinematic mechanism, provided that the
coefficient of lateral ground pressure, K, is smaller than or equal to
0.54. In such cases, the anisotropy of the external loading is so large
that the eccentricities at the interfaces reach a level that the com-
pressive normal stresses transmitted across the interfaces do no
longer allow the establishment of equilibrium. Thus, the failure of
the segmental tunnel ring is governed by a stiffness problem at the
interfaces.

• Considering either bolted interfaces or unreinforced interfaces in the
context of values of K in the interval < <K0.54 1, the development
of a kinematic mechanism requires the development of plastic
hinges. The latter are related to compressive crushing of the con-
crete and, in case of bolted interfaces, tensile yielding of the steel.
Thus, the failure of the segmental tunnel ring is governed by a local
strength problem at the interfaces.

Segmental tunnel linings must provide reliable services for many dec-
ades. In the related context of serviceability limit states (SLS), creep of
concrete at segment-to-segment interfaces deserves special attention.

• Creep of concrete at the interfaces results in a significant increases
of the ovalization displacements of segmental tunnel rings. This is
relevant for the long-term serviceability of segmental tunnel linings,
because the ovalization of the linings must stay below tolerated
limits.

• Creep of concrete increases, after an initial transition period, line-
arly with the logarithm of time, see e.g. (Bažant et al., 2011; Zhang

Fig. 15. Distribution of stresses at the three pairs of interfaces, computed at
load step 21.
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et al., 2014). In other words, creep of concrete never comes to an
end. Therefore, relative rotation angles at segment-to-segment in-
terfaces increase progressively, without approaching an asymptotic
limit. This calls for the future development of design rules for the
SLS, based on state-of-the-art creep formulations.

• Leonhardt and Reimann recommended to account for creep of
concrete hinges by performing a time-independent analysis. The
latter is based on an “equivalent” elastic compliance of concrete,
which is by a factor of 2 larger than the elastic compliance E1/ c. In
the present paper, this approach was shown to account for a service
period of 1.26 years only. Given that tunnels shall reach a service
life of up to one century, the present study suggests that the
“equivalent” elastic compliance of concrete should rather be 3 times
larger than the elastic compliance.

As to ensure long-term durability of segmental tunnel linings, it is also
desirable that segment-to-segment interfaces do not reach their elastic
limits during regular service (Schlappal et al., in preparation). In this
context, the following conclusions concerning the benefit of interfacial
bolts are drawn:

• Bolts might appear to be counterproductive, because for many
practically relevant values of K, they result in a decrease of the
elastic limit intensity of the ground pressure, compare the blue
curves in Fig. 16.

• Still, bolts are clearly improving the serviceability of segmental
tunnel rings, when assessed from the viewpoint of the design re-
commendations by Leonhardt and Reimann. They recommended to
limit the separation at unreinforced concrete hinges to one half of
the initial contact area (Leonhardt and Reimann, 1965). In the
present context, this implies that the eccentricities, calculated with
the nonlinear interface model for unreinforced interfaces, are lim-
ited by e h| |/ 1/3. This separation is obtained for =K 0.722, in-
dependent of the actual intensity of the ground pressure, see
Fig. 16(a). Even smaller values of K are associated with the risk of

segmental “snap through” (Majdi et al., 2016), at least from the
viewpoint of Leonhardt and Reimann. Therefore, interfacial bolts do
result in a significant increase of the serviceability of segmental
tunnel rings, because they are ensuring the position stability of
segmental tunnel rings, even for values of K smaller than 0.722, see
Fig. 16(b).

• For a markedly anisotropic ground pressure, associated with small
values of K, the use of bolts should be mandatory, because the
transmission of compressive forces across unreinforced interfaces
may not be sufficient in order to provide the normal force and the
bending moment required for overall structural equilibrium.

As for bearing capacities associated with ultimate limit states (ULS) of
segmental tunnel rings, the following conclusion is drawn:

• As for quantification of bearing capacities, it is important to care-
fully account for the nonlinear interface behavior. The mechanical
behavior of the reinforced concrete segments, in turn, is of less
importance. They may be modeled as linear-elastic. This is shown by
means of re-analysis of a real-scale bearing capacity test on a seg-
mental tunnel ring. Still, it remains desirable for future develop-
ments to extend the linear transfer relations towards consideration
of damage of steel-reinforced concrete segments, such as observed
during real-scale experiments using test rigs for segments (Gehwolf
et al., 2017). Such an extension is the topic of a follow-up paper
(Zhang et al., under revision).
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Appendix A. List of symbols

A initial contact area of the interface
As cross-sectional area of the bolt
a c/ aggregate-cement ratio in the mix by weight
B width of the cross-section of the segment
b width of the initial contact area of the interface
C0 compliance of concrete for basic creep
Ds diameter of the bolt
dc effective length of the interface

Fig. 16. Comparison of intensities of the ground pressure related to the elastic limit (blue curves) and to the bearing capacities (red curves) of the segmental tunnel
ring of Fig. 7 with (a) unreinforced interfaces and (b) bolted interfaces without consideration of ring-to-ring interaction for both cases. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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ds length of the bolt
Ec Young’s modulus of concrete
Es Young’s modulus of the bolt
EA extensional stiffness of the segment
EI bending stiffness of the segment
e eccentricity of the interface
er base vector in the radial direction
es eccentricity of the bolt
F triaxial-to-uniaxial compressive strength ratio of concrete
fc uniaxial compressive strength of concrete
fy yielding stress of the bolt

H height of the cross-section of the segment
h height of the initial contact area of the interface
J total compliance of concrete
K coefficient of lateral ground pressure
M bending moment
Mi bending moment at the initial cross-section of the segmental tunnel ring
Mj bending moment transmitted across the jth interface
ML load integral for the bending moment
N normal force
Ni normal force at the initial cross-section of the segmental tunnel ring
Nj normal force transmitted across the jth interface
NL load integral for the normal force
Ns number of the bolts at each interface
P point load
P1 point load acting in the top and bottom regions of the segmental tunnel ring
P2 point load acting in the lateral regions of the segmental tunnel ring
P3 point load acting in the intermediate regions between P1 and P2
qr radial component of distributed loading
q circumferential component of distributed loading
R radius of the segmental tunnel ring
r radial coordinate of the polar coordinate system
r0 radial coordinate of the separation front
r1 radial coordinate of the starting point of the plastic region of concrete
rb lower limit of the integral for determination of stress resultants
re upper limit of the integral for determination of stress resultants
rs radial coordinate of the bolt
rcl radial coordinate of the closed edge of the interface
rop radial coordinate of the open edge of the interface
t current age of concrete
t0 age of concrete at loading time
u radial component of displacement
ui radial displacement at the initial cross-section
uL load integral for the radial displacement
V shear force
Vi shear force at the initial cross-section of the segmental tunnel ring
VL load integral for the shear force
v circumferential component of displacement
vi circumferential displacement at the initial cross-section
vL load integral for the circumferential displacement
w c/ water-cement ratio in the mix by weight

e effective coefficient referring to the contribution of the concrete in the elastic region to the stress resultants
p effective coefficient referring to the contribution of the concrete in the plastic region to the stress resultants

e effective coefficient referring to the contribution of the bolt in the elastic regime to the stress resultants

p effective coefficient referring to the contribution of the bolt in the plastic regime to the stress resultants

change of length of the effective interface region
c change of length of the concrete surrounding the bolt
s change of length of the bolt

relative rotation angle at the interface
c strain of concrete
s strain of the bolt
c Poisson’s ratio of concrete

stress
c stress of concrete
s stress of the bolt
h horizontal component of the ground pressure
v vertical component of the ground pressure
rr normal stress in the radial direction
r shear stress in the circumferential direction

v
ult intensity of the vertical ground pressure that results in the bearing capacity

cross-sectional rotation angle
i rotation angle of the initial cross-section
L load integral for the cross-sectional rotation

angular coordinate of the polar coordinate system
j polar position of an interface on the segmental tunnel ring

p polar position of a point load acting on the segmental tunnel ring
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Appendix B. Brief overview over the B4 model (Bažant et al., 2014)

The environmental temperature for curing of segments and service of tunnel linings is assumed to be equal to 20 °C. The creep compliance
function of the B4 model reads as (Bažant et al., 2014)

= +J t t
E

C t t( , ) 1 ( , ),
c

0 0 0 (B.1)

where t denotes current age of concrete and t0 stands for the age of concrete when the loading is imposed. t and t0 are measured in days. In Eq. (B.1),
the first term on right side refers to the instantaneous compliance. The second term, refers to the compliance for basic creep. It reads as

= + + +C t t q Q t t q t t q t
t

( , ) · ( , ) ·ln[1 ( ) ] ·ln ,0 0 2 0 3 0
(0.1)

4
0 (B.2)

with

= +Q t t Q t
Q t

Z t t
( , ) ( ) 1

( )
( , )

,f
f

r t r t
0 0

0

0

( )
1
( )0 0

(B.3)

= +Q t t t( ) [0.086( ) 1.21( ) ] ,f 0 0
2/9

0
4/9 1 (B.4)

= +Z t t t t t( , ) ( ) ln[1 ( ) ],0 0
0.5

0
0.1 (B.5)

= +r t t( ) 1.7( ) 8.0 0
0.12 (B.6)

In Eq. (B.2), the model parameters q q,2 3, and q4 are given as follows:

=q
p w c

1 GPa
/

0.38
,

p

2
2 w2

(B.7)

=q p q a c w c/
6

/
0.38

,
p p

3 3 2
a w3 3

(B.8)

=q
p a c w c

1 GPa
/
6

/
0.38

,
p p

4
4 a w4 4

(B.9)

where w c/ and a c/ denote the initial water-to-cement mass ratio and the initial aggregate-to-cement mass ratio, respectively. The numerical values of
the parameters involved in Eqs. (B.1)–(B.9) are listed in Table B.1.

Appendix C. Closed-form expressions of the stress resultants M and N

In order to derive closed-form expressions of the stress resultants M and N, it is useful to introduce the coordinates of the separation front, r0, the
starting point of the plastic region of concrete, r1, and the open as well as the closed edge, rop and rcl. r0 and r1 are obtained by setting Eq. (38) equal to
zero and to the strain corresponding to triaxial strength of concrete, i.e. to Ff E/c c, respectively, followed by solving the resulting relations for r:

=r R ,0 (C.1)

= +r R
F f d

E
1 .c c

c
1

(C.2)

rop and rcl depend on the sign of the prescribed relative rotation angle :

= + …
… <r R h

R h
/2 0,
/2 0,op

(C.3)

= …
+ … <

r R h
R h

/2 0,
/2 0.cl (C.4)

The generalized expressions of M and N read as, see Eqs. (40) and (41)

Table B.1
Numerical values of the parameters involved in the B4 model (Bažant et al., 2014), specified for
the concrete of the interface tested by Liu et al. (2017).

Ec = 43.6 GPa t0 = 28 days w c/ = 0.47
p2 = 21.68 × 10 3 p w2 = 3.00 a c/ = 5.57

p3 = 91.57 × 10 3 p w3 = 0.40 p a3 = −1.10

p4 = 2.142 × 10 3 p w4 = 2.45 p a4 = −0.90

The numerical values of p2, p3, and p4 account for the significant amount of fly-ash of the binder.
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Table C.1
Numerical values of , ,e p e, and p for 0.

No. mathematical conditions stress state e p e p rb re

C1 r rop0 , r rcl1 Full-face contact, concrete is elastic, bolt is inactive 1 0 0 0 rop rcl
C2 r rop0 , < <r r rcl op1 Full-face contact, concrete is partly plastic, bolt is inactive 1 1 0 0 rop r1
C3 r rop0 , r rop1 Full-face contact, concrete is fully plastic, bolt is inactive 0 1 0 0 rop rop
C4 < <r r rs op0 , r rcl1 Partial separation, concrete is elastic, bolt is inactive 1 0 0 0 r0 rcl
C5 < <r r rs op0 , >r rcl1 Partial separation, concrete is plastic, bolt is inactive 1 1 0 0 r0 r1
C6 <r f d E r/( )s y s s 0, <r r rcl s0 , r rcl1 Partial separation, concrete is elastic, bolt is elastic 1 0 1 0 r0 rcl

C7 <r f d E r/( )s y s s 0, <r r rcl s0 , >r rcl1 Partial separation, concrete is plastic, bolt is elastic 1 1 1 0 r0 r1

C8 r f d E r/( )s y s s 0, >r rcl0 , r rcl1 Partial separation, concrete is elastic, bolt is plastic 1 0 0 1 r0 rcl

C9 r f d E r/( )s y s s 0, >r rcl0 , >r rcl1 Partial separation, concrete is plastic, bolt is plastic 1 1 0 1 r0 r1

C10 r rcl0 Full-face separation 0 0 0 0 rcl rcl

Table C.2
Numerical values of , ,e p e, and p for < 0.

No. mathematical conditions stress state e p e p rb re

C1 r rop0 , r rcl1 Full-face contact, concrete is elastic, bolt is inactive 1 0 0 0 rop rcl
C2 r rop0 , < <r r rop cl1 Full-face contact, concrete is partly plastic, bolt is inactive 1 1 0 0 rop r1
C3 r rop0 , r rop1 Full-face contact, concrete is fully plastic, bolt is inactive 0 1 0 0 rop rop
C4 < <r r rop s0 , r rcl1 Partial separation, concrete is elastic, bolt is inactive 1 0 0 0 r0 rcl
C5 < <r r rop s0 , <r rcl1 Partial separation, concrete is plastic, bolt is inactive 1 1 0 0 r0 r1
C6 >r f d E r/( )s y s s 0, <r r rs cl0 , r rcl1 Partial separation, concrete is elastic, bolt is elastic 1 0 1 0 r0 rcl

C7 >r f d E r/( )s y s s 0, <r r rs cl0 , <r rcl1 Partial separation, concrete is plastic, bolt is elastic 1 1 1 0 r0 r1

C8 r f d E r/( )s y s s 0, <r rcl0 , >r rcl1 Partial separation, concrete is elastic, bolt is plastic 1 0 0 1 r0 rcl

C9 r f d E r/( )s y s s 0, <r rcl0 , r rcl1 Partial separation, concrete is plastic, bolt is plastic 1 1 0 1 r0 r1

C10 r rcl0 Full-face separation 0 0 0 0 rcl rcl

Fig. C.1. Relation between the stress states C1, C2, ..., C5, and C10, see details in Tables C.1 and C.2, and the prescribed values of and for an unreinforced
interface.

Fig. C.2. Relation between the stress states C1, C2, ..., C10, see details in Tables C.1 and C.2, and the prescribed values of and for a bolted interface.
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where As denotes the area of the bolt, e, r, , ,p e p b, and re are coefficients referring to the stress states at the interfaces, see Tables C.1 and C.2 as
well as Figs. C.1 and C.2. In Eqs. (C.5) and (C.6), the terms starting with , ,e p e, and p refer to the contribution of the concrete in the elastic region
and in the plastic region and of the bolt in the elastic regime and in the plastic regime, respectively. As for unreinforced interfaces, = = 0e p .
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