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A B S T R A C T

Most back analysis methods for geotechnical engineering are based on the measured displacement. However,
before the monitoring sections are assembled, the displacement—termed the displacement loss—has already
been induced; this displacement is difficult to determine, and thus, it is not considered in the back analysis. In
the present study, a novel displacement back analysis method considering the displacement loss is developed,
that can obtain not only the reasonable mechanical parameters of rock masses but also the displacement loss. To
reduce the computational cost of back analysis, a new hybrid optimization algorithm based on the Gaussian
process (GP) and particle swarm optimization (PSO) is presented. The GP is used as an inexpensive fitness
evaluation surrogate to predict the global optimum solution and accelerate the local search of PSO, which is
employed to determine the best mechanical parameters for the model. Combined with FLAC3D numerical ana-
lysis, a novel back analysis method called GP-PSO-FLAC3D is proposed. The results of a case study demonstrate
that this method can effectively predict more reasonable mechanical parameters and displacement loss using the
monitored displacement. An engineering application in the auxiliary tunnel of the Jinping II hydropower station
indicates that the elastic deformation of the surrounding rock increases rapidly after excavation, especially for
deep tunnels, thereby resulting in a large displacement loss. The back analysis results for the main powerhouse of
the Taian pumped storage power station indicate that the displacement loss also exists in engineering processes
involving ordinary geostress conditions. Therefore, the displacement loss of a surrounding rock mass cannot be
ignored in the stability evaluation or back analysis of underground engineering, especially for deep underground
rock engineering.

1. Introduction

It is well known that design input parameters such as the rock mass
strength and in situ stress are critical for underground excavation en-
gineering design. The rationality of rock mass parameter selection can
directly affect the rationality of the evaluation results of the rock mass
stability. If unsuitable parameters are used for engineering design,
critical losses of human lives and property may occur (Hoek and
Diederichs, 2006; Bieniawski, 1984; Cai, 2011; Barton et al., 1974).

Conventionally, the design input parameters are obtained by con-
ducting several in situ tests (i.e., block shear tests and plate-loading
tests) for different points under the conditions of complex topography
and geology, which is not only a time-consuming and expensive process
but also an unrepresentative method for the overall rock mass (Cai
et al., 2007; Gioda and Sakurai, 1987). Compared with traditional in
situ tests, back analysis methods have numerous advantages, which
include an easier implementation, a considerably lower cost, and a

higher efficiency, and thus, these methods have been widely used to
solve the problem of obtaining the design input parameters. Back
analysis methods can make full use of the in situ monitoring displace-
ment to deduce the mechanical parameters of rock masses (Feng et al.,
2000), in situ stress field (Sakurai and Takeuchi, 1983; Kaiser et al.,
1990), excavation parameters (Rechea et al., 2008) and numerous other
input parameters (Pirulli and Mangeney, 2008; Berti et al., 2017). Back
analysis methods can be classified into two major types based upon
different calculation methods: analytical and numerical methods (Feng
et al., 1999). Since the analytical method is applicable only to back
analysis problems involving simple geometric shapes and boundary
conditions, it is difficult to adopt for complex geotechnical engineering;
thus, numerical methods, which have more adaptability, have been
widely used. Generally, to obtain more suitable input parameters, the
numerical back analysis problem is transformed into an optimization
problem, in which the error between the computed displacement and
actual measured displacement is regarded as the optimization objective
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function and the different input parameters are regarded as the opti-
mization variables. Then, various optimization methods can be em-
ployed to solve the problem (Yang et al., 2010; Tang and Kung, 2009;
Hao et al., 2016).

The displacement of the surrounding rock often occurs before
monitoring instruments have been assembled; hence, it is termed the
displacement loss (Fig. 1). Currently, the computed displacement is
obtained by a numerical simulation, which represents the displacement
for the entire process. However, the actual measured displacement that
is compared with the computed displacement is only a part of the actual
overall displacement. Because the monitoring sections are always as-
sembled after the working face excavation, considerable displacement
loss is involved in the displacement monitoring of underground rock
mass engineering. In particular, for deep tunnels under high in situ
stresses, the rock stress is suddenly released at the moment of excava-
tion, and the displacement loss is induced subsequently. The value of
the displacement loss may not be extremely large; however, it may
represent a large proportion of the overall displacement. If the mea-
sured displacement, which is a lower value than the actual one, is re-
garded as the actual whole displacement and compared with the com-
puted displacement, it will inevitably lead to a significant deviation in
the back analysis results. In addition, since the emergence of the New
Australian Tunneling Method (NATM) construction concept, the use of
surrounding rock displacement measurement information for informa-
tion-based construction has become popular in modern tunnel con-
struction (Farias et al., 2004; Mohammadi et al., 2014; Yu et al., 2016).
During information-based construction, if the displacement loss in-
formation is ignored, the construction safety may be adversely im-
pacted. Therefore, methods to obtain the displacement loss and in-
corporate it into the back analysis represent a key problem in
evaluating the surrounding rock stability and ensuring the safety of

construction especially for deep tunnels.
For several years, the consideration of the displacement loss has

relied on the displacement (or load) release coefficient. When the
coefficient is determined by experience, the corresponding equivalent
release displacement can be obtained (Cai et al., 2002; Lu et al., 2014).
However, this method involves some uncertainties due to the experi-
entially determined coefficient. Recent literature reports only one
method of directly obtaining the displacement loss, in which the Hoek
experiential formula is applied and the monitoring displacement is used
to calculate the displacement loss (Zhang et al., 2009). Because this
method is based on an experiential formula and involves many as-
sumptions, such as those for the continuity and homogeneity of the rock
mass, it can obtain the displacement loss only for the two-dimensional
planar problem. Thus, the existing theories and methods cannot fully
satisfy the requirements of engineering practice. It is therefore neces-
sary to determine a more reasonable and effective method for obtaining
the displacement loss of the surrounding rock.

The actual monitored displacement is the most direct and effective
information obtained during tunnel excavation. Determining the dis-
placement loss using the monitored displacement is an effective
method. Accordingly, this paper proposes a novel displacement back
analysis method considering the displacement loss based on the mon-
itored displacement.

As mentioned earlier, many optimization methods can solve the
back analysis problem for the displacement loss. However, a rock mass
under complex conditions may be cut into both a continuous and a
discontinuous body by all types of geologic structures. Thus, the opti-
mization objective function of optimization back analysis is usually a
complex nonlinear multimodal function. The traditional gradient opti-
mization method can obtain only a local optimal solution (Zhao and
Yin, 2009; Khamesi, 2015). In recent years, a number of stochastic
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Fig. 1. Profile of radial displacement in the vicinity of the working face.
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search optimization methods have been proposed to solve this problem.
These include the evolution strategy (ES) (Moreira et al., 2013), genetic
algorithm (GA) (Levasseur et al., 2010; Beiki et al., 2013; Hashash
et al., 2010), particle swarm optimization (PSO) (Gao, 2006; Knabe
et al., 2012; Hajihassani et al., 2018) and ant colony optimization
(ACO) (Lin et al., 2014; Gao and Feng, 2005). These methods evaluate
the objective function in a random sample of points from the search
space and subsequently manipulate the sample. To determine the best
sample, thousands of fitness evaluations must be performed. However,
in practical engineering, a single exact fitness evaluation involving the
numerical analysis of a complex engineering system often consumes
many minutes or hours of CPU time, which makes application of the
stochastic search optimization method to practical engineering in-
feasible.

One promising way to significantly reduce the computational cost of
stochastic search optimization methods is to employ a computationally
inexpensive surrogate model in place of computationally expensive
exact fitness evaluations. Research on surrogate-assisted evolutionary
computation began over a decade ago and has received increasing in-
terest in recent years (Ninić et al., 2017; Li et al., 2014; Miro et al.,
2015). In the surrogate approach, a surrogate model is trained on the
existing evaluated individuals (fitness cases) in order to guide the
search for promising solutions. By leveraging the surrogate models, the
number of expensive fitness evaluations decreases, which results in a
significant decrease in the computational cost (Brigham and Aquino,
2007; Ninić and Meschke, 2015).

In this paper, to effectively reduce the number of fitness evaluation
and improve the efficiency of the displacement loss back analysis, a
Gaussian process (GP) surrogate-assisted PSO algorithm is proposed.
Through a combination with FLAC3D (Itasca Consulting Group, Inc.,
2005), which is a famous geotechnical numerical simulation software
(Zhang et al., 2008; Wang et al., 2018), a new back analysis optimi-
zation method called GP-PSO-FLAC3D is developed. The remainder of
this paper is structured as follows. Section 2 provides a brief in-
troduction of the displacement back analysis method considering the
displacement loss. Section 3 presents the GP-PSO-FLAC3D method.
Section 4 demonstrates the validity and efficiency of the proposed
method by using numerical experiments. Section 5 describes the en-
gineering application, and the conclusions of this study are stated in
Section 6.

2. Displacement back analysis method considering the
displacement loss

2.1. General concept

For a given tunnel, with the help of a numerical computation model,
we can easily obtain the curve for the whole displacement with time at
a certain measurement point of the surrounding rock after excavation;
this curve is the total computation convergence displacement curve. If
the mechanical parameters for the numerical computation model are
different, a different total computation convergence displacement curve
will be obtained. The computation convergence displacement curve is
then depicted in the same coordinate system as the measured dis-
placement according to the corresponding monitoring time. For ex-
ample, two different total computation convergent displacement curves
are shown in Fig. 2. These curves are divided into two parts based on
the actual displacement monitoring time: one part is the displacement
loss (dashed line) and the other part is the monitoring displacement
(solid line). As seen from Fig. 2, compared with computation curve 1,
the monitoring part of computation curve 2 is more similar to the actual
monitoring displacement curve. Therefore, it can be considered that
computation curve 2 has a higher reliability, and the corresponding
displacement loss for this curve is regarded as the possible displacement
loss. Because the displacement loss is considered in this case, the me-
chanical parameters of curve 2 are regarded as more reasonable input

parameters, which can more accurately simulate an actual engineering
project. Next, the key problem is how to obtain the mechanical para-
meters of curve 2. We can use the optimization back analysis method to
determine the mechanical parameters of curve 2, and the problem of
obtaining the displacement loss is then transformed into an optimiza-
tion back analysis problem.

2.2. Mathematical model of optimization back analysis

The minimization of error between the computation displacement
curve and monitoring displacement curve is regarded as the optimiza-
tion objective. The mechanical parameters of the surrounding rock are
regarded as the decision variables. By optimizing the parameters, the
total computation displacement curve, which is the most similar to the
actual monitoring displacement curve, is determined. The displacement
loss of this curve is regarded as being relatively credible.

To evaluate the similarity between the two curves, the monitoring
points and monitoring time are determined for comparison.
Consequently, the optimization objective function, which is also called
the fitness function, can be set as in Eq. (1):

∑ ∑= −
= =

x xf d dmin ( ) [ ( ) ¯ ]
i

n

t

m

it it
1 1

2

(1)

where xf ( ) is the objective function, x represents the decision vari-
ables, m is the total monitoring time, n denotes the total monitoring
points, dit is the computational displacement for monitoring point i at
moment t, and d̄it is the actual monitoring displacement for monitoring
point i at moment t.

The constraint is presented by Eq. (2):

⩽ ⩽xa b (2)

where the constants a and b respectively indicate the lower and upper
limits for the decision variables, constituting the reasonable range of
the mechanical parameters in practical engineering. The reasonable
range of the parameters can not only reduce the computational cost, but
also increase the accuracy of the back analysis results. Generally, it is
determined on the basis of laboratory measurements.

After establishing the optimization objective function and constraint
condition, any optimization method can be used to solve this optimi-
zation problem. In this study, we use the GP-PSO-FLAC3D optimization
method to address this issue. The details of the proposed method are
presented in the next section.

3. A displacement loss back analysis method using GP-PSO-FLAC3D

3.1. GP

In this work, the GP model is selected as the surrogate model, which
is a newly developed machine learning technology based on strict
theoretical fundamentals and Bayesian theory (Seeger, 2004). In recent
years, the GP has attracted much attention in the machine learning
community and has been widely applied (Hensman et al., 2010; Su
et al., 2007; Pal and Deswal, 2010; Jadaliha et al., 2013).

Compared to an artificial neural network (ANN), which is the most
prominent surrogate model, the main advantage of the GP is its sim-
plicity: neither a network size nor a topology must be selected. In ad-
dition, the GP can automatically choose the optimum hyperparameters.
More details concerning the GP can be found in the work by Rasmussen
(Rasmussen, 2006).

The GP is a collection of random variables, any finite set of which
has a joint Gaussian distribution. The GP is completely specified by its
mean function m(x) and the covariance function x xk ′( , ) as follows:

x x x xf GP m k ′( )~ ( ( ), ( , ) ) (3)

A training set D of s observations exists as = = …D x y i s{( , )| 1, }i i ,
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Fig. 2. Computation convergence displacement and measured displacement curves of the surrounding rock.

Begin
Randomly generate the N particles of 1st generation
Evaluate the fitness of particles using objective function
Find the optimum particle pid and global optimum particle pgd

p = 0
While termination criteria is not met

Generate N particles of (2+p)th generation using Eq. 10
Evaluate the fitness of these particles using the objective function

The (2+p) N particles are sorted according to an increasing order of fitness
The upper 2 N particles and their fitness are selected to establish the training datasets

Train the GP by the training datasets
Update the optimum particle pid and global optimum particle pgd at the current iteration

For i=1, k
Generate N particles using Eq. 10
Evaluate the fitness of N particles using the trained GP

End For

Find the best particle with the minimum fitness in k generations
Evaluate its fitness using the objective function and replace its fitness evaluated using the
trained GP
Compare this fitness to gbest, select the smaller one as the global optimum particle pgd and
update gbest
Replace the worst particle with the maximum fitness in training datasets by this particle  
and its fitness

p = p+1
End While

End

Fig. 3. Pseudocode of GP-PSO.

Table 1
Parameter settings of the benchmark functions.

Function Formulation Trait Minimal function value Search space

Sphere = ∑ =f x x( ) i
n

i1
2 Unimodal 0 [−2,2]30

Rastrigin = ∑ − +=f x x πx( ) ( 10 cos(2 ) 10)i
n

i i1
2 Multimodal 0 [−2,2]30
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where x denotes an input vector and y denotes the scalar output or
target. The goal of Bayesian forecasting is to compute the distribution

∗ ∗x Dp y ,( | ) of output y* given a test input x* and a set of training points
D. Using the Bayesian rule, the posterior distribution for the GP outputs
y* can be obtained. By conditioning the observed targets in the training
set, the predictive distribution is Gaussian:

∗ ∗ ∗ ∗x X y x xy N y σ, ,| ~ ( ¯ ( ), ¯ ( )) (4)

where the mean and variance are given by

= +∗ ∗
−x k K I yy σ¯ ( ) ( )n

T 2 1 (5)

= − +∗
−

∗x x x k K I kσ k σ¯ ( ) ( , ) ( )T
n

2 2 1
   (6)

where a compact form of the notation for the matrix of the covariance
functions is =∗ ∗k K X x( , ), =K K X X( , ), and σn

2 is the unknown var-
iance of the Gaussian noise.

The GP procedure can handle complex models by simply using a
covariance function with an exponential term:

⎜ ⎟= ⎛
⎝

−
∥ − ∥ ⎞

⎠
+k x x

x x
l

σ σ δ( , ) exp
2p q f

p q
n pq

2
2

2
2

(7)

where l is the length-scale vector, σf
2 is the signal variance, and δpq is a

Kronecker delta function. This function expresses the concept that
nearby inputs have highly correlated outputs. The GP employs a set of
hyperparameters θ, including the length-scale l, the signal variance σf

2,
and the noise variance σn

2. The hyperparameters θ can be optimized
based on a log-likelihood framework:

= = − − −−y X θ y C y CL p n π|log ( , ) 1
2

1
2

log det
2

log 2T 1
(8)

The log-likelihood and its derivative with respect to θ can be ex-
pressed as

∂
∂

= − ⎛
⎝

∂
∂

⎞
⎠

+ ∂
∂

− − −
θ

C C
θ

y C C
θ

C yL tr1
2

1
2

T1 1 1
(9)

where = +C K Iσn
2 .

The hyperparameters θ are initialized to random values in a rea-
sonable range, and subsequently, the algorithm searches for the optimal
values by using an iterative method such as the conjugate gradient.

Fig. 4. 3D graphs for benchmark functions (a: Sphere function; b: Rastrigin function).

Table 2
Parameter settings of GP-PSO and PSO.

Function D N lb ub tmax vmax c1 c2 k Accuracy

Sphere 30 50 −2 2 20,000 1 2 2 10 1.00E−03
Rastrigin 30 50 −2 2 50,000 1 2 2 10 3.00E+01

Table 3
Comparison between the number of function evaluations for GP-PSO and PSO.

Function PSO GP-PSO

Sphere 427,400 32,129
Rastrigin 802,050 10,862
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Fig. 5. Comparison of the convergence between GP-PSO and PSO (a: Sphere function; b: Rastrigin function).
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3.2. PSO

The PSO model is initialized with a population of random solutions,
and it searches for the optima by updating generations (Eberhart and
Kennedy, 1995). In PSO, the potential solutions, called particles, fly
through the problem space by following the current “optimum” parti-
cles. There are two optimum particles. One keeps track of the co-
ordinates associated with the best solution in the current stage, and the
best solution is defined as pbest. The other optimal solution tracked by
the particle swarm optimizer is obtained at an instant by considering
any particle in the neighboring region of the particle; when a particle
takes the entire population as its topological neighbors, this global best
is denoted as gbest. With the help of the two optimal values, the particle
updates its velocity and positions as per the following equations:

= + − + −
= +

⎫
⎬⎭

v wv c r p x c r p x
x x v
( ) ( )i d i d i d id g d id

id id id

1 1 2 2

(10)

where vid is a velocity vector and xid is a position vector. pid represents
the best position of particle i, and its fitness is pbest. pgd corresponds to

the global best position in the process of particle iteration on the d-th
dimension and its fitness is gbest. The parameters r1 and r2 are two
random values uniformly distributed in [0, 1] (Feng et al., 2006). c1 and
c2 are acceleration constants usually defined as c1= c2= [1.8, 2.0]
(Wang and Ma, 2017). The parameter w is the inertial weight, which
controls the influence of the previous velocity on the new velocity. The
inertial weight w can be determined as in Eq. (11):

= − −w w w w
t

tmax
max min

max (11)

where t is the current iteration step, tmax is the maximum iteration step,
wmax is the maximum inertial weight, and wmin is the minimum inertial
weight. Usually, wmax= 0.9 and wmin= 0.4 (Li et al., 2014; Ojha and
Das, 2012).

3.3. GP surrogate-assisted PSO

During the optimization back analysis of parameters, a single exact
fitness function evaluation often requires several minutes to hours,
particularly for the analysis of a complex engineering system based on a

Loop 
k 

times
Inner cycle

Outer cycle

The particle with the minimum fitness is 
regarded as the historical optimal solution 

PSO generates the kth generation particles

No

PSO generates the (2+p)th generation particles

PSO generates the first generation particles

Establish FLAC3D model 

Check accuracy condition Yes

The particle of the minimum fitness for k times

GP model fitness evaluation

Compare the real fitness with 
the historical optimal solution 

Dynamically update 
the training datasets 

Build or update training datasets

Check accuracy condition 

Yes

End

FLAC3D

fitness evaluation

No

Fig. 6. Schematic of the process flow of the GP-PSO-FLAC3D method.
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numerical simulation. This high computational cost poses a serious
impediment to the successful application of PSO. To improve the effi-
ciency of PSO for computationally expensive optimization problems, a
GP-based PSO algorithm is developed. In the GP-PSO algorithm, the GP
model is used as the surrogate model to approximate the real fitness
function. Once the approximation fitness function is established, we can
directly use the approximation function instead of the real function to
evaluate the fitness of the particles. Hence, the number of real function
evaluations can be reduced considerably by using PSO to solve the
optimization problem. The key points of the GP-PSO algorithm are as
follows:

• Accelerated searching based on an approximation of the fitness
function by GP

To accelerate the local search of PSO, once the pbest and gbest par-
ticles in each iterative step are found, some new particles are generated

using Eq. (10), and their fitness is estimated by the trained GP. Sub-
sequently, the best value with the minimum fitness is selected. To
eliminate the predictive error of the fitness evaluated by GP approx-
imation, the fitness of the best particle is evaluated again using the real
function. If the real fitness of the best particle is less than gbest, it be-
comes the global best in the current iterative step, and gbest is replaced
by its fitness. Thus, the number of real function evaluations in the ex-
ploration process is only one because the fitness of the new particles,
with the exception of the best one, is evaluated by the trained GP rather
than a real function. Consequently, the computational cost of the ac-
celerated search process is low.

• Dynamically updating the training datasets to improve the approx-
imation quality of the GP model

The accuracy of the GP-PSO algorithm depends on the appro-
priateness of the generated GP model; however, in terms of the pre-
diction, the accuracy of the GP model in interpolation and validation
depends highly on the quality of the training datasets. To avoid ex-
cessively relying on the initial training datasets and to improve the
quality of training datasets gradually in the exploration process, the
datasets for training GP are updated dynamically in the GP-PSO algo-
rithm. Thus, the training datasets are always consistent with the elite
group of particles, and the quality of the general approximation of the
GP model can be enhanced in the optimization process.

The specific implementation steps of the GP-PSO are shown as fol-
lows:

Step 1: Generate N particles in the 1st generation, in which the
particles are randomly distributed throughout the design space and
are bounded by specified limits. N is the population size of PSO, and
it is usually determined by the dimension of the optimization pro-
blem.
Step 2: Evaluate the fitness of particles of the 1st generation by the
objective function (i.e., real function or numerical computation).
Find the optimum particle pid and global optimum particle pgd.
Step 3: Generate N particles of the (2+ p)th generation using Eq.
(10). Evaluate the fitness of these particles using the objective
function.
Step 4: Sort the (2+ p)×N particles according to an increasing
order of fitness, and select the upper limit 2×N particles and their
fitness to establish the training datasets.
Step 5: Train the GP by the training datasets. Use the GP to ap-
proximate the objective function according to Eq. (5).
Step 6: Update the optimum particle pid and global optimum par-
ticle pgd at the current iteration.
Step 7: Generate N particles using Eq. (10) and evaluate the fitness
of N particles using the trained GP. Find the best particle with the
minimum fitness in k generations, where k can further optimize the
best particle. k is determined by the complexity of the objective
function; a more complex objective function corresponds to a larger
value of k. Evaluate the fitness of this particle using the objective
function and replace the fitness evaluated using the trained GP.
Compare this fitness to gbest; then, select the smaller value as the
global optimum particle pgd and update gbest.
Step 8: Replace the worst particle with the maximum fitness in the

50m

45m

5m

x
z a

b
y

e
d c

o

45m

Fig. 7. 3D finite difference mesh and 5 monitoring points of one-fourth of the
tunnel.

Table 4
Locations of monitoring points for the case.

Monitoring point number y direction (m) Toroidal angle (°)

a 0 15
b 1 30
c 2 45
d 3 60
e 4 75

Table 5
Comparison of the results obtained with GP-PSO-FLAC3D and PSO-FLAC3D.

Method The results of back analysis The assumed real parameters The relative errors (%) The times of fitness evaluation Computing time (s)

μ E (GPa) η (GPa·d) μ E (GPa) η (GPa·d) μ E (GPa) η (GPa·d)

PSO-FLAC3D 0.260 4.866 9.915 0.250 5.000 10.000 4.160 2.680 0.850 600 1480
GP-PSO-FLAC3D 0.239 5.038 10.298 0.250 5.000 10.000 4.440 0.760 2.980 185 448
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training datasets by this particle and its fitness.
Step 9: Repeat Steps 3–8 until the termination criterion is met. For
the current implementation, the termination criterion is defined
based on the maximum number of iterations reached or the accuracy
satisfied.

The pseudocode of the GP-PSO algorithm is given in Fig. 3. A MA-
TLAB-based program was developed accordingly.

The performance of the GP-PSO algorithm was compared to that of
the conventional PSO algorithm by evaluating the convergence velocity
and efficiency for the benchmark optimization problem. One unimodal
function and another multimodal benchmark function are selected, as
given in Table 1. The minimal function value is f=0, and the search
space is confined to [−2, 2]30; here, 30 denotes the dimension of the

functions. The graphs for the two functions in the 3-dimensional cases
are shown in Fig. 4. The Sphere function is unimodal, convex and dif-
ferentiable without flat regions. The Rastrigin function is a famous
highly multimodal test function that is usually used to evaluate the
efficiency of an optimization algorithm (Digalakis and Margaritis, 2004;
Evers and Ghalia, 2009; Karaboga and Basturk, 2008).

The PSO parameters include the dimension (D), population size (N),
lower (lb) and upper (ub) bounds of the search space, maximum number
of iterations (tmax), maximum velocity of the particle (vmax), and ac-
celeration constants (c1 and c2). In addition to these, another parameter
is critical for the GP-PSO algorithm, namely, the maximum number of
GP circular k. All the parameter settings are listed in Table 2.

For the benchmark functions, we measure the number of real
function evaluations required to achieve the expected accuracy. To be
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Fig. 8. Comparison between the computational displacement and monitoring displacement of the 5 monitoring points for the case.
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fair, all the different algorithms are forced to use the same accuracy as
the termination criterion; for different functions, a different accuracy
for the termination criterion is assumed, as shown in Table 2.

The program for all experiments is run 30 times independently;

next, the number of function evaluations is averaged. The total numbers
of real function evaluations using GP-PSO and PSO are listed in Table 3.
It can be seen that the total number of real function evaluations for GP-
PSO is much less than that for PSO. For the Sphere function, the average
multiple of the real function evaluation is more than 13 times. For the
more complex Rastrigin function, the average multiple is close to 74
times. The efficiency of GP-PSO is much higher than that of PSO,
especially for the complex problem.

To provide a visual and straightforward comparison between the
proposed GP-PSO algorithm and PSO, a comparison of the perfor-
mances of GP-PSO and PSO for the two functions is shown in Fig. 5,
from which the convergence trends of the variants of PSO and GP-PSO
in a random run can beidentified. Fig. 5 also shows that the GP-PSO
algorithm converged more rapidly towards the optimal solution than
did the PSO algorithm.

The above discussion indicates that the proposed GP-PSO algorithm
is much more efficient than PSO in terms of achieving an identical
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Fig. 8. (continued)

Table 6
Comparison between the computational displacement loss and assumed dis-
placement loss.

Monitoring point
number

Computational
displacement loss (cm)

Assumed
displacement loss
(cm)

The relative
errors (%)

a 1.652 1.642 0.609
b 1.709 1.708 0.059
c 1.777 1.787 0.560
d 1.729 1.733 0.231
e 1.695 1.689 0.355

Table 7
Comparison of the results obtained with different monitoring time.

Monitoring
point

Monitoring from the last 6 days Monitoring from the last 4 days Monitoring from the last 2 days

Computational
displacement loss
(cm)

Assumed
displacement
loss (cm)

The
relative
errors (%)

Computational
displacement loss
(cm)

Assumed
displacement
loss (cm)

The
relative
errors (%)

Computational
displacement loss
(cm)

Assumed
displacement
loss (cm)

The
relative
errors (%)

a 1.654 1.642 0.731 2.972 3.001 0.966 4.042 4.147 2.532
b 1.693 1.708 0.878 3.035 3.071 1.172 4.131 4.217 2.039
c 1.797 1.787 0.560 3.135 3.155 0.634 4.223 4.301 1.814
d 1.737 1.733 0.231 3.122 3.098 0.775 4.190 4.244 1.272
e 1.699 1.689 0.592 3.074 3.049 0.820 4.155 4.196 0.977

Note that the total computing time is 10 days.
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accuracy.

3.4. GP-PSO-FLAC3D

In an actual project, based on the GP-PSO algorithm, PSO is used to
randomly generate decision variables treated as the random solution.
Next, the fitness of the solution can be obtained by a FLAC3D evalua-
tion. The random solution and the corresponding fitness are treated as a
sample. After the collection of some samples, a GP model is constructed
for the given dataset. Once the trained model is obtained, we can di-
rectly use the GP model instead of FLAC3D to forecast more adaptive
decision variables. Finally, the current best solution is evaluated by
FLAC3D and added to the training dataset instead of the worst particle.
If the fitness is unsuccessful, a new loop starts until the required
minimal solution is found. This new back analysis optimization method

is called GP-PSO-FLAC3D, and its structure is given in Fig. 6. The spe-
cific implementation steps are as follows:

Step 1: Establish the numerical calculation model for a tunnel using
FLAC3D. A certain kind of rock mass rheological constitutive model
is chosen, and the parameters of the model are regarded as the de-
cision variables. Select the monitoring points and monitoring time.
Establish the fitness function based on Eq. (1).
Step 2: Determine the dimension of PSO according to the number of
decision variables. The first and the (2+ p)th generation particles of
the outer cycle are randomly initialized based on the particle swarm
rules. Next, the random solutions are imported into FLAC3D as
constitutive model parameters for fitness evaluation. If the
minimum fitness meets the required accuracy, the algorithm is
stopped. The particle of the minimum fitness is the optimal solution;

Table 8
Comparison of the results obtained with different monitoring points for the monitoring time of 6 days.

Monitoring point Assumed displacement loss (cm) Computational displacement loss (cm)

1 point The relative errors (%) 3 points The relative errors (%) 5 points The relative errors (%)

a 1.642 1.602 2.436 1.676 2.071 1.654 0.731
b 1.708 1.675 1.932 1.733 1.464 1.693 0.878
c 1.787 1.773 0.783 1.799 0.672 1.797 0.560
d 1.733 1.753 1.154 1.742 0.519 1.737 0.231
e 1.689 1.725 2.131 1.702 0.770 1.699 0.592

a b  

Beijing

Chengdu

Jinan

From Google Earth

Taian pumped storage 
power station

From Google Earth

Auxiliary tunnels

Yalong river

Fig. 9. Locations of the auxiliary tunnels for the Jinping II hydropower station and the Taian pumped storage power station in China (a: the auxiliary tunnels for the
Jinping II hydropower station; b: the Taian pumped storage power station).
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otherwise, the program goes to the next step.
Step 3: When the parameter p= 0, the original training datasets are
built based on the information of the first- and second-generation
particles. If the parameter p≠ 0, the training datasets are dynami-
cally updated. Subsequently, the particle with the minimum fitness
in the training datasets is regarded as the historical optimal solution.
Step 4: The method goes into the inner cycle. According to the PSO
rules, k generation particles of the inner cycle can be produced. The
nonlinear mapping relationship between the decision variables and
fitness is established by using the GP machine learning method by
studying the training datasets. The learned GP model is then used to
replace FLAC3D to evaluate the kth generation fitness. The particle of

the minimum fitness for k times is found through circulation, and
this value is chosen as the optimal solution based on the GP pre-
dictive value.
Step 5: It is considered that there must be a certain error between
the predictive value of the optimal solution and the real solution.
Thus, the particle corresponding to the optimal solution is imported
into FLAC3D to obtain the real fitness. The real fitness obtained with
the historical optimal solution gbest is compared, and the smaller
value is the optimal solution of the current iteration step. This
particle replaces the worst particle in the training datasets to dy-
namically update the training datasets.
Step 6: Judge the precision of the current optimal solution. If the
precision satisfies the required accuracy, the method is stopped;
otherwise, the (2+ p)th generation particles of the outer cycle are
produced and evaluated by FLAC3D. Next, all the samples between
the particles of this generation and the original training datasets are
ranked from small to large based on their fitness. The same numbers
of samples as in the original training datasets, which have a smaller
fitness, are chosen to build new training datasets. The program goes
to Step 3.

Based on the implementation steps described above, a MATLAB
program, which can call FLAC3D by an interface routine, is developed
for the GP-PSO-FLAC3D method.

4. Case study

To certify the performance of GP-PSO-FLAC3D, simulations are
performed for a tunnel. The proposed method is compared to the
standard PSO method by evaluating the precision and efficiency. The
mesh of one-fourth of the tunnel is shown in Fig. 7. The diameter of the
tunnel is 10m. The surrounding rock mass along the x and z directions
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Fig. 10. Dimension and monitoring lines of section BK14+599.
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Fig. 11. Finite difference mesh of section BK14+599.

Table 9
Comparison of the results obtained with PSO-FLAC3D and GP-PSO-FLAC3D for section BK14+599.

Method μ E (GPa) η (104GPa·d) The times of fitness evaluation Computing time (s)

PSO-FLAC3D 0.201 10.125 5.955 5597 18,243
GP-PSO-LAC3D 0.263 10.295 7.958 1438 4602
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Fig. 12. Comparison between the computational displacement and monitoring
displacement of monitoring lines of section BK14+599 (a: line AC; b: line BD).
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are 45m. The thickness of the surrounding rock mass along the y di-
rection is 5m. The lithological character is homogeneous, and the in-
itial stress of the surrounding rock mass is as follows: σx=30MPa,
σy=10MPa, and σz=20MPa. The constitutive model is the classic
viscoelastic model. The model has three parameters, namely, Poisson’s
ratio μ, elasticity modulus E and viscosity coefficient η. Thus, the di-
mension of PSO is three. As an example, 5 monitoring points—a, b, c, d

and e—are selected to establish the optimization objective function
(Fig. 7), and their detailed locations are listed in Table 4. The real
parameters of the constitutive model are assumed to be μ=0.25,
E=5.0 GPa, and η=10 GPa·d. The computing time is 10 days, and the
monitoring time is 6 days, which means that the displacement loss is
generated in 4 days. The objective function, also called the fitness
function, can be determined from Eq. (1). Here, m=6 d, n=5, and the
search intervals for the decision variables are 0.1≤ μ≤ 0.4, 3.0

Fig. 13. Designed computational region and large group of underground ca-
verns for the Taian pumped storage power station (a: 3D finite difference ele-
ment model of the computational region; b: 3D finite difference element model
of the caverns).
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Fig. 14. Sketch map of layering excavation for the Taian pumped storage power station.

Table 10
Corresponding excavation stages and steps for the Taian pumped storage power
station.

Number of stage Main powerhouse Main transformer
cavern

Surge chambers

1 1 1 1
2 2, 3, 4 2, 3 2, 3, 4
3 5, 6, 7 — 5

Stage 3

Main powerhouse

M7

Fig. 15. Location of monitoring point M7 in section ML0+15 for the main
powerhouse of the Taian pumped storage power station.
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GPa≤ E≤ 7.0 GPa, and 8.0 GPa·d≤ η≤ 12.0 GPa·d.
The required accuracy is f < 1×10−5. The configuration settings

of the PSO used for performing the experiments are described as fol-
lows: D=3, N=30, lb= [0.1,3.0,8.0], ub= [0.4,7.0,12.0],
vmax= [0.01,0.01,0.01], c1= c2= 2, and tmax=500. The parameters
of the PSO for GP-PSO algorithm are the same as those for the standard
PSO method. The other parameter for GP-PSO is k=10. The initial
hyperparameters of the GP are lnl=[−1,−1,−1], lnσf=−1, and
σn=1×10−6.

For the comparisons to be fair, the two methods are independently
run 5 times. The final times of the fitness evaluation are the average
times. The computer on which the program is run has the following
configuration: Intel(R) Core(TM) i7-4790 K CPU @ 4.00 GHz processor
and 8.00 GB memory. Table 5 presents the reasonable results con-
sidering the displacement loss. The relative errors for all the mechanical
parameters obtained by the two methods are acceptable, of which the
maximum relative errors are both below 5%. It can also be seen that the
total numbers of real fitness evaluations using GP-PSO-FLAC3D and
PSO-FLAC3D are 185 and 600, respectively. The proposed method has a
significant advantage in terms of the cost compared with the original
method; the cost for the proposed method is nearly 3.3 times lower than
that of PSO. To provide a visual and detailed comparison of the pre-
cision of GP-PSO-FLAC3D, a graph comparing the computed displace-
ment and monitored displacement for the 5 monitoring points is shown
in Fig. 8, from which we can see that the computational displacement
curve agrees well with the monitoring displacement curve. Table 6
presents a comparison between the computational displacement loss
and assumed displacement loss. The maximum relative error among the
5 monitoring points is 0.609% for point a, and the minimum relative
error is 0.059% for point b. The average relative error is only 0.363%,
indicating that the proposed method is feasible, and it can obtain the
reasonable displacement loss by fitting the monitoring displacement
curve.

To study the influence of the monitoring time on the accuracy of
predicting the displacement loss, the monitored displacements for 4 and
2 days, which correspond to 6 and 8 days after excavation, are also used
to predict the displacement loss for 5 monitoring points. Because the
program has a smaller monitored displacement to establish the fitness
function, it cannot attain a higher accuracy. Therefore, the required
accuracy is changed to f < 1×10−4, and the other parameters are the
same as those mentioned above. The prediction results are presented in
Table 7, from which we can see that the accuracy of predicting the
displacement loss decreases with the monitoring time. For the dis-
placement monitored during the last two days, the relative errors for
monitoring points a and b are more than 2%; therefore, the reliability of
the computational results is relatively low. Moreover, to study the in-
fluence of the number of monitoring points on the accuracy of pre-
dicting the displacement loss, 1, 3 and 5 monitoring points for a
monitoring time of 6 days are selected for comparison, and the com-
parison results are presented in Table 8. The maximal relative error for
1 monitoring point is 2.436%, that for 5 points is only 0.878% and that
for 3 points is 2.071% which is an approximately median value of the
relative error. In addition, the average relative errors for these numbers
of points are 1.687%, 0.598% and 1.099%. This indicates that a larger
number of monitoring points used for prediction leads to better results
being obtained for the displacement loss.

5. Engineering application

5.1. The auxiliary tunnel for the Jinping II power station

The Jinping II hydropower station, located in Southwest China’s
Sichuan Province, stands in the main stream of the Yalong River to
make the most of the natural water head difference for generating
electrical energy. It has four conveying tunnels with a maximum depth
of 2550m, and it is regarded as a large underground water power
project with superdeep and long tunnels. To ensure the safety of the
tunnel construction, two auxiliary tunnels A and B are excavated to
explore the geological conditions in advance (Fig. 9a) (Zhang et al.,
2012). Most parts of the auxiliary tunnels are located in a region with a
high geostress, and thus, the stress of the surrounding rock is acutely
released after excavation. Taking section BK14+599 of auxiliary tunnel
B as an example, the PSO-FLAC3D and GP-PSO-FLAC3D methods are
used to perform the back analysis of the displacement loss of the sur-
rounding rock based on the monitored displacement data.

The basic characteristics of section BK14+599 include T2y
5 , a gray-

white-colored, striped, coarse lamellar and fine-grained marble, and a
black-colored, laminar and fine-grained marble. The initial geostress
conditions were σx=35.622MPa, σy=27.772MPa, and
σz=41.252MPa (Chen et al., 2007). The dimensions of the tunnel and
the layout of the monitoring points are shown in Fig. 10. This section
was excavated on 10th September, and the monitoring points were
assembled on 14th September 2005. The total monitoring time was
45 days. Thus, the displacement loss was generated from 10th to 14th
September.

The numerical meshing is shown in Fig. 11. The horizontal x-di-
rection and vertical z-direction of the model are 60m each, and the unit
thickness is taken along the y-direction of the tunnel axis. The measured
convergent displacement of measurement lines AC and BD are used to
establish the fitness function according to Eq. (1). Here, m=45 d,
n=4, and the search intervals for the decision variables are
0.1≤ μ≤ 0.3, 1.0 GPa≤ E≤ 12.0 GPa, and 1.0× 104

GPa·d≤ η≤ 12.0× 104 GPa·d. The termination criterion is accuracy
f < 1×10−1 and the other relevant parameter settings of the two
methods are the same as in the above case.

The optimal solutions and the computing time obtained from the
above two methods are summarized in Table 9. With the same stopping
accuracy, it is observed that GP-PSO-FLAC3D consumed 4602 s and
achieved a much shorter prediction than PSO-FLAC3D, which consumed
18,243 s. This result indicates that if we choose different methods to
back analyze this problem, the proposed method requires only ap-
proximately 1.5 h, while the traditional method may cost more than
5 h. The proposed method thus has the typical advantages of a low
computational cost and a high computational efficiency. A plot of the
computed displacement and actual measured displacement for GP-PSO-
FLAC3D is presented in Fig. 12. The displacement loss of line AC is
10.45mm, which accounts for 36% of the total displacement. Mean-
while, the displacement loss of line BD is 11.46mm, which occupies
38% of the total displacement. If only the monitored displacement,
which is far less than the actual total displacement, is used to guide the
tunnel excavation or evaluate the stability of the surrounding rock, a
potential risk may be posed to the construction and operation safety of
the tunnel.

Therefore, due to the large buried depth and large elastic de-
formation after excavation, the displacement loss of the surrounding

Table 11
Comparison of the results obtained with PSO-FLAC3D and GP-PSO-FLAC3D for section ML0+15.

Method μ E (GPa) η (104GPa·d) The times of fitness evaluation Computing time (s)

PSO-FLAC3D 0.182 3.467 6.514 360 252,360
GP-PSO-FLAC3D 0.221 3.960 5.749 44 30,932
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rock for the conveying and the auxiliary tunnels cannot be ignored,
more attention should be paid to evaluating the stability of the sur-
rounding rock.

5.2. Main powerhouse of the Taian pumped storage power station

The Taian pumped storage power station, which is located in
Shandong Province of North China approximately 70 km south of Ji’nan
(the capital of Shandong Province), is a daily regulating power station
that regulates the peak for the power grid (Fig. 9b). There are four
electricity generators with a total installed capacity of 1000MW. A
large group of underground caverns that include the main powerhouse,
main transformer cavern, surge chambers, four electrical wire tunnels
and four tailwater tunnels is located in the right bank of the mountain,
the computational region of which is shown in Fig. 13a. The corre-
sponding 3D finite difference model contains the main powerhouse,
main transformer, main transformer cavern and other main structures,
and it includes 687,133 elements and 191,323 nodes (Fig. 13b).

The main powerhouse is 180m long, 25.9m wide, and 53.675m
high with an axis azimuth of N40°W; it was excavated in fresh mixed
granite at a depth approximately ranging from 210m to 240m. It was
been excavated in three stages containing seven steps (Fig. 14). The
correspondence between the stage and step is presented in Table 10. We
select the second stage as an engineering application. The initial
geostress is determined by comparing three common field measure-
ments, including the Kaiser effect of the acoustic emission method
(Holcomb, 1993), the overcoring method (Sjoberg et al., 2003) and the
hydraulic fracturing method (Haimson and Cornet, 2003). The max-
imum horizontal principal stress is 12MPa at a direction of N70°E, and
the minimum horizontal principal stress is 7MPa. Monitoring point M7
located on section ML0+15 is selected to establish the fitness function
according to Eq. (1) (as shown in Fig. 15). The monitored displacement
after 79 days and the displacement loss after 5 days lead to m=79 d
and n=1 for the fitness function. In addition, N=10 for the PSO-
FLAC3D and GP-PSO-FLAC3D methods, while the other parameters for
the two methods are the same as those in Section 5.1.

The performances of both methods are compared in terms of the
computational efficiency in Table 11. It can be seen from Table 11 that
the total number of FLAC3D evaluations for PSO-FLAC3D is much more
than that for GP-PSO-FLAC3D by approximately 8 times. In addition,
more attention must be focused on the computational time. Currently,
one numerical evaluation for this complex large group of underground
caverns costs more than 10min. Thus, the total time for PSO-FLAC3D is
more than 70 h, which may be difficult to accept; however, the time for
GP-PSO-FLAC3D is nearly 8.5 h, which means that the proposed method
can reduce the computational time considerably, especially for complex
engineering problems. Meanwhile, the displacement loss obtained for
M7 is 0.76mm, which constitutes more than 14% of the total dis-
placement. From this example, we can see that the displacement loss is
less than that in the example shown in Section 5.1 because of the
smaller geostress. However, this also indicates that the proposed
method is suitable for engineering under not only high geostress con-
ditions but also ordinary geostress conditions.

However, there are some attentions should be paid to the proposed
method in practical engineering applications. First, the reliability of the
actual monitored displacement has important influence on the accuracy
of the back analysis results. Therefore, it would be necessary to identify
the actual monitored displacement and to choose the credible data to
use; this is somewhat dependent on the experience of engineers. In
addition, the determination of the range for the back analysis para-
meters will also depend on experience to some extent. If over-range
parameter values are used, the computational cost will increase, while
for setting appropriate ranges for the parameters, the efficiency of the
method can be improved.

Finally, as mentioned in Section 4, it is worth noting that the pro-
posed method is more applicable to the underground rock mass

engineering whose actual monitored displacement is obtained in time
after excavation. If the displacement monitoring equipments are as-
sembled too late, the applicability of the proposed method will be re-
duced and the accuracy of the prediction will decline.

6. Conclusions

The consideration of the displacement loss is critical to realize a
reasonable evaluation of the stability of the surrounding rock mass for
underground engineering. This paper proposes a new method that
considers the displacement loss. Based on the monitored displacement,
the displacement loss can be predicted by the optimization back ana-
lysis method, and the reasonable mechanical parameters of the sur-
rounding rock mass can also be obtained simultaneously. The main
conclusions can be summarized as follows:

(1) A novel displacement back analysis method considering the dis-
placement loss is developed. Compared with traditional methods
that do not consider the displacement loss, the proposed method
can obtain more reasonable mechanical parameters of rock masses.

(2) It is important to reduce the number of real numerical evaluations
when performing optimization back analysis for the displacement
loss, as it is a time-consuming process. A new hybrid optimization
algorithm for solving computationally expensive back analysis
problems is proposed based on the GP and PSO. The results show
that the proposed method is feasible. Compared with former opti-
mization back analysis methods, this method can dynamically up-
date the training datasets for the GP, thereby overcoming the dis-
advantage of overly relying on the initial learning samples. In
addition, it has the merits of a high precision and high computa-
tional efficiency.

(3) The case study shows that the back analysis accuracy for the dis-
placement loss is reduced with a decrease in the monitoring dura-
tion and number of monitoring points. Thus, in reality, monitoring
instruments should be established as early as possible, and as many
monitoring points as possible should be selected to further improve
the reliability of the obtained displacement loss.

(4) The displacement loss back analysis results for section BK14+599
of auxiliary tunnel B in the Jinping II hydropower station show that
the displacement loss occupied more than one-third of the total
displacement. Due to the high geostress, the surrounding rock of
deep underground engineering generates a large elastic deforma-
tion in a short time after excavation. Therefore, to accurately
evaluate the stability or back analyze the parameters of the sur-
rounding rock, the displacement loss should be considered. An
engineering application of the main powerhouse of the Taian
pumped storage power station indicates that the proposed method
can also obtain the displacement loss in engineering processes
under ordinary geostress conditions.

For the convenience of engineering applications, only the dis-
placement loss for the classic viscoelastic constitutive model was in-
vestigated in this paper. To apply this method to different projects,
considering the characteristics of the surrounding rock, a suitable
constitutive model of the rock should be selected. In addition, the de-
formation of the surrounding rock is affected by many factors, such as
the excavation method, excavation footage and support. Accordingly,
the influences of various factors on the displacement loss should be
discussed in further research.
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