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A B S T R A C T   

Based on the linearized long-wave equation, an analytical solution for wave oscillations within a circular harbor 
of constant depth over a conical island is obtained. The analysis divides the study domain into three regions: 
region I (within the harbor), region II (over the island) and region III (from the island toe to the deep sea). In 
region I, the water depth is uniform, and the method of separation of variables is used to find the free-surface 
elevation solution. In Region II, the water depth linearly varies along the radial direction of the island, and 
the method of separation of variables is adopted again to reveal the free-surface elevation solution expressed in 
Bessel and Hankel functions. Waves in region III consist of the incident waves and the scattered waves from the 
island, which are respectively expressed with a Fourier-cosine series and a sum series of Hankel function. The 
final solution is obtained by matching the free-surface elevation and its normal derivatives at the interfaces 
between the three regions. To confirm the validity of the analytical solution, via adjusting topographical pa-
rameters, it was further utilized to compare with the existing analytical solutions for wave-induced oscillations in 
a circular harbor of constant depth and the scattering of long waves around a cylindrical island mounted on a 
conical shoal. Finally, as the topographical features of Maug Islands resembles the geometry studied in this 
article, the coupled oscillation characteristics for Maug Islands are examined. The existence of the island does 
aggravate oscillations within the harbor, and the features are addressed in details.   

1. Introduction 

Among the natural disasters related to long-period waves, harbor 
oscillations are one of the most frequent disasters around the world. 
Long period oscillations associated with resonance can cause excessive 
movements of moored ships, break ships mooring lines and interrupt 
normal operation of the harbor (Gao et al., 2017). Therefore, it is of 
paramount importance to predict accurately the response of a newly 
designed harbor to incident long-period waves from the high sea. The 
issue of harbor oscillations had been extensively addressed, including 
the generation mechanisms and the factors involving in amplification of 
waves in harbors and bays. Tsunamis were regarded as one of the 
common factors exciting larger oscillations in bays, inlets, and harbors 
(Dong et al., 2010a; Vela et al., 2014). The term tsunami comes from the 
Japanese term with the literal meaning of harbor wave, which may 
reflect the fact that tsunami waves were first observed in harbors. His-
toric records of unexplained and rapid rises of water level in harbors can 

go back almost 1000 years in Japan, and they are often associated with 
tsunamis (Synolakis, 2003). Atmospheric disturbances such as atmo-
spheric gravity waves, pressure jumps, frontal passages, squalls can also 
generate long waves with the same temporal and spatial scales as typical 
tsunami waves, known as meteotsunamis (Li�cer et al., 2017). These 
meteotsunami waves will be resonant amplificated when they arrive at 
the harbor entrance (Wijeratne et al., 2010). Furthermore, long waves 
generated through the nonlinear interaction of wind waves or swell 
termed infragravity waves can also be responsible for harbor. Oscilla-
tions with typical periods of several minutes present at all times but 
increasing significantly during storm events commonly arise from 
infragravity waves incident on the harbor entrance (Thotagamuwage 
and Pattiaratchi, 2014; Dong et al., 2010b). 

Oscillations within bays and harbors depend not only on the char-
acteristics of incident long waves but also on the geometrical features. 
To reveal the influence of the harbor geometry on the amplification of 
wave oscillation, Miles and Munk (1961), Lee (1971) and Marcos et al. 
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(2005) formulated analytical solutions for simple geometries of uniform 
water depth within and outside the harbor. Zelt and Raichlen (1990), 
Wang et al. (2011a) and Wang et al. (2014) have provided analytical 
solutions for wave-induced oscillations in harbors of variable bathym-
etries. These analytical solutions can help to understand some general 
properties of oscillations. However, the geometric shapes and depth 
profiles for real harbors are more complex and they must yield more 
complicated oscillations, which significantly increases the difficulty in 
carrying out the theoretical investigation. Therefore, a number of nu-
merical models have been developed to handle oscillations in harbors of 
complex shapes and bathymetries. Lee et al. (1998) adopted the finite 
element model of the mild-slope equation to study resonance in Long 
Beach and Los Angeles harbor basins. Losada et al. (2008) presented a 
Boussinesq model based on a finite element unstructured grid to analyze 
transient nonlinear resonance problems in harbors and bays. Wang et al. 
(2011b) developed a Boussinesq model to simulate harbor oscillations 
induced by seafloor movements. Kumar et al. (2013) proposed a 
boundary element model based on the Helmholtz equation and imple-
mented investigations on the Pohang New Harbor to predict the reso-
nance modes for incident waves with various directions. Cuomo and 
Guza (2017) proposed a method to estimate harbor oscillations with 
infragravity periods at Marina di Carrara from the properties of 
wind-generated incident waves outside the harbor. 

Previous studies on harbor oscillations mostly focus on harbors 
located on the coastline of the mainland. However, there are quite a 
number of harbors built over natural or artificial islands. When long 
waves approach water of variable depth, they may be greatly amplified 
by the island. Therefore, it is imperative to further examine the response 
of a harbor over an island. Solutions for the problem of waves scattering 
on islands are mostly based on the shallow water equation and the mild- 
slope equation. Wave amplification around the island depends on the 
trapping capability of the island, and how factors such as wave periods, 
radii of the island and depth-varying parameters etc. affect the response 
characteristics of the island to long waves has been widely examined 
(Jung et al., 2010; Liu and Xie, 2013; Wang et al., 2018; Zhang and Zhu, 
1994; Zhu and Zhang, 1996). 

Maug islands with the coordinate of (20�20N, 145�130E) are a group 
of three small uninhabited islands in the Commonwealth of the Northern 
Mariana Island. This island group was formed as a result of a volcano 
that broke through the Pacific Ocean. The three islands have a total area 
of approximately 2.1 km2 and a maximum elevation of 227 m. The 
submerged caldera has a diameter of approximately 2.2 km. The floor of 
the caldera is around 225 m below sea level, and in the middle is a 
mountain whose summit is only 22 m below sea level. As the caldera is 
protected by the three islands with a gap southward, it can be considered 
as a natural harbor for ship docking. As the incident waves will be 
coordinately responded by the islands and the harbor, it is motivated to 
examine the coupled oscillation characteristics for this new 
configuration. 

Although harbor resonance and wave amplification around islands 
have been widely explored independently, the recognized phenomenon 
of violent oscillations in a coupled harbor-island system still lacks a 
rigorous theory to provide detailed characteristics. In this paper, we 
proposed an analytical model to reveal the interesting features not 
emerged in the decoupled system. The present study restricts the anal-
ysis to a circular harbor with constant water depth over a conical island, 
so that the analytical solution can be explicitly obtained. The study 
further makes a further simplifying assumption that the mouth width is 
small as compared to the wavelength of interest, and deduce the 
analytical solution in Section 2. The deduced analytical solution is 
verified by applying it to the oscillations within a circular harbor of 
constant water depth and the response of the conical island to long 
waves in Section 3. Oscillations within the circular harbor over Maug 
Islands are then investigated analytically, and the impact of the islands 
on the response of the harbor is addressed in details in Section 4. Con-
clusions are drawn in Section 5. 

2. Analytical solution 

Maug Islands can be simplified as a circular harbor over a conical 
island as illustrated in Fig. 2. The interesting domain is divided into 
region I, region II and region III, which are respectively the regions 
within the harbor, over the island and the open sea. Water depth within 
the harbor and in the open sea keeps constant as h1 and h2, respectively. 
Whilst in region II, the water depth varies with a constant slope s. 
Therefore, the water depth in the whole domain can be expressed as 

h¼

8
<

:

h10 � r � r1
srr1 < r � r2
h2r > r2

; (1)  

where h1 ¼ sr1 and h2 ¼ sr2, and r1 and r2 are the radial distances from 
the center to the coastline and the island toe, respectively. 

It is customary and appropriate to use the linear shallow-water 
equation in harbor oscillation studies (Synolakis, 2003). For oscilla-
tions in a circular basin and wave propagation over a conical island, it is 
convenient to use a polar coordinate system (r, θ) with the origin in the 
center. Using the expression of the free-surface elevation η (r, θ, t) ¼ ζ(r, 
θ) exp(iσt), the linearized long wave equation can be written as 

r2∂2ζ
∂r2 þ r

�

1þ
r
h

∂h
∂r

�
∂ζ
∂r
þ

∂2ζ
∂θ2 þ

σ2r2

gh
ζ ¼ 0 : (2)  

2.1. In region I (within the harbor) 

As the water depth within the harbor is constant, Eq.(2) can be 
reduced to 

r2∂2ζ
∂r2 þ r

∂ζ
∂r
þ

∂2ζ
∂θ2 þ

σ2r2

gh
ζ ¼ 0 : (3) 

Considering that waves propagate at θ ¼ 0 or θ ¼ π respectively, so 
the wave amplitude should be symmetrical with respect to the center 
line θ ¼ 0, thus the solution of Eq. (3) can be expressed as 

ζIðr; θÞ¼
X∞

n¼0
An

I Jnðk1rÞcos nθ ; (4)  

where Jn is the first kind Bessel function of the nth order, k1 ¼ σ=
ffiffiffiffiffiffiffi
gh1

p
is 

the wavenumber and AI
n is an arbitrary constant to be determined by 

matching the conditions at the interface of r ¼ r1 as follows: 

∂ζI

∂r

�
�
�
�
r¼r1

¼

�
FðθÞ jθj � θ0
0jθj > θ0

: (5) 

There are relationships for the Bessel functions 

∂J0ðkrÞ
∂r

¼ � k⋅J1ðkrÞ ; (6)  

and 

∂JnðkrÞ
∂r

¼ k⋅Jn� 1ðkrÞ �
n
r
JnðkrÞ     n � 1 : (7) 

Thus, the matching conditions Eq. (5) can then be expressed as 

∂ζI

∂r

�
�
�
�
r¼r1
¼ � k1⋅A0

I ⋅J1ðk1r1Þ þ n

X∞

n¼1
An

I

�

k1⋅Jn� 1ðk1r1Þ �
n
r1

Jnðk1r1Þ

�

cos nθ ¼

8
<

:

FðθÞ   jθj � θ0

0         jθj > θ0

:

(8) 

Multiplying Eq.(8) by cos(n’θ) (where n’ is integer) and integrating it 
with respect to θ from 0 to 2π leads to 
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� k1⋅A0
I ⋅J1ðk1r1Þ

Z2π

0

cos n’θdθþ

Z2π

0

X∞

n¼1
An

I

�

k1⋅Jn� 1ðk1r1Þ �
n
r1

Jnðk1r1Þ

�

cos nθcos n’θdθ

¼

Zθ0

� θ0

FðθÞcos n’θdθ :

(9) 

Setting n’ ¼ 0, A0
I can be determined as 

A0
I ¼ �

1
2πk1⋅J1ðk1r1Þ

Z θ0

� θ0

FðθÞdθ : (10) 

On the other hand, if n’ ¼ n 6¼ 0, An
I can be evaluated as 

An
I ¼

Z θ0

� θ0

FðθÞcos nθdθ

π
�

k1⋅Jn� 1ðk1r1Þ �
n
r1

Jnðk1r1Þ

� n � 1 : (11) 

This above formula is formally the same as that for the circular 
harbor derived by Lee (1971), and F (θ) can be approximated by a 
constant F if the harbor entrance is assumed very small compared to the 
wavelength. Hence Eqs. (10) and (11) can be transformed to 

An
I ¼

8
>>>><

>>>>:

�
θ0F

πk1⋅J1ðk1r1Þ
n ¼ 0

2 sin nθ0F

πn
�

k1⋅Jn� 1ðk1r1Þ �
n
r1

Jnðk1r1Þ

� n � 1
: (12)  

2.2. In region II (over the island) 

Over the island, the wave system consists of incident waves from the 
open sea, reflected wave by the harbor wall and radiated waves from the 
harbor entrance. Separating the variable as ζ(r, θ) ¼R(r)∙Θ(θ) and 
inserting the expression of the bathymetry (1) into Eq.(2) yield 

R’’þ
2
r

R’þ
�

σ2

gsr
�

n2

r2

�

R ¼ 0 ; (13)  

and 

Θ’’þ n2Θ ¼ 0 : (14) 

As the island is symmetrical with respect to the center line θ ¼ 0, the 
solution of Eq.(14) is 

ΘðθÞ ¼A’n
II ⋅cosðnθÞ ; (15)  

where AII
’n is an arbitrary constant. 

Introducing 

τ¼ 2σ
ffiffiffiffiffigsp r

1
2 ; (16)  

and 

R¼ r�
1
2ℝ ; (17) 

Eq.(13) becomes 

∂2ℝ
∂τ2 þ τ� 1∂ℝ

∂τ þ
�
1 � ν2τ� 2�ℝ ¼ 0 ; (18)  

where 

ν¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4n2 þ 1
p

: (19) 

Eq.(18) is the Bessel equation of order ν, and its corresponding so-
lution can be expressed as 

ℝ¼AII⋅JνðτÞ þ BII⋅YνðτÞ ; (20)  

where Jν and Yν are the νth order Bessel functions of the first and second 
kinds, respectively, and AII and BII are constants, which can be obtained 
from the boundary condition and matching relations. 

There are the radiated waves from the harbor entrance, each point 
(x’, y’) can be considered as a source, and the waves scattered from it can 
be expressed as 

ζrd
II ðx’; y’Þ¼

σ⋅Gðx’; y’Þ
2g

⋅Hð1Þ0 ðk1r’Þ ; (21)  

where G (x’, y’) is the flow of the point (x’, y’), H0
(1) is the 0th order 

Hankel function of the first kind and r’ 2 ¼ (x – x’)2 þ (y – y’)2. The total 
radiated waves can be written as 

ζrd
II ¼

Z θ0

� θ0

σ⋅Gðx’; y’Þ
2g

Hð1Þ0 ðk1r’Þ⋅r1dθ’ : (22) 

According to Wang et al. (2011a), G(x’, y’) can be approximated as a 
constant G if the harbor entrance is assumed narrow. The arc from –θ0 to 
θ0 can be further approximated as a straight-line segment. Thus, the 
radiated waves at the entrance can be approximated as 

ζrd
II �

σ⋅G
2g

Z r1 sinθ0

� r1 sinθ0

Hð1Þ0

�
k1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx � x’Þ2 þ ðy � y’Þ2
q �

⋅dy’ (23) 

So, the wave field over the island is described by 

ζII ¼
X∞

n¼0
r�

1
2

8
<

:
An

II⋅Jν

2

42σðgsÞ�
1
2r

1
2

3

5þ Bn
II⋅Yν

2

42σðgsÞ�
1
2r

1
2

3

5

9
=

;
⋅cosðnθÞ

þ
σ⋅G
2g

Z r1 sinθ0

� r1 sinθ0

Hð1Þ0

�
k1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx � x’Þ2 þ ðy � y’Þ2
q �

⋅dy’

(24)  

2.3. In region III (the open sea) 

There are incident waves from the open sea ζIII 
I (r, θ) and scattered 

waves by the island ζIII 
s (r, θ). The water surface elevation ζIII (r, θ) may 

be expressed as 

ζIIIðr; θÞ ¼ ζI
IIIðr; θÞ þ ζs

IIIðr; θÞ : (25) 

The incident waves are assumed to be a linear sinusoidal wave train 
propagating in the positive x direction, which can be expressed in terms 
of Fourier-cosine series as (Synolakis, 2003), 

ζI
IIIðr; θÞ ¼ aIeik2x ¼ aI

X∞

n¼0
inεnJnðk2rÞcos nθ ; (26)  

where aI is the incident wave amplitude, k2 ¼ σ=
ffiffiffiffiffiffiffi
gh2

p
is the wave-

number, εn is the Jacobi symbol defined by 

εn¼

�
1; n ¼ 0
2; n � 1 : (27) 

The scattered wave may be expressed as (Wang et al., 2014) 

ζs
IIIðr; θÞ ¼

X∞

n¼0
an

IIIHnðk2rÞcos nθ ; (28)  

where an
III is the scattered wave amplitude to be determined, Hn is the nth 

order Hankel function of the first kind. The free-surface elevation in the 
outer region can finally be obtained: 

ζIIIðr; θÞ ¼ aI

X∞

n¼0
inεnJnðk2rÞcos nθ þ

X∞

n¼0
an

IIIHnðk2rÞcos nθ : (29) 
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2.4. Matching and boundary conditions 

The free-surface elevation and its derivative should be continuous at 
r ¼ r1 (|θ| � θ0). Hence, 

ζI ¼ ζII jθj � θ0 ; (30)  

and 

∂ζII

∂r

�
�
�
�
r¼r1

¼

8
><

>:

0jθj > θ0

∂ζI

∂r

�
�
�
�
r¼r1

jθj � θ0
: (31) 

Similarly, the free-surface elevation and its derivative should be 
continuous at r ¼ r2, which requires 

ζIIIjr¼r2
¼ ζIIjr¼r2

; (32)  

and 

∂ζIII

∂r

�
�
�
�

r¼r2

¼
∂ζII

∂r

�
�
�
�
r¼r2

: (33) 

The matching condition (32) implies that 

∂ζrd
II

∂r

�
�
�
�
r¼r1

¼
∂ζI

∂r

�
�
�
�
r¼r1

for jθj � θ0 : (34) 

For the narrow entrance, the matching condition Eq. (34) can be 
changed to 
Z θ0

� θ0

∂ζrd
II

∂r

�
�
�
�
r¼r1

r1dθ¼
Z θ0

� θ0

∂ζI

∂r

�
�
�
�

r¼r1

r1dθ ; (35)  

which yields 

σ⋅G
2g

Z θ0

� θ0

(
∂
∂r

� Z r1 sinθ0

� r1 sinθ0

Hð1Þ0

�
k1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx � x’Þ2 þ ðy � y’Þ2
q �

⋅dy’
��
�
�
�
r¼r1

)

r1dθ

¼ � 2θ0k1r1A1
0J1ðk1r1Þ þ k1r1

X∞

n¼1

sin nθ0

n
A1

n½Jn� 1ðk1r1Þ � Jnþ1ðk1r1Þ� :

(36) 

If the integral along the arc can be approximated as if it is along a 
straight-line segment, the derivative of r can be approximated as that of 
x. Thus, Eq. (36) becomes 

σ⋅G
2g

Z r1 sinθ0

� r1 sinθ0

(�Z r1 sinθ0

� r1 sinθ0

∂
∂x

Hð1Þ0

�
k1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx � x’Þ2 þ ðy � y’Þ2
q �

⋅dy’
��
�
�
�

r¼r1

)

dy

¼ � 2θ0k1r1A1
0J1ðk1r1Þ þ k1r1

X∞

n¼1

sin nθ0

n
A1

n½Jn� 1ðk1r1Þ � Jnþ1ðk1r1Þ� :

(37) 

For kr ≪ 1, H0
(1)(kr) can be extended asymptotically as (Wang et al., 

2011a) 

Hð1Þ0 ðkrÞ¼ 1þ
2i
π ln

�
γkr
2

�

þ ΟðkrÞ2 ; (38)  

where γ ¼ 1.7810724 is the exponential of Euler’s constant. 
Inserting Eq.(38) into Eq.(37) yields 

iσ⋅G
gπ

Z r1 sinθ0

� r1 sinθ0

Z r1 sinθ0

� r1 sinθ0

x � x’
ðx � x’Þ2 þ ðy � y’Þ2

⋅dy’dy ¼

� 2θ0k1r1A1
0J1ðk1r1Þ þ k1r1

X∞

n¼1

sin nθ0

n
A1

n½Jn� 1ðk1r1Þ � Jnþ1ðk1r1Þ�

ðx � x’→0þ; jyj � r1 sinθ0Þ :

(39) 

Notice that when x – x’ → 0þ, the integral in Eq.(39) takes the 
algebraic form 
Z r1 sinθ0

� r1 sinθ0

x � x’
ðx � x’Þ2 þ ðy � y’Þ2

⋅dy’

�

Z yþδ

y� δ

x � x’
ðx � x’Þ2 þ ðy � y’Þ2

⋅dy’

¼ arctan
y � y’
x � x’

�
�
�

yþδ

y� δ
¼ π :

(40) 

Substituting Eq.(40) into Eq.(39) leads to 

G¼
igθ0k1A1

0

σ⋅sinθ0
J1ðk1r1Þ �

igk1

σ⋅sinθ0

X∞

n¼1

sin nθ0

2n
A1

n½Jn� 1ðk1r1Þ � Jnþ1ðk1r1Þ� : (41) 

The radiated waves from the harbor are assumed to be limited near 
the narrow mouth, and they can be neglected at |θ| > θ0. Thus, the 
matching condition Eq.(31) can be changed to 

∂
∂r

X∞

n¼0
r� 1

2 cosðnθÞ

8
<

:
An

IIJν

2

42σðgsÞ�
1
2r1

2

3

5þ Bn
IIYν

2

42σðgsÞ�
1
2r1

2

3

5

9
=

;

�
�
�
�
�
�
r¼r1

¼ 0 ;

(42)  

which yields 

� An
II⋅Jν

2

6
42σðgsÞ�

1
2r

1
2
1

3

7
5 � Bn

II⋅Yν

2

6
42σðgsÞ�

1
2r

1
2
1

3

7
5þ

σðgsÞ�
1
2r

1
2
1

8
>>>>>><

>>>>>>:

An
II⋅

8
><

>:
Jν� 1

2

6
42σðgsÞ�

1
2r

1
2
1

3

7
5 � Jνþ1

2

6
42σðgsÞ�

1
2r

1
2
1

3

7
5

9
>=

>;

þBn
II⋅

8
><

>:
Yν� 1

2

6
42σðgsÞ�

1
2r

1
2
1

3

7
5 � Yνþ1

2

6
42σðgsÞ�

1
2r

1
2
1

3

7
5

9
>=

>;

9
>>>>>>=

>>>>>>;

¼ 0 :

(43) 

The matching condition Eq.(30) can be changed to 
Z θ0

� θ0

ζIIr1dθ¼
Z θ0

� θ0

ζIr1dθ ; (44)  

or 

2θ0r�
1
2

1

8
><

>:
A0

II ⋅Jν

2

6
42σðgsÞ�

1
2r

1
2
1

3

7
5þ B0

II ⋅Yν

2

6
42σðgsÞ�

1
2r

1
2
1

3

7
5

9
>=

>;
þ

2
X∞

n¼1
r�

1
2

1

8
><

>:
An

II ⋅Jν

2

6
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(45) 

Using again the integral across a straight line to approximate the 
integral along the arc, Eq.(45) becomes 
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Using the approximation Eq.(38) to substitute the Hankel function 
term in Eq.(46), we obtain 
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Substituting Eq.(47) into Eq.(46) yields 
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(48) 

As the radiated waves are limited to the harbor mouth, they can be 
neglected at the boundary line r ¼ r2. Thus, the matching condition Eq. 
(32) can be rewritten as 
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which yields 

r�
1
2

2

8
><

>:
A0

II ⋅Jν

2

6
42σðgsÞ�

1
2r

1
2
2

3

7
5þ B0

II ⋅Yν

2

6
42σðgsÞ�

1
2r

1
2
2

3

7
5

9
>=

>;

¼ aIε0J0k2r2 þ a0
IIIH0ðk2r2Þ

(50)  

and 

r�
1
2

2

8
><

>:
An

II ⋅Jν

2

6
42σðgsÞ�

1
2r

1
2
2

3

7
5þ Bn

II ⋅Yν

2

6
42σðgsÞ�

1
2r

1
2
2

3

7
5

9
>=

>;

¼ aIinεnJnðk2r2Þ þ an
IIIHnðk2r2Þ for n � 1

(51) 

Similar approach used in Eq.(33) gives 
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and 

�
1þ ν

2
r�

3
2

2

2

6
4AII

n ⋅Jν

0

B
@

2σ
ffiffiffiffiffigsp r

1
2
2

1

C
Aþ BII

n ⋅Yν

0

B
@

2σ
ffiffiffiffiffigsp r

1
2
2

1

C
A

3

7
5

þ
σ
ffiffiffiffiffigsp r� 1

2

8
><

>:
AII

n ⋅Jν

0

B
@

2σ
ffiffiffiffiffigsp r

1
2
2

1

C
Aþ BII

n ⋅Yν

0

B
@

2σ
ffiffiffiffiffigsp r

1
2
2

1

C
A

9
>=

>;

¼ 2aIink2Jn� 1ðk2r2Þ þ 2naIinr� 1
2 Jnðk2r2Þ þ k2An

IIIHn� 1ðk2r2Þ

� nr� 1
2 An

IIIHnðk2r2Þ for      n � 1 :

(53)  

3. Comparison with existing analytical solutions 

As shown in Fig. 2, when r1 is very close to r2 (i.e. h1 becomes very 
close to h2), the island will disappear and the topography will degen-
erate into a circular harbor of constant depth. Lee (1971) derived an 
analytical solution to investigate wave-induced oscillations inside har-
bors with arbitrary geometry and constant depth, and further conducted 
experiments to verify the theory.Fig. 1. 

To reproduce the experiment of Lee (1971), the topographical pa-
rameters are adjusted to r1 ¼ 0.228 m and r2 ¼ 0.229 m, which leads to Fig. 1. A plan view of Maug Islands (from Google Earth).  
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the water depth in the harbor h1 ¼ 0.3 m and the water depth in the open 
sea h2 ¼ 0.301 m. As the present solution is derived for the narrow 
harbor entrance, the results for the circular harbor with 10� opening are 
compared in Fig. 3. The amplification factor F, which is defined the ratio 
of the wave amplitude at any position inside the harbor to twice the 
incident wave amplitudes, is used to identify the response of a harbor to 
incident waves. The present solution agrees fairly well with that of Lee 
(1971). They share the same pattern and the values of the amplification 
factor are very close to each other. Since the energy dissipation arising 
from viscous effects and flow separation around the harbor entrance has 
not been considered in both theories, the analytical values of the peak 
amplification factor near resonance are obviously larger than the 
experimental values. However, the resonant frequencies and the 

variation patterns of the amplification factor curve shows good consis-
tency between the experimental data and both theories. 

On the other hand, when the mouth of the harbor is closed (i.e., the 
radiation waves from the harbor entrance are excluded), our solution 
degenerates into that for a cylindrical island over on a conical shoal. Zhu 
and Zhang (1996) have derived an analytical solution for the scattering 
waves around a cylindrical island mounted on a conical shoal in the 
open sea of constant depth. In order to compare with their results, the 
topographical parameters in their study are utilized, i.e., r1 ¼ 10 km, 
h1 ¼ 1.33 km and h2 ¼ 4 km. Two different values of r2 (i.e., r2 ¼ 200 km 
and 80 km) are considered, which respectively correspond to γ ¼ 0.02 
and γ ¼ 0.05 in the study of Zhu and Zhang (1996). The incident wave 
period is set to T ¼ 480 s. Wave run-ups along the coastline of the cy-
lindrical island for γ ¼ 0.02 and γ ¼ 0.05 are plotted in Fig. 4. The good 
agreement between two solutions indicates that the present analytic 
solution can well describe wave propagation over the island. 

4. Oscillations within Maug Islands 

The Maug Islands can be considered as a circular harbor with the 
radius of r1 ¼ 1.1 km and the constant water depth of h1 ¼ 70 m located 
over a conical island with the radius of r2 ¼ 5.5 km. It is surrounded by 
an open sea with the constant water depth of h2 ¼ 350 m. The opening of 
the harbor is 2θ0 ¼ 10� and the constant slope of the island is s ¼ 0.0636. 
As the narrow entrance assumption is satisfied in Fig. 3 by comparing 
the analytical solution with experiment results, the solution can be used 
confidently to examine the effect of the island on the harbor response to 
incident waves. In order to examine the effect of the island on the harbor 
response to incident waves, the oscillations in a circular harbor with the 
radius of r ¼ 1.1 km and the constant water depth h ¼ 70 m inside and 
outside are compared in Fig. 5. Regardless of whether the island exists or 
not, oscillations at the frequency of ω ¼ 0.009 rad/s are evident both at 
the center and the boundary positions with the angle θ ¼ 45�, 135� and 
180� respectively. However, due to the shoaling effect of the underwater 
topography of the island on the incident waves, the resonant amplifi-
cations in the harbor located over the island shows to be larger than 
those without it. The frequencies of ω ¼ 0.047 rad/s and 0.076 rad/s are 
not obviously amplified by the harbor without the island and the cor-
responding amplification factors at these four positions are all less than 
2.0, which indicates that they don’t correspond to the resonant 
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Fig. 2. Definition sketch of the circular harbor over a conical island.  
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Fig. 3. Response curve of the circular harbor with a 100 opening at the center, 
where the radius of the harbor is r ¼ 0.228 m and the water depth keeps con-
stant as h ¼ 0.3 m. The present solution respectively adopts r1 ¼ 0.228 m and 
r2 ¼ 0.229 m for the radii of the harbor and the island, which yields the water 
depth within the harbor is h1 ¼ 0.3 m and it is h2 ¼ 0.301 m in the open sea. 
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frequencies. On the contrary, the amplification factors at these two 
frequencies for the harbor located over the island can reach up to 12.0, 
an increase of more than 6 times, which should be due to the shoaling 
effect of underwater topography of the island.Fig. 6. 

The distributions of relative wave amplitude for these three fre-
quencies over the island and within the harbor are also presented in 
Fig. 5. As the wavelength of ω ¼ 0.009 rad/s is close to the radius of the 
island, the island cannot exert an obvious impact on the waves, which 
yields the relatively uniform distribution of wave amplitude over the 
island. The scattering effect of the island is enhanced with the increase of 
the wave frequency. The pattern of partial standing waves becomes 
more and more evident in front of the harbor. Furthermore, more wave 
energy is scattered laterally due to refraction and diffraction for these 
higher frequencies, and the scattering wave pattern over the island be-
comes more complicated. 

The distributions of the wave amplitudes within the harbor are also 
shown to be distinct for different frequencies. The maximum and 

minimal values occur at different positions, and the nodal and antinodal 
lines present different geometric structures. For ω ¼ 0.009 rad/s, i.e. 
mode (0, 0) of the harbor, the amplitude is smallest at the entrance, and 
tends to increase gradually along the incident propagation direction and 
reaches the peak value at the backwall of the harbor. For ω ¼ 0.047 rad/ 
s, i.e. mode (1, 0), a nodal line is observed approximately along x ¼ 0, 
which symmetrically divides wave amplitude distribution inside the 
harbor into two parts. The maximum values are observed at the back-
wall together with the upper and lower sides of the entrance. For 
ω ¼ 0.076 rad/s, i.e. mode (2, 0), the wave amplitude distribution is 
almost evenly divided into four parts by two orthogonal nodal lines. The 
minimal value appears at the center, and the maximum values appear at 
the backwall, near the entrance and the up and down corners. 

5. Conclusions 

There are a number of harbors built over natural or artificial islands, 

Fig. 4. Comparison of the present results for wave run-ups along the coastline of the cylindrical island with those of Zhu and Zhang (1996) for T ¼ 480 s, 
h1 ¼ 1.33 km, h2 ¼ 4 km and r1 ¼ 10 km γ ¼ 0.02 and 0.05 correspond to r2 ¼ 200 km and 80 km, respectively. 

Fig. 5. Response curves of a 10�-opening circular harbors with and without the island at different locations. For the harbor over the island, r1 ¼ 1.1 km, r2 ¼ 5.5 km, 
h1 ¼ 70 m and h1 ¼ 350 m. For the harbor without the island, its radius is r ¼ 5.5 km and the water depth inside and outside it is a constant of h ¼ 70 m. 
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and the incident waves from the open sea would be jointly affected by 
the island and the harbor. In order to reveal these features, an analytical 
solution for the wave oscillations within a circular harbor of constant 
depth over a conical island is derived. The domain of interest is divided 
into three regions, i.e., region I (within the harbor), region II (over the 
island) and region III (from the island toe to the deep sea). The free- 
surface elevation in the harbor of constant depth is described as a sum 
series of the first-kind Bessel function. Whereas the water depth varies 
linearly along the radial direction of the island in region II, the corre-
sponding free-surface elevation is described as the combination of the 
first- and second-kind Bessel functions. In the open sea of constant 
depth, the incident and scattered waves are described with a Fourier- 
cosine series and a sum series of Hankel function, respectively. It is 
assumed that the width of the harbor entrance is very small compared to 
the incident wavelength, and furthermore, the island is so large that the 
radiated waves from the harbor entrance are rather small at the toe and 
can be ignored there. The final solution is obtained by matching the free- 
surface elevation and its derivative at the interfaces between the three 
regions. By adjusting the topographical parameters, the present 
analytical solution is used to predict the wave-induced oscillations in a 
circular harbor of constant depth and the scattering of long waves 
around a cylindrical island mounted on a conical shoal. The validity of 
the present analytical solution is fully proved via comparing the pre-
dicting results with the existing analytical solutions of Lee (1971) and 
Zhu and Zhang (1996). 

As the topographical features of Maug Islands resembles the geom-
etry studied in this article, the coupled oscillation characteristics for 
Maug Islands are examined. The distribution of wave amplitude over the 
island is highly related to both the topographical features and the inci-
dent wave frequency. For the effects of the topographical features, the 
existence of the island does aggravate oscillations in the harbor. The 
amplification factor is larger for a harbor over the island as compared to 
harbor without the island at the four positions. Moreover, the shoaling 
effect of underwater topography of the island on the incident waves shift 
some resonant frequencies. For the effects of the incident wave fre-
quency, more complicated wave pattern appears over the island for the 
higher frequency due to wave refraction and diffraction. In addition, the 
wave amplitude distribution within the harbor also depends closely on 
the incident wave frequency via exciting different resonant modes. For 
different modes, the maximum and minimal values occur along with the 
nodal and anti-nodal lines displaying different geometric structures. The 
study is hoped to improve the understanding of oscillations in a harbor- 
island system and to provide preliminary estimates of resonance 
parameters. 
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