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A B S T R A C T

A common approach to verify a shotcrete layer’s ability to secure blocks that can exist between rockbolts in a
tunnel is to use analytical calculations. For this situation, an attractive approach to account for variability in the
shotcrete parameters is to use reliability-based methods. Variability can then be accounted for by assigning
suitable probability distributions to all relevant input parameters. Structural safety can be ensured by verifying
that the probability of limit exceedance is smaller than an acceptable target probability of failure. However, even
though analytical calculations and reliability-based methods can be used to design shotcrete support, one of the
commonly made basic assumptions is that the load-bearing capacity of the shotcrete is governed by the spatial
average of the input parameters. Thus, the spatial variability of the parameters are neglected. As a result, if the
capacity is governed by the lowest value of a certain parameter, this assumption is non-conservative. In this
paper, we present a novel approach in which the minimum of either the spatial average of a shotcrete slab of
varying thickness, or the spatial average along the periphery of a loose block of that same slab, is used to
estimate the load-bearing capacity of the shotcrete in a tunnel. The approach is based on results from numerical
simulations of a shotcrete slab that we perform to investigate the effect that a spatially varying thickness has on
the flexural load-bearing capacity of the slab. The results from the simulations show that the shotcrete’s flexural
load-bearing capacity might be overestimated when using the spatial average of shotcrete thickness between
four rockbolts in design. Using the presented approach, the spatial variability of shotcrete thickness can be
accounted for in practical design of tunnels without complex and time-consuming numerical simulations.

1. Introduction

To verify a shotcrete layer’s ability to secure blocks that can exist
between rockbolts in a tunnel, a common approach is to use analytical
calculations (e.g. Holmgren, 1979, 1987, 1992; Barrett and McCreath,
1995; Nilsson, 2003; Banton et al., 2004; Lindfors et al., 2015;
Bjureland et al., 2019). The shotcrete support is then idealized into a
conditional correlated structural system which is governed by three
main failure modes: direct shear, punching shear, or flexural failure
(Fig. 1), all of which are correlated to and conditional upon the ex-
istence of sufficient adhesion in the rock–shotcrete interface along the
circumference of the loose block (Barrett and McCreath, 1995;
Bjureland et al., 2019). In essence, if the adhesion is sufficient, the load-
bearing capacity of the shotcrete is governed by its ability to withstand
the load from the loose block through its direct shear capacity along the
circumference of the block; if the adhesion is insufficient, the shot-
crete’s load-bearing capacity is instead governed by its ability to
withstand the punching shear of the systematically installed rockbolts
or by its ability to withstand bending moments arising from the load of

the loose block, i.e. its flexural capacity.
To account for variability in the shotcrete parameters incorporated

in the analytical calculations, an attractive approach, which is accepted
in the Eurocodes (CEN, 2002), is to use reliability-based methods. Such
methods have previously been applied to a number of rock engineering
problems (e.g. Celestino et al., 2006; Jimenez-Rodriguez et al., 2006;
Jimenez-Rodriguez and Sitar, 2007; Bagheri, 2011; Langford, 2013;
Low and Einstein, 2013; Lü et al., 2013; Bjureland et al., 2017;
Matarawi and Harrison, 2017; Napa-García et al., 2017; Bjureland
et al., 2019). In these methods, variability is accounted for by assigning
suitable statistical distributions to all relevant input parameters; in the
design of shotcrete, statistical distributions such as those suggested by
Bernard and Xu (2017), Bernard and Xu (2019), and Bjureland et al.
(2019) can be used. Structural safety is ensured by verifying that the
probability of limit exceedance is smaller than an acceptable target
probability of failure.

However, even though analytical calculations and reliability-based
methods can be used to design shotcrete support against loose blocks in
a tunnel, as discussed in Bjureland et al. (2019), the common
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assumption when doing so is that the load-bearing capacity of the
shotcrete is governed by the spatial average of the input parameters
(Holmgren, 1992; Barrett and McCreath, 1995; Banton et al., 2004;
Lindfors et al., 2015). The spatial variability of the parameters is
thereby commonly neglected and as a result, if the capacity is governed
by the lowest value of a certain parameter, this assumption is non-

conservative. It is therefore of significant importance to determine
whether the spatial average of a shotcrete input parameter can be used
to represent that parameter in design.

In this paper, we present a novel approach that can be used to ac-
count for the spatial variation of shotcrete thickness in both determi-
nistic and reliability-based design of shotcrete. The approach is based

Fig. 1. Model of (a) Adhesive failure; (b) Direct shear failure; (c) Punching shear failure; (d) Flexural failure (© Bjureland et al., 2019, CC–BY 4.0, https://
creativecommons.org/licenses/by/4.0).
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on results from numerical simulations of a shotcrete slab between
rockbolts using Finite Element Methods, FEM. We investigate the effect
that the spatially varying shotcrete thickness has on the flexural load-
bearing capacity of a shotcrete slab. This choice was made since shot-
crete thickness is one of the governing parameters in the determination
of the flexural capacity and since the measurement methods available
today, such as laser scanning using LiDAR (Light Detection and
Ranging), allow for the possibility to quantify the shotcrete’s spatial
variability. Other authors have made a similar choice in related studies
(Chang, 1994; Nilsson, 2003; Malmgren and Nordlund, 2008; Lee,
2010; Sjölander, 2017; Sjölander et al., 2017). In contrast to these au-
thors, however, who as an example modeled the shotcrete as a sinu-
soidal wave-shaped shotcrete layer with rockbolts placed in the peaks
of the shotcrete layer, we utilize shotcrete thickness data combined
with random field theory (e.g. Vanmarcke, 1977) to describe the spatial
variability of the shotcrete thickness. The data consisted of the statis-
tical distribution of the thickness and its scale of fluctuation (i.e. the
distance within which the magnitude of a parameter shows strong
correlation with itself (Vanmarcke, 1977)) obtained from the Stock-
holm City Line project (Stockholm, Sweden) (Bjureland et al., 2019)
and the Äspö Hardrock Laboratory tunnel (Oskarshamn, Sweden)
(Klaube, 2018). Based on the results from our numerical simulations, a
methodology is suggested how to account for the spatial variation of
shotcrete thickness in both deterministic and reliability-based design of
shotcrete. At the end of the paper, the implications of the results from
this approach for shotcrete design are discussed.

2. General methodology

In order to investigate the influence from the spatial variability in
shotcrete thickness, numerical calculations have been performed using
the FEM software Abaqus (Hibbett et al., 1998). The numerical simu-
lations can be divided into two main parts (Fig. 2). The first part es-
sentially consists of setup, validation, and verification of the numerical
model and the input parameters that are used to investigate the influ-
ence from the spatial variability in the shotcrete thickness (Sections
3.1–3.4). The second part essentially consists of the numerical calcu-
lations performed to investigate the influence from the spatial

variability in shotcrete thickness.
In the first part, a numerical model of a shotcrete slab was set up to

simulate the flexural failure mode for a typical shotcrete roof support in
a rock tunnel with a flat or moderately arched roof. A suitable material
model was chosen for the slab and the required input parameters were
defined.

To validate the material model and to calibrate the input para-
meters, the results from a numerical simulation of a four-point beam
test (CEN, 2006a) were compared with the results from an experimental
four-point beam test (Andersson, 2014).

To verify the numerical model, numerical calculations were con-
ducted in which the shotcrete slab was subjected to an evenly dis-
tributed load, q. The results were compared with analytical calculations
of a simply supported shotcrete slab exposed to the same q.

Since the stiffness of the load, i.e. the loose block, affects the load-
bearing capacity of the shotcrete, numerical calculations were per-
formed with different elastic moduli of the rock, ER, to determine a
suitable stiffness to use in the analysis performed in the second part.
The same numerical model as previously was used, but instead of
subjecting the slab to an evenly distributed load, the load was applied
by assigning a prescribed displacement at the top of a rectangular block
resting on the slab. The benefit of this approach is that the load is ap-
plied stepwise and thus “failure” of the shotcrete slab can be evaluated
from the load-displacement curve. The ER was varied between zero,
which is equivalent to an evenly distributed load, and 10 GPa.

In the second part, to study the assumption that the spatial average
of a parameter can be used to represent that parameter in design, a slab
with an uneven bottom surface was first modelled using a varying
shotcrete thickness, t , in accordance with a lognormal distribution LN
(μt, σt, θt), where μt is the mean value, σt is the standard deviation, and
θt is the scale of fluctuation for the shotcrete thickness. In addition, two
comparative evenly thick slabs were modeled: one with a thickness
equal to the mean shotcrete thickness of the uneven slab, such that

=t μeven t, and one with a thickness equal to the mean shotcrete thick-
ness of the uneven slab along the periphery of the block, such that

=t μeven tp. This choice was made since two different scenarios for spa-
tial averaging are plausible (Fig. 3a and b).

In the first scenario, it can be assumed that the load-bearing capa-
city of a shotcrete layer with a spatially varying shotcrete thickness
between four rockbolts is governed by μt. According to yield-line
theory, it can in such a case be assumed that the yield lines are de-
veloped from the rockbolts towards the center of the area between the
rockbolts and, thus, a large part of the shotcrete is involved in the
failure. However, in the second scenario, if the loose block is relatively
stiff and the shotcrete along the periphery of the block is relatively thin,
it is reasonable to assume that yielding of the shotcrete layer is con-
centrated close to or at the periphery of the block. As a consequence, if
the θt is equal to or smaller than the center-to-center distance between
the rockbolts (i.e. the side length of the potential loose block), local
zones of thick or thin shotcrete that do not affect its load-bearing ca-
pacity can exist in the center of the loose block (Fig. 3a and b).
Therefore, in this scenario, it can be assumed that the load-bearing
capacity of a shotcrete layer with a spatially varying t is governed by
μtp.

The thickness variation in the uneven slab was modeled by ran-
domly generating values from a predefined probability distribution LN
(μt, σt, θt) at a number of equally spaced points using random field
theory. The assigned probability distribution was based on the work
done by Bjureland et al. (2019), except for θt which was based on the
work done by Klaube (2018). The boundary conditions, material model,
and input parameters were the same as those defined in part one.

Both the uneven slab with ∈t LN (μt, σt, θt), and the two even slabs
with =t μeven t and =t μeven tp were loaded by displacing the top of the
same block as in part 1. The ER used in the simulations was chosen
based on the results from the fourth step in part one. The process of
generating an uneven slab using random field theory, generating twoFig. 2. Outline of the different parts in the analysis.
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comparative slabs with =t μeven t and =t μeven tp, and subjecting all three
slabs to the load from a block with a prescribed displacement were
repeated ten times.

3. Set-up and validation of numerical model

3.1. Set-up of numerical model for the shotcrete slab

The numerical model of the shotcrete slab was set up in the FEM
software Abaqus (Hibbett et al., 1998) using 10-noded quadratic tet-
rahedron (C3D10) continuum elements (Fig. 4). The thickness of the
slab and the application of the load were varied for the different ana-
lyses (see Sections 3.3 and 4.1). Since we are investigating the influence
from a spatially varying thickness on the flexural load-bearing capacity
of shotcrete, we simplify the shotcrete support into a shotcrete slab with
side length l = 1.7 m, which is supported along all edges. This

represents a typical tunnel support with shotcrete and systematically
installed rock bolts with a center to center distance of 1.7 m. Similar
approaches were used by Holmgren (1992), Nilsson (2003),
Diamantidis and Bernard (2004), and Bjureland et al. (2019). We made
the conservative choice to model the slab as a simply supported slab by
prohibiting all edges of the slab from moving vertically and horizontally
along the direction of each edge. All edges were allowed to move
horizontally towards the center of the slab and rotations were allowed
in all directions of each edge.

Note here that the boundary conditions for shotcrete support be-
tween four rockbolts are complex, since the structural behavior of the
slab is governed by a relationship between the stiffness of the rockbolts,
the relative stiffness between the loose block and the shotcrete, the
stiffness of the surrounding rock mass, and the interaction between the
shotcrete and the rock mass outside the load-bearing zone illustrated in
Fig. 1a. Defining this relationship is outside the scope of this paper and
we therefore use the common approach (Holmgren, 1992; Barrett and
McCreath, 1995; Nilsson, 2003; Diamantidis and Bernard, 2004;
Bjureland et al., 2019), and make the aforementioned simplifying as-
sumptions.

The material model used to describe the behavior of the shotcrete
material in the simulations was the discrete crack approach model
“Concrete Damage Plasticity” (Lubliner et al., 1989), implemented in
Abaqus. The input parameters used in the analysis can be seen in
Table 1. Similar parameters were used by Andersson (2014).

The post-failure non-linear tension softening behavior of the shot-
crete was described using a bi-linear approach. The fracture energy, GF,
which is the parameter that mainly governs the post-failure behavior
(Andersson, 2014), was estimated in accordance with the Model Code
for unreinforced concrete to be (Beverly, 2013):

Fig. 3. Illustration of (a) the first scenario, in which the rock block between
bolts is positioned in such a way that it is reasonable to assume that the load-
bearing capacity is governed by μt; (b) the second scenario, in which the block
is positioned in such a way that it is reasonable to assume that the thick layer of
shotcrete in the center of the slab does not significantly affect its load-bearing
capacity and therefore that the load-bearing capacity is governed by μtp.

Fig. 4. Numerical model and finite element mesh of the slab used in the cal-
culations performed in parts three and four.

Table 1
Input parameters for the shotcrete model.

Name Denotation Magnitude Unit

Modulus of elasticity Es 38.6 [GPa]
Poisson’s ratio νs 0.2 [–]
Unit weight γs 23.0 [kN/m3]
Uniaxial compressive strength Fcc 58.0 [MPa]
Uniaxial tensile strengtha Fct 4.1 [MPa]
Ultimate compressive strain εcu 0.0034 [–]
Strain at maximum compressive stressb εc1 0.0026 [–]
Maximum damage parameter dt,max 0.95 [–]

a First calculated based on point load at cracking from load–deflection curves
and then adjusted by a factor 0.55 to match test curves (Andersson, 2014).

b In accordance with the Model Code for concrete class C50 (Beverly, 2013).
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The Fcc is the uniaxial compressive strength of the shotcrete in Pa.
To account for the increase in GF due to the fiber reinforcement in the
shotcrete, the fracture energy of the fiber-reinforced shotcrete, GF,FRS,
was calculated as (Kazemi et al., 2007):

=G G10 .F,FRS F (2)

3.2. Validation of shotcrete material model and input parameters

To validate the shotcrete material model and the input parameters,
a four-point beam test (CEN, 2006a) was simulated in Abaqus using
reduced integration plain stress elements, CPS4R. The results from the
simulations were compared with an experimental four-point beam test
conducted in accordance with CEN (2006a) (Andersson, 2014). The
results from the experimental and the simulated four-point beam tests
can be seen in Fig. 5.

3.3. Verification of the numerical model for the shotcrete slab

To verify the numerical model, numerical calculations were com-
pared with analytical calculations of a simply supported shotcrete slab
exposed to q using both idealized elastic and elastic–plastic conditions.
In both of these verification calculations, the thickness was set to
75 mm. The slab consisted of 81,587 elements.

3.3.1. Elastic conditions
In the calculations in elastic conditions, verification of the numer-

ical calculations was performed by comparing the analytical solution
for the deflection at midspan, wmax, of a slab using Kirchhoff’s plate
theory (Timoshenko and Woinowsky-Krieger, 1959; Ventsel and
Krauthammer, 2001):
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In the calculations in elastic conditions, a limitation in the magni-
tude of q was defined to ensure elastic conditions. The limitation of q
was determined based on the elastic flexural capacity of the shotcrete
slab, Rfl,e, (Barrett and McCreath, 1995; Banton et al., 2004):

=R f t
6

,fl,e ct

2

(4)

in which fct is the shotcrete’s flexural tensile strength at first crack, and
the moment, Me, calculated using Kirchhoff’s plate theory (Timoshenko

and Woinowsky-Krieger, 1959; Ventsel and Krauthammer, 2001):

=M ql0.0469 .e
2 (5)

The fct was evaluated from the numerical test beam and equaled
4.39 MPa. The maximum q that could be used to ensure elastic condi-
tions thus equaled 30.4 kPa. The q was therefore limited to 30 kPa in
the calculations in elastic calculations. The results from these calcula-
tions can be seen in Table 2.

As can be seen in the table, the difference between the analytical
and numerical calculations is approximately 3–5% for both deforma-
tions and moments. Since Kirchhoff’s plate theory does not account for
shear deformations, the results produced by the numerical simulations
are considered to be reasonable.

3.3.2. Elastic-plastic conditions
To verify the results produced by the numerical model after ex-

ceeding the elastic limit, numerical calculations were performed using
the same simply supported slab as for the calculations in elastic con-
ditions, but with a stepwise increasing q until failure of the slab was
obtained. Failure was defined as the point on the load–deflection curve
at which the derivative of the curve became either zero or negative.

The results from the numerical simulations were compared with
analytical calculations using the maximum moment that the shotcrete
could sustain, Mp, evaluated based on yield line theory and the max-
imum capacity of the shotcrete slab, Rfl,p, as suggested by Holmgren
(1992):

=M
ql
24

,p

2

(6)

=
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2
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in which the factor 0.9 is introduced to account for the overestimation
of Rfl,p that Eq. (7) otherwise gives at small deflections for a shotcrete
with a relatively high residual strength. The R10/5 and R30/10 are flexural
toughness factors (ASTM, 1997) that adjust the moment capacity of the
shotcrete to account for its residual strength. They can be determined
from

= −R I I20( ),10/5 10 5 (8)

and

= −R I I5( ),30/10 30 10 (9)

in which I5, I10, I30 are ductility indexes, which are defined as the area
underneath the load–deflection curve from a four-point beam test up to
a certain deflection, δ, divided by the area underneath the curve up to
the deflection at first crack, δS. The points to which the areas are cal-
culated for are I5 = 3.0δS, I10=5.5δS, and I30 = 15.5δS.

For an elastic perfectly plastic material, both R10/5 and R30/10 are
equal to 100. For the shotcrete used in this paper, R10/5 and R30/10 were
determined based on the normalized numerically simulated test beam
(Fig. 6) and equaled 162.2 and 185.4, respectively.

The maximum distributed load obtained from the elastic–plastic
analytical calculations, qmax,a,=53.6 kPa using Eqs. (6) and (7) and
maximum distributed load obtained from the numerical calculations,
qmax,n = 65.0 kPa. As can be noted, the calculated qmax,n is

Fig. 5. Load–deflection curves for test beam and numerical simulation of the
test beam.

Table 2
Calculation results from the comparison between numerical and analytical
calculations in elastic conditions.

Name Denotation Calculation

Analytical Numerical

Deflection at midspan wmax 0.737 mm 0.762 mm
Moment Me 4.07 kNm 3.84kNm
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approximately 20% higher than the calculated qmax,a. Probable reasons
for obtaining a higher capacity from the numerical simulations are that
the analytical calculations include +(R R )/20010/5 30/10 , which is basi-
cally an averaging of the residual capacities (Holmgren, 1992), and also
the 10% reduction made in Eq. (7) to account for potential over-
estimation of Rfl,p. If this reduction is neglected, the qmax obtained from
theqmax,a = 59.6 kPa and thus the difference between the analytical and
numerical results is approximately 10%. Due to the above and the fact
that the numerical calculations account for shear deformations, which
reduces the moment and therefore increases the load-bearing capacity,
the results are considered to be reasonable.

3.4. Determination of suitable block stiffness

Since the stiffness of the block affects the load-bearing capacity of
the shotcrete, numerical simulations were performed using the same
numerical model as in Section 3.3.2 to determine a suitable block
stiffness to use in the forthcoming analysis in Section 4. However, in-
stead of applying a distributed load to the shotcrete slab, the load was
applied as a prescribed displacement at the top of a rectangular block
with a base area of 1.5x1.5 m2 and a height of 1.0 m (Fig. 7). The choice
of using a rectangular shaped block, instead of a pyramidal shaped
block as principally illustrated in Fig. 1d, was made to ensure that the
results from the simulations in which small ER are used are comparable
with the commonly made assumption that the weight of the block is
evenly distributed over the shotcrete slab (Eq. (6)). In addition, this
choice was made to avoid the numerical difficulties that arises close to

the edges of a pyramidal shaped block, where the height of the block is
essentially zero, when assigning a prescribed displacement on the top-
surfaces of the block. The base area was purposely decided to be smaller
than the slab to avoid numerical difficulties arising from assigning
opposing prescribed deformations along the edges of the slab. The size
of the base area was selected such that it simulates a block that would
fit between the edges of the face-plates of the rockbolts. The height of
the block was set to be 1.0 m to allow analysis of the influence of the
block stiffness on the load-bearing capacity of the shotcrete. The self-
weight of the block was set to zero. The sides of the block were pre-
vented from deforming horizontally. The rock mass that constitutes the
block was modeled as a linearly elastic material with an ER that was
varied between zero and 10 GPa between the simulations. The Poisson’s
ratio of the rock mass, νr, was set to 0.25. The number of elements in the
block was 15,228.

The results from the analyses can be seen in Fig. 8. As expected, the
block stiffness had a substantial effect on the load-bearing capacity of
the shotcrete. For a block with ER > 3 GPa the load-bearing capacity
of the shotcrete is approximately three times greater than that for a
block with ER = 0 GPa. This increase in load-bearing capacity is due to
the stiffer block’s capability to transfer the load from the center of the
slab towards the circumference of the block, and as a result the load is
transferred closer to the supporting edges of the slab.

To select a suitable block stiffness to use in the forthcoming analysis
in Section 4, the ER was estimated using RMR. For the flexural load-
bearing capacity of shotcrete exposed to single loose blocks, the re-
levant RMR is approximately 30–70 (Banton et al., 2004; Lindfors et al.,
2009). To estimate ER, the relationships proposed by Bieniawski (1978)
and Serafim and Pereira (1983) (Eq.10), respectively, were used:

= ⎧
⎨⎩

− >
>−E (GPa)

2RMR 100, for &RMR 50
10 , for &RMR 30

.R (RMR 10)/40 (10)

Using these relationships, the ER was calculated to be approximately
3–40 GPa, neglecting the infinitesimal ER that the relationship by
Bieniawski (1978) yields for RMR close to 50. Considering the fact that
the load-bearing capacity is fairly constant over this entire spectrum of
block stiffness (Fig. 8), we used an ER of the rock mass equal to 3 GPa in
the analysis in Section 4.

It should be noted here that the actual magnitude of ER at which it
has an effect on the load-bearing capacity of the shotcrete is related to
the stiffness of the shotcrete slab, i.e. it is the relative stiffness between
ER and the stiffness of the shotcrete that governs the effect on the load-
bearing capacity and not the actual magnitude of ER. Therefore, if the

Fig. 6. Normalized load–deflection curve for the numerically simulated test
beam.

Fig. 7. Numerical model and finite element mesh of the slab and the block.

Fig. 8. Effect of the block’s elastic modulus, ER, on the slab’s load-bearing ca-
pacity.
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stiffness of the shotcrete support is changed, the magnitude of ER at
which it has an effect on the load-bearing capacity changes. This must
be accounted for when designing tunnel support.

4. Influence on shotcrete’s flexural load-bearing capacity from
spatial variability of shotcrete thickness

4.1. Numerical model and calculation procedure

To simulate an uneven shotcrete slab, a random field was generated
using the statistical software R! (Homik, 2006) and its Random Fields
package (Schlater, 2001). This choice was made since random field
theory is a stringent approach to simulate spatial variability by in-
corporating its defining characteristics in a mathematical idealization.
The random field was defined as a stationary Gaussian random field
using the midpoint method. As such, the mean and covariance were
assumed to be constant over the entire random field, the correlation
function was assumed to be Gaussian, and the value of the variable
simulated, i.e. t , was represented by the value at the center of each of
the elements that the random field constitutes of (e.g. Hajializadeh
et al., 2016). Similar choices have been made by other authors (e.g. Li
and Der Kiureghian, 1993; Haldar and Mahadevan, 2000; Malioka and
Faber, 2004; Stewart and Mullard, 2007; Krounis et al., 2015; Shi and
Stewart, 2015). The element size in the random field was set to 0.1 m
consistently over the entire random field to avoid mathematical diffi-
culties (Der Kiureghian and Ke, 1988; Fenton and Griffiths, 2008; Shi
and Stewart, 2015).

To generate a random field, the mean and standard deviation to-
gether with its statistical distributions and the scale of fluctuation for
the parameter of interest must be known. For t within the area of four
rockbolts, none of these parameters have been quantified in the avail-
able literature. Bjureland et al. (2019), however, illustrated that the
variation in t in a newly constructed commuter train tunnel in Stock-
holm, Sweden, followed a lognormal distribution over a large part of
the entire tunnel and that the COV was approximately 32% for a
shotcrete thickness requirement of 75 mm. In addition, Klaube (2018)
illustrated that in a part of the Äspö Hardrock Laboratory tunnel in
Oskarshamn, Sweden, θt was equal to approximately 0.8 m. Therefore,
for the generation of the random field in this paper, the t was assumed
to follow a lognormal distribution withμt = 75 mm and a COV of 32%
and the θt was assumed to be 0.8 m. Since the random field was defined
as Gaussian, the above-described lognormal distribution was trans-
formed to the corresponding normal distribution. Following the trans-
formation, the random field was generated and the value obtained in
each element was then back-transformed to the lognormal distribution.
A similar procedure was used by Krounis et al. (2015). The parameters
used for the random fields can be seen in Table 3.

Because of the lack of studies on the magnitude of θt, it is assumed in
this paper that the θt quantified at Äspö Hardrock Laboratory tunnel is
representative for θt in the City Line Project, even though the conditions
at Äspö Hardrock Laboratory are not exactly the same as those in the

City Line Project.
The analysis performed in this section can be summarized into the

following steps:

(a) The lognormal distribution for t suggested by Bjureland et al.
(2019) was transformed into the corresponding normal distribu-
tion.

(b) Spatially varying values for t using the transformed distribution and
the θt suggested by Klaube (2018) were randomly generated at
points spaced 0.1 m over the entire 1.7x1.7 m2 slab.

(c) The randomly generated values for t at each of the 0.1 m spaced
points were back-transformed to the lognormal distribution.

(d) The geometry of a 3D slab with an even top surface and an uneven
bottom surface was created in Autodesk Civil 3D. The unevenness
of the bottom surface, and thus the variation in t throughout the
slab, were created by importing the spatially varying values of t
obtained in step (c) as a point cloud into Autodesk Civil 3D and
generating a 3D slab from that point cloud.

(e) The 3D slab created in (d) was imported as a structural part into the
numerical model in Abaqus.

(f) The μt and the μtp were calculated based on the values obtained in
(c).

(g) Both an evenly thick comparative slab using the calculated μt from
step (f) and an evenly thick comparative slab using the calculated
μtp from step (f) were created in Abaqus.

(h) The boundary conditions for each of the three slabs were defined in
accordance with that described in Section 3.1.

(i) One simulation for each of the three slabs created in steps (d)–(g)
was performed using the block geometry, the ER, and the prescribed
displacement described in Section 3.4.

(j) The load-bearing capacity obtained from the simulation of the un-
even slab was extracted and compared with the load-bearing ca-
pacities obtained and extracted from both of the simulations of the
even slabs with =t μeven t and =t μeven tp.

(k) Steps (b)–(j) were repeated ten times.

4.2. Results

The obtained load-bearing capacity from each simulation can be
seen in Fig. 9a–b. In most of the performed analyses the load-bearing
capacity of the uneven slab is approximately the same as that for an
even slab with =t μeven t. The discrepancy is within approximately 10%.
However, an exception is found for the evenly thick slab with the
highest load-bearing capacity (i.e. the point furthest to the right in
Fig. 9a, simulation number 4) in which the difference in load-bearing
capacity between the slabs is 28%.

As can also be seen in Fig. 9a–b, in most of the analyses the load-
bearing capacity for the uneven slabs is better estimated using an even
slab with =t μeven t than a =t μeven tp. However, some exceptions exist
such as the load-bearing capacity estimated in simulation number 4, in
which the load-bearing capacity of the uneven slab is approximately the
same as the load-bearing capacity of an even slab with =t μeven tp (i.e.
the point with the third highest load-bearing capacity of the uneven
slabs in Fig. 9b).

5. Discussion

One reason for obtaining the results presented in Section 4.2 is the
probability of having a local zone with thin or thick shotcrete at the
center of the loose block (Fig. 3a–b). Taking the results from simulation
number 4 as an example, the discrepancy in load-bearing capacity be-
tween the uneven slab and the even slab with =t μeven t is because of a
local large thickness zone at the center of the slab. In addition, three of
the uneven slab’s corners are relatively thin locally. As a consequence,
μt in the slab used in simulation 4 is considerably larger than μtp. In all
other simulations, the uneven slab consists of zones with thin or thick

Table 3
Parameters used for random fields.

Parameter Magnitude

Random field style Stationary
Correlation function Gaussian
Scale of fluctuation, θt 0.80 m
Element size 0.10 m
Meanc −2.6 m
Variancec 0.098 m2

c The mean and variance provided in the table are after
transformation from the lognormal distribution. The corre-
sponding untransformed values for the mean and variance
equals 0.075 m and 0.00058 m2.
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shotcrete spread out across the entire slab, which results in a smaller
difference between μt and μtp.

The effect of this geometrical difference is a change in the dis-
tribution of stresses and thus the development of maximum principal
plastic strains. In simulation number 4, the maximum principal plastic
strains are initiated at the three corners of the block, where the slab is
relatively thin, and are afterwards distributed towards the corners of
the slab and simultaneously along the periphery of the block
(Fig. 10a–d). For all other slabs, the maximum principal plastic strains
are initiated at the corners and are afterwards distributed towards the
center of the slab (Fig. 11a–d). The consequence is that using μt as tin
Eq. (7) to estimate the load-bearing capacity of a slab might lead to an
overestimation in load-bearing capacity.

These results illustrate that neither of the two described scenarios is
valid in all cases. Determination of a slab’s flexural load-bearing ca-
pacity is more complex than simply assuming that it is governed by
either μt or μtp. If the minimum load-bearing capacity of an even slab
with =t μeven t or =t μeven tp is used, however, good agreement is ob-
tained for the load-bearing capacity between the uneven slab and the
even slab (Fig. 12). A possible approach to use in practical design of
shotcrete would therefore be to estimate the load-bearing capacity of
the uneven slab based on the minimum load-bearing capacity of an
even slab calculated with μt or with μtp. By doing so, the spatial

variability of shotcrete thickness can be accounted for in analytical
reliability-based design calculations. Before using this approach, how-
ever, some important aspects need to be further addressed.

First, the suggested approach for practical design requires the en-
gineer to have knowledge about the probability distribution of the
shotcrete thickness and its mean, variance, and scale of fluctuation. It
also requires that this knowledge be used to generate random fields that
properly represent the spatial variability of shotcrete thickness. In this
paper, we use the variance and probability distribution provided by
Bjureland et al. (2019) and the scale of fluctuation provided by Klaube
(2018) to generate the random fields, all of which were proposed based
on data obtained from relatively large parts of two tunnels. As such, the
mean, the variance, the probability distribution, and the scale of fluc-
tuation used in this paper do not necessarily describe the variability of
the shotcrete thickness within the area of four rockbolts in general.
Determining these parameters for shotcrete thickness in other tunnel
projects under different types of geological conditions is therefore ne-
cessary.

Second, we have only studied the influence of spatial variability in
shotcrete thickness on the load-bearing capacity of the shotcrete. In
reality, spatial variability of other parameters such as adhesion between
rock and shotcrete, shear strength, and flexural strength of the shotcrete
might also affect the load-bearing capacity.

Last, if the minimum load-bearing capacity obtained using μt and
μtp is used in the design of shotcrete support, an essential part of the
design is to specify suitable control measures that capture all critical
information. For shotcrete thickness, the standardized control method
in European countries consists of drilling five holes spaced
600 ± 50 mm apart in two lines of three holes at right angles sharing
the center hole (CEN, 2006b). This procedure is repeated at random
locations on the shotcrete surface in the tunnel. Considering that this
method of verifying the design captures neither the variance within
four rockbolts nor the scale of fluctuation, the critical information re-
quired for verification of the design is not obtained. Therefore, since
measurement methods such as LiDAR which can capture the critical
information are available, it would be preferable to adjust the stan-
dardized control measures and include these methods in such a way
that the critical information is captured.

6. Conclusions

Using the spatial average of shotcrete thickness between four
rockbolts to represent shotcrete thickness in design can result in an
overestimation of the shotcrete’s flexural load-bearing capacity. The
spatial variability of shotcrete thickness therefore needs to be ac-
counted for. We have shown that by using the minimum of: (1) the
spatial average thickness of a shotcrete slab of varying thickness, or (2)
the spatial average thickness of the slab along the periphery of the loose
block, the spatial variability of shotcrete thickness can be accounted for
in practical design of shotcrete support without the use of complex and
time-consuming numerical calculations.
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Fig. 10. a-d) Illustration of how plastic strains are initiated at the corners of the block and then stretch towards the corners of the slab and along the periphery of the
block.

Fig. 11. (a–d) Illustration of how plastic strains are initiated at the corners of the block and then stretch towards the corners of the slab and the center of the slab.
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