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A B S T R A C T

Cement grouting is widely applied in rock tunneling and underground construction to reduce groundwater
inflow and increase the tightness of rock masses. The rock grouting process involves complex non-Newtonian
grouts propagation in fracture networks. In this study, a two-phase flow model extended for yield-power-law
fluid (e.g., cement grout) propagation in water-saturated fracture networks is presented. The effective trans-
missivity is scaled from analytical solutions for single-phase yield-power-law fluids flow between a pair of
smooth parallel plates. This extended two-phase flow model for fracture networks is verified based on a unique
set of experimental data. The full experiment dataset is presented in this work for the first time. Impacts of
rheological parameters and time-dependent rheological properties of injected yield-power-law fluids on pro-
pagation processes are investigated through numerical simulations. A measure referred to as the propagation
volume fraction is defined as an indicator of the propagation process. The results generally show that the
rheological properties significantly affect the evolution of the propagation volume fraction. The propagation rate
reduces with increased yield stress, consistency index and flow index. The two-phase flow of yield-power-law
fluid propagation in a heterogeneous fracture network is also simulated, showing that the heterogeneity of
fracture apertures may significantly affect the propagation process. For the heterogeneous case, with two-point
distribution of apertures, the propagation volume fraction can be represented by using the harmonic mean
aperture. Since the yield-power-law constitutive model covers a wide range of non-Newtonian fluids, the results
presented in this work can be used for studying non-Newtonian fluid propagation in a variety of homogeneous or
heterogeneous fracture networks, which can be used for rock grouting design.

1. Introduction

Non-Newtonian fluid flow through randomized fractures is of in-
terest in a variety of underground engineering practices, such as mod-
eling of rock grouting in underground engineering projects (e.g.,
Wallner, 1976; Lombardi, 1985; Hässler, 1991; Eriksson et al., 2000; El
Tani, 2012; Gustafson et al., 2013; Stille, 2015; Mohajerani et al., 2017;
Zhang et al., 2017; Funehag and Thörn, 2018; Xu et al., 2019), and
predicting drilling muds spreading in oil and gas extraction (e.g.,
Frigaard et al., 2017). Particularly, cement grouting for subsurface
formations is an increasingly interesting application field due to strin-
gent demands for controlling groundwater flow in underground struc-
tures or constructions. (Gustafson et al 2013; Sui et al., 2015; Stille
2015; Li et al., 2016; Xu et al., 2019; Bohloli et al., 2019). In many cases

dams of all sizes rest on rock formations. As part of the construction as
well as critical maintenance in the case of ageing dams, the underlying
geological formations typically require injection of large amounts of
cement grouts for flow reduction and stability improvement (e.g.,
Warner 2004; U.S. Army Corps of Engineers, 2014). Likewise, trans-
portation infrastructure in many urban regions is expanding into un-
derground space, which also requires cement grout injection to avoid
adverse effects and to secure optimal functionality (e.g., Hässler et al.,
1992; Håkansson et al., 1992; Stille 2015; Li et al., 2016). Finally,
construction related to geological disposal most notably of nuclear
waste, requires minimizing water flow toward deposition tunnels and
canisters once again by injecting large amounts of cement grouts (e.g.
Emmelin et al., 2007). In all cases, cement grout injection into a geo-
logical formation combines design variables (e.g., type and amount of
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cement grout, the injection pressure) with complex heterogeneity of the
subsurface, notably rock fractures that are typically saturated with
water consisting of channelized structures (Hässler et al., 1992;
Håkansson et al., 1992; Fidelibus and Lenti 2012; Sui et al., 2015; Zou
et al., 2018, 2019).

Fundamental aspects of Newtonian fluid (e.g., groundwater) flow in
channelized structures pertinent to geological formations have been
studied in both two dimensions (Cacas et al., 1990; Baghbanan and Jing
2007; Dershowitz et al., 2007) and three dimensions (Cvetkovic and
Frampton 2012; Dreuzy et al., 2012; Dessirier et al., 2018). However,
cement grouts commonly used in engineering practice are often non-
Newtonian fluids (Hässler 1991; Håkansson et al., 1992; Nguyen et al.,
2006; Balhoff et al., 2012; Rahman et al., 2015; Shamu and Håkansson
2019). The flow of cement grouts occurs only when the shear stress
exceeds the yield stress. Most non-Newtonian fluids also exhibit non-
linear rheological behavior, such as shear-shinning and shear-thick-
ening, which are commonly approximated by the yield-power-law
model, also referred to as the Herschel-Bulkley model (e.g., Herschel
and Bulkley, 1926). For completeness, a detailed description of the
yield-power-law rheological model is presented in Appendix A. The
yield-power-law model contains three parameters, the yield stress, the
consistency index k and the flow index n. Particular parameter choices
reduce the yield-power-law model to Bingham, power-law or New-
tonian models, respectively. The Herschel-Bulkley model is therefore
able to represent a wide range of rheological behaviors of non-New-
tonian fluids (e.g., Herschel and Bulkley, 1926; Mitsoulis, 2007) that
are relevant for different types of grout (e.g., Nguyen et al., 2006;
Funehag and Fransson, 2006; Butrón et al., 2009; Rahman et al., 2015;
Pedrotti et al., 2017; Liang et al., 2019).

Analytical solutions for single-phase yield-stress or power-law fluid
flow in a 1D single channel are available in the literature (e.g., Bird
et al., 1960; Huilgol 2015; Panaseti et al., 2018). However, flow of non-
Newtonian fluids in geological formations often involves two-phase
flow (Hässler et al., 1992; Fidelibus and Lenti 2012; Sui et al., 2015;
Zou et al., 2018), and cement grouts are typical examples of yield-
power-law fluids (Håkansson, 1993; Nguyen et al., 2006; Rahman et al.,
2015; Shamu and Håkansson 2019). Due to the complexity in resolving
the two-phase flow problem that involves non-Newtonian fluids pene-
trating through water-saturated fractures, most of previous studies as-
sumed that the flow of water phase is negligible (e.g., El Tani, 2012;
Gustafson et al., 2013; Mohajerani et al., 2017; Xiao et al., 2017). Re-
cently Zou et al., (2018) presented simulations of two-phase flow for
Bingham fluid propagation in a single water-saturated fracture, and
studied the impact of water phase flow. It was found that the water flow
may significantly affect the propagation processes depending on the
viscosity ratio between the Bingham fluid and water.

Moreover, most of previous studies only considered the Newtonian
grouts (e.g., Funehag and Fransson, 2006) or the Bingham grouts (e.g.,
Hässler et al., 1992; Eriksson et al., 2000; Gustafson et al., 2013;
Fidelibus and Lenti, 2012; Mohajerani et al., 2017). Experimental stu-
dies suggest that cement grouts commonly used in practice with the
water/cement (w/c) ratio between 0.6 and 0.8 are actually yield-
power-law fluids (Håkansson, 1993; Nguyen et al., 2006; Rahman et al.,

2015; Shamu and Håkansson, 2019). Some special grouts, such as fine
cement grouts with high w/c ratio, i.e., w/c≥ 1, polymer-modified
cement grouts and silica sol, are Newtonian or power-law fluids
(Funehag and Fransson, 2006; Li et al., 2016). To date, only a few
studies have simulated non-Newtonian grout propagation in fracture
networks, e.g., Mohajerani et al. (2017) modeled Bingham grout pro-
pagation in 2D discrete fracture networks without consideration of the
groundwater flow. By considering groundwater flow, Hässler (1991),
and Eriksson et al. (2000) simulated Bingham grout flow in 2D struc-
tured fracture networks using an implicit numerical model; Fidelibus
and Lenti (2012) developed a numerical pipe network model and
modeled Bingham grout propagation in 2D structured networks; Deng
et al. (2018) simulated Bingham grout penetration in 3D fracture net-
works using a computational fluid dynamics (CFD) approach; Zou et al.
(2019) simulated Bingham grout propagation in 2D random fracture
networks. In general, these studies only considered Bingham grout.
Most previous studies have not been validated, except that Hässler
(1991), Eriksson et al. (2000), and Mohajerani et al., (2017) compared
their simulation results with the experimental data by Håkansson
(1987). Therefore, the remaining fundamental questions are related
first to the scaling of effects through a system of randomized water-
saturated fractures representing pores or fractures in a geological
media, and second to the generalizing for the yield-power-law fluids,
which represent the broad class of material constitutive law relevant for
cement grouts.

In this work, we investigate two-phase flow of yield-power-law
fluids through water-saturated randomized fracture networks with ap-
plication to rock grouting. Our first objective is to generalize the two-
phase flow model for a Bingham fluid in a single fracture presented in
Zou et al., (2018) to yield-power-law fluids in a network of fractures.
Experimental data of cement grout propagation in water-saturated
fracture networks conducted on large laboratory scale relevant for ap-
plications are rare in the literature. The second objective of this study is
to verify the two-phase fracture network model using our own original
experiments (Håkansson 1987), presenting for the first time the com-
plete data set of the experiments. Finally, our third and main objective
is to investigate the physics of the propagation process, specifically how
rheological properties affects yield-power-law fluid propagation
through regular as well as randomized fracture networks.

2. Two-phase flow from a single fracture to a fracture network

We consider non-Newtonian fluid flow through a regular fracture
network that represents a relatively large-scale geological media. The
network consists of single fractures each defined by two smooth parallel
plates (Fig. 1). Note that the assumption of smooth parallel plates for
rock fractures and regular fracture networks is adopted analogy to
previous analytical studies (e.g., Hässler et al., 1992; Eriksson et al.,
2000 Fidelibus and Lenti, 2012; El Tani, 2012; Gustafson et al, 2013;
Stille, 2015) and the experiment configuration (Håkansson, 1987). The
limitation of this assumption is further discussed in Section 6. The two-
phase flow model presented by Zou et al. (2018) is briefly introduced as
the basis to be extended to fracture networks in this work. Water is

Fig. 1. Schematic illustration of the propagation of a yield-power-law fluid in a single water-saturated fracture, modified from Zou et al. (2018).
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initially present in the fracture and is displaced by a yield-power-law
fluid as a moving interface. The pressure difference between the inlet
and outlet of a fracture is −P P1 2. The length of the fracture is L and the
aperture is 2B. The interface represents the location of the propagation
front I t( ), which describes the water displacement process.

Our basic assumption for this system is that the flow in each fracture
is advection- dominated, whereby macro-dispersion is controlled by the
heterogeneity of hydraulic properties (fracture apertures). This as-
sumption implies that the propagation process of the injected yield-
power-law fluid in a water-saturated fracture is an immiscible two-
phase flow and that capillary pressure effects are negligible.
Furthermore, we also assume that the injected yield-power-law fluid
and groundwater are both incompressible, that gravitational forces and
inertial effects are negligible (the flow is laminar) and that the fracture
aperture is much smaller than the lateral dimensions (i.e., the pressure
gradient across the aperture is negligible by adopting the lubrication
approximation). The above assumptions are consistent with how water
flow and solute transport are modeled in heterogeneous porous media
(Cacas et al., 1990; Baghbanan and Jing 2007; Dershowitz et al., 2007;
Dreuzy et al., 2012).

The two-phase flow process in a fracture can be expressed as (Zou
et al., 2018)
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where C is a phase function (i.e., C=1 represents the grout phase and
C=0 denotes the groundwater phase), t is time, P is pressure, u is
velocity, B is half of the fracture aperture, W is the fracture width, and
T is the effective transmissivity, which has different expressions for
different fluid phases, i.e., grout and groundwater. Note that the phase
function C used in Eqs. (1) and (2) is to keep the simplicity of the ex-
pression for the two-phase flow, which means that the effective trans-
missivity T is different for different fluids, i.e., grout and groundwater.

For the fracture defined by a pair of parallel plates (Fig. 1), the
effective transmissivity T can be determined by analytical solutions of
the flowrate for single-phase yield-power-law fluids between smooth
parallel plates, using

=T Q
Px (4)

where Q is the flowrate and = ∂
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where the half of the plug flow region zp can be determined from force
balance, written as (Zou et al., 2018)
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According to Eq. (4), the transmissivity for the yield-power-law fluid
flow in a homogeneous fracture can be expressed as
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For the Bingham fluids, the solution of velocity, flowrate and trans-
missivity can be obtained directly by equating n=1 in Eqs. (5) and (7)
(e.g. Huilgol, 2015). Similarly, equating =z 0p and further equating

=n 1 in Eqs. (5) and (7) yields the solution of velocity and flowrate for
the power-law fluids and Newtonian fluids, respectively (e.g. Bird et al.,
1960). For completeness, the constitutive equations for yield-power-law
fluids and derivation of the analytical solutions for the transmissivity
are presented in Appendix A.

Eqs. (1)–(3) are a set of coupled nonlinear partial differential
equation that defines the mathematical model for the two-phase yield-
power-law fluids flow in a fracture. For fracture networks, the solution
can be scaled by integration over connected single fractures for each
intersection node. The detailed solution method for a fracture network
is presented in Appendix B.

3. Experimental verification

To verify the two-phase flow model and the proposed computing
algorithm for a fracture network, simulation results are compared with
experimental data obtained in a laboratory test system (Fig. 2a)
(Håkansson, 1987). The experiment of Håkansson (1987) is considered
as a benchmark in the literature (e.g. Hässler, 1991; Eriksson et al.,
2000; Mohajerani et al., 2017) mainly because they were conducted on
a relatively large scale relevant for fractured rock applications.

This test system consists of two parallel plates of plexiglass with the
size of 1.2 × 1 × 0.015m. The two sides along the length of the plates
were sealed and the remaining two sides along the width of the plates

Fig. 2. Schematic illustration of the laboratory test system.
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were fixed by given water heads. One hundred and twenty rectangular
plexiglass plates were homogeneously placed between the two plates to
construct the regular fracture network. The fracture aperture is 1 mm
and the width of the fractures is 5 mm. At the center of the top plate, a
circular hole was drilled for injecting a non-Newtonian fluid.

In this experiment, all fractures were initially filled with water. The
injected non-Newtonian fluid was a bentonite grout, characterized by a
rheometer and fitted to the Bingham model. The curve fitted yield stress
was 3 Pa and the viscosity was 0.035 Pa s; the injected fluid had time
constant rheological properties. The injection pressure forcing the fluid
displacement was 4.8 kPa and the entire propagation process was
filmed by a camera placed orthogonally above the transparent experi-
mental plate. The video of the test, which contains the entire dataset of
the propagation time and positions, is presented in the Supplement
Material. Specific snapshots from this experiment have been considered
in the literature (e.g. Hässler, 1991; Eriksson et al., 2000; Mohajerani
et al., 2017), however the full and continuous experimental dataset is
presented for the first time in this study.

Using the computational algorithm summarized in Appendix B, we
simulated the same fracture system as the laboratory test. Fig. 3 shows
comparison of injected fluid propagation in the fracture network for
different times, i.e. t = 3 s, 6 s, 20 s and 65 s, between experimental
results and numerical simulations. Only the top half of the fracture
networks are shown due to symmetry. With increasing time, the in-
jected fluid gradually displaces the water in the fracture network. Si-
mulated result matches very well with the experimental data for all the

times. This indicates that the two-phase flow model developed in this
study is sufficiently accurate and can be used for modeling two-phase
flow of yield-power-law fluids propagation in an advection-dominated,
water-saturated fracture network. Compared with the results presented
in previous studies (e.g., Hässler, 1991; Eriksson et al., 2000;
Mohajerani et al., 2017), simulation results presented in this study
(Fig. 3) better match the experimental data, indicating that the math-
ematical model and solution method are more accurate; further dis-
cussion on the advantages of the presented computational methodology
in given in Appendix B.

To quantitatively compare and follow the evolution of the propa-
gation process, a parameter representing the volume fraction between
the penetrated volume and the total volume of the fractures is defined.
Specifically, a propagation volume fraction is

=
V
V

Γ p

c (8)

where Vp is the penetrated volume and Vc is the total volume of the
fractures. Comparing to traditional measure of grout propagation by
penetration length, using the penetration volume has advantages in
quantifying the grout propagation in heterogeneous fracture networks
and in controlling of the injected volume that is often used as a stop
criteria in practice, e.g., Stille (2015).

Fig. 4 shows the evolution of the propagation volume fraction Γ
from the numerical simulation result. The experimental result is also
presented for comparison, which matches well with the simulation

Fig. 3. Comparison of propagation patterns between experiments and simulations at t= 3 s, 6 s, 20 s and 65 s.
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result. The propagation volume fraction Γ increases rapidly in the initial
phase and gradually slows down with increasing time, especially after
120 s when the injected fluid arrives at the sealed walls; this is caused
by the gradually reduction of the pressure gradient in the fractures and
the yield stress of the injected fluid.

4. Illustration examples

4.1. Impact of rheological parameters

In order to investigate the sensitivity of rheological parameters on
the propagation, we simulate several cases that vary the parameters in
typical ranges. To be representative, the ranges of the varying para-
meters are chosen from the physical properties of cement grouts that
are typical yield-power-law fluids (Håkansson et al., 1992; Nguyen
et al., 2006; Rahman et al., 2015). Specifically, the cases for yield stress

=τ 0.5 Pa, 2.5 Pa and 5 Pa0 , k= 1, 1.5 and 2, and n=0.4, 0.45 and
0.5, are considered. The injection pressure is 4.8 kPa and the fracture
model and boundary conditions are identical to the experiment in Fig. 2
for all simulations in this section.

Fig. 5 presents the evolution of the propagation volume fraction for
different values of the yield stress =τ 0.5 Pa, 2.5 Pa and 5 Pa0 , where
k= 1.5 and n=0.4. When the yield stress is relatively small, i.e.

=τ 0.50 Pa, the propagation volume fraction increases relatively fast
until the fracture network is filled with the injected yield-power-law
fluid. The rate of the propagation volume fraction reduces dramatically
when the yield stress increases. Particularly, when the yields stress is

=τ 50 Pa, the propagation volume fraction approaches the maximum
value of around 0.42, which is much smaller than in the case with

=τ 0.50 Pa. This indicates that the yield stress significantly affects the
propagation of a yield-power-law fluid in a fracture network, because it
determines the transmissivity and thereby controls the propagation
(Gustafson et al., 2013; Zou et al., 2018).

Fig. 6 shows the evolution of the propagation volume fraction Γ for
different values of the consistency index =k 1, 1.5 and 2, where

=τ 2.5 Pa0 and n=0.4. After injection, the case with smaller con-
sistency indexk generally has a higher propagation volume fraction.
The propagation rate reduces with increasing k values from 1 to 2. This
result illustrates that the rate of propagation volume fraction is also
sensitive to the consistency index k.

Fig. 7 presents the evolution of the propagation volume fraction for
different values of the flow index =n 0.4, 0.45 and 0.5, where

=τ 2.5 Pa0 and k= 1.5. The rate of propagation volume fraction re-
duces with increasing flow indexn from 0.4 to 0.5, indicating that the
flow indexn also influences the propagation process.

To summarize, the propagation of yield-power-law fluids in water
saturated fracture networks is sensitive to the rheological parameters.

Fig. 4. Comparison of propagation volume fraction between the simulation
results and experimental data.

Fig. 5. Comparison of the propagation volume fraction Γ Eq. (8) for different
values of the yield stress =τ 0.5 Pa, 2.5 Pa and 5 Pa0 , where k= 1.5 and
n= 0.4.

Fig. 6. Comparison of the propagation volume fraction Γ Eq. (8) for different
values of k, where τ0 =2.5 Pa and n=0.4.

Fig. 7. Comparison of the propagation volume fraction Γ Eq. (8) for different
values of n, where τ0 =2.5 Pa and k=1.5.
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The maximum propagation volume fraction reduces with increase of
the yield stress. The propagation rate increases with the decrease of the
consistency index and the flow index. In order to predict the propaga-
tion volume fraction in applications, the constitutive properties of the
yield-power-law fluids should be determined with high accuracy.

4.2. Impact of time-dependent rheological properties

In engineering applications, rheological properties of many non-
Newtonian fluids will change over time. For instance, cement grouts
will harden where the yield stress and viscosity increase with time due
to both physical and chemical processes. It is therefore of interest to
illustrate the impact of the time-dependent rheological properties.
Håkansson (1993) and Hässler (1991) used linear functions and ex-
ponential functions to model the hardening process for cement/bento-
nite grouts. Subramaniam and Wang (2010) found that the shear
modulus and yield stress of the cement paste increase rapidly with time,
almost exponential in the initial period. Fidelibus and Lenti (2012) used
an exponential function to model the increase of grout viscosity with
time. Rahman et al., (2015) found that the yield stress and consistency
index of the cement grouts generally increases with time while the flow
index is comparatively less sensitive. The exponential function is also
adopted in this study to describe time-dependent yield stress and con-
sistency index of the injected yield-power-law fluids, written as,

=τ t τ e( ) I
bt

0 (9)

=k t k e( ) I
at (10)

where τIand kI is the initial yield stress and consistency index respec-
tively, while a and b are parameters controlling the rate of increase (i.e.,
hardening rate). The hardening model based on the exponential func-
tions (9)–(10) is valid only for the initial period, which is relevant for
most of geo-engineering applications, because the injection time is
often relatively short and within the initial period of hardening.

The initial yield stress τI =2.5 Pa and initial consistency index
kI =1.5 are adopted here for simulation. To illustrate the sensitivity,
two sets of parameter a and b, representing low (a= b=0.0005) and
high (a= b=0.001) hardening rate are simulated and compared with
the time constant case with =τ τI0 =2.5 Pa and =k kI =1.5, i.e.
a= b=0. Fig. 8 presents the comparison of propagation volume
fraction for the time constant and time-dependent cases with flow index
n=0.4.

Comparing the evolution of propagation volume fraction with the
time constant case, both the propagation rate and the maximum of
propagation volume fraction reduces significantly with the time-

dependent rheological properties. More specifically, the case with
higher hardening rate, i.e. a= b=0.001, has slower propagation rate
and smaller propagation volume fraction than the case with lower
hardening rate, i.e. a= b=0.0005. This result indicates that it is im-
portant to consider the more realistic time-dependent rheological
properties in the modeling of yield-power-law fluids propagation in
fracture networks. Simplifications without consideration of the time-
dependent rheological properties may imply considerable uncertainty
in prediction of the propagation process.

5. Heterogeneous fracture networks

Hydraulic properties of geological media are heterogeneous on a
wide range of scales. A variety of models have been used to represent
this heterogeneity, from continuum to discrete, from one-dimensional
to three-dimensional (Baghbanan and Jing, 2007; Cvetkovic and
Frampton, 2012; Dessirier et al., 2018). The fracture network model
could be assigned different distribution of apertures, where for instance
log-normal or fractal models have been used to represent aperture
distributions (e.g. Wang et al., 1988; Gustafson and Fransson, 2005;
Baghbanan and Jing, 2007; Cvetkovic and Frampton, 2012). In this
section, we choose to investigate the impact of heterogeneity on the
propagation of yield-power-law fluid in a heterogeneous fracture net-
work by assuming the simplest two-point distribution for the random
aperture. Specifically, the probability of the aperture b in the network is
expressed as

= ⎧
⎨⎩

=
− =

f b p
pifb b

pifb b
( ; )

1
1

2 (11)

where p is the probability that the aperture is b1, and − p1 is the
probability that the aperture is b2. In the simulation, the size of the
fracture network is ×1m 1m, roughly the same size as the experimental
setup of Fig. 2. The length of each fracture is 0.05m and the width of
fracture is 5 mm. The two values of the aperture are =b 1mm1 and

=b 0.5mm2 . Consistent with the experimental conditions of Section 3
and the constitutive parameters considered in Section 4, the injection
pressure is 4.8 kPa, with four simulated cases: (a) Newtonian fluid
(water), τ0 =0Pa, =k 0.001 and n= 1; (b) Power-law fluid, τ0= 0Pa,

=k 1.5 and n= 0.4; (c) Bingham fluid, τ0 =2.5 Pa, =k 1.5 and n=1;
and (d) Herschel-Bulkley fluid, τ0= 2.5 Pa, =k 1.5 and n= 0.4, re-
spectively. With these simulations, varying the heterogeneity prob-
ability p will enable us to illustrate the combined effect of heterogeneity
and the rheological parameters. Our particular interest is to see whether
a consistent effective aperture representation is possible.

Fig. 9 shows two examples of propagation patterns at t= 30 s and
1000 s, for the case of Herschel-Bulkley fluid with p=0.5. The thicker
lines represent fracture aperture =b 1 mm1 . The propagation of Her-
schel-Bulkley fluid (in red color) has preference for fractures with the
larger aperture =b 1 mm1 at the beginning (Fig. 9a), due to its corre-
sponding higher transmissivity values, which yields an asymmetric
propagation front. However, at longer time or larger scale, the propa-
gation front becomes asymptotically symmetric because the hetero-
geneity of structures is scale-dependent.

Fig. 10 shows the propagation volume fraction curves for different p
values (p= 0, 0.25, 0.5, 0.75 and 1), where p= 0 and 1 are the two
extreme cases with homogeneous apertures 0.5mm and 1mm, re-
spectively. For each heterogeneous case (p= 0.25, 0.5 and 0.75), 20
realizations were computed; the propagation volume fraction curves
presented in Fig. 10 is the mean of 20 realizations. The error bars re-
present standard deviations.

For all simulations with four different fluids, the propagation vo-
lume fraction for cases p=1, b= 1mm are much larger than that of
cases p= 0, b=0.5mm. Meanwhile, propagation volume fraction
nonlinearly reduces with the decrease of p from 1 to 0 in all cases,
indicating that the propagation process significantly depends on the

Fig. 8. Comparison of the propagation volume fraction Γ (Equation (8)) for the
constant and time-dependent yield stress and consistency index,
where =τ τ0 I =2.5 Pa, =k kI = 1.5 and n=0.4.
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values of fracture aperture. The error bars (standard derivations) for the
cases p=0.25, 0.5 and 0.75 represent uncertainty of the propagation
volume fraction which slightly increases with the increase of p. Such
uncertainty is caused by the spatial heterogeneity of aperture dis-
tributions.

For upscaling of the heterogeneous networks, it is of interest to
determine the effective homogeneous aperture. We compared the up-
scaling results using the harmonic mean of the heterogeneous apertures
for the four fluids shown in Fig. 10. For the two-point distribution, the
harmonic mean is

=
− +

b b b
p b pb(1 )hm

1 2

1 2 (12)

The result shows that the propagation volume fraction for the hetero-
geneous aperture cases with two-point distributions can be approxi-
mated through upscaling using the harmonic mean aperture.

6. Discussion

A two-phase flow model for the general yield-power-law fluid flow
in randomized fractures is presented using the methodology we ori-
ginally developed for Bingham fluids (Zou et al., 2018). The more
general yield-power-law rheological model covers a broad range of non-
Newtonian fluids that commonly appears in rock grouting applications
(Nguyen et al., 2006; Funehag and Fransson, 2006; Rahman et al.,
2015; Pedrotti et al., 2017; Liang et al., 2019). The mathematical model
for the two-phase flow extended in this study is based on the assump-
tion that the two phases are immiscible. This assumption implies that
the propagation of yield-power law fluid is a pure advective process. To
resolve the advection problem, a Lagrangian method with a moving
node in each fracture to track the interface is proposed. The moving
node method can also be used to solve general two-phase advective
flow. The experimental results confirm that the propagation process is
generally dominated by advection with relatively sharp interfaces at
propagation fronts (see Supplement Material). In geoengineering ap-
plications however, the injected fluids, e.g. cement grouts, may slightly
mix with the groundwater (Hässler 1991), especially at the fracture
intersections (Zou et al., 2017a). For specific applications, the validity
of this assumption and the impact of potential mixing behavior need to
be further studied both by laboratory experiments and direct numerical
simulations.

The simulation results presented in this study are based on a rela-
tively simple geometrical model, i.e., the smooth parallel plate model

without consideration of any internal heterogeneity such as surface
roughness, and the simplest regular fracture networks. In applications,
the geometrical structure of rock fractures often consists of rough sur-
faces (e.g., Brown, 1987; Roustaei and Frigaard, 2013; Zou et al., 2015;
2017b), and the rock fracture networks are mostly random (e.g., Cacas
et al., 1990; Baghbanan and Jing, 2007; Cvetkovic and Frampton,
2012). These complex geometrical structures may cause complex flow
behaviors (e.g., Brown, 1987; Zou et al., 2015, 2017b; Ju et al., 2017;
Jin et al., 2019). However, direct simulation of yield fluid flow in
realistic rough-walled fracture remains a challenge due to discontinuity
caused by the yield stress (Roustaei and Frigaard, 2013; Balmforth
et al., 2014; Saramito and Wachs, 2017). Quantifying the impact of
these complex geometrical structures on grouts propagation in more
realistic rock fractures and networks remains an open issue that needs
to be further studied in the future.

We only studied the simplest case for the randomized fracture
aperture that follows the two-point distribution. In reality, the fracture
aperture may follow other statistical distributions, e.g., lognormal, or
correlated with the fracture size (e.g. Wang et al., 1988; Eriksson et al.,
2000; Gustafson and Fransson, 2005; Baghbanan and Jing, 2007;
Cvetkovic and Frampton, 2012; Zhao et al., 2013, 2014). These geo-
metrical conditions can cause potentially important uncertainties in
prediction of the propagation process in applications, and are therefore
important topics for further studies. Nevertheless, the mathematical
model developed in this work constitutes a sound basis that can be
further extended to consider such uncertainties.

The impact of the rheological properties of yield-power-law fluids is
illustrated by sensitivity analyses, i.e., by varying the parameters, in
particular the yield stress, flow and consistency indices. The ranges of
these parameters are chosen according to typical yield-power-law fluids
used in geoengineering, such as cement grouts (Nguyen et al., 2006;
Rahman et al., 2015). Therefore, the results of the sensitivity analyses
shown in Figs. 5–8 may be useful for the design of rock grouting. In
such applications, it is important to consider time/space-dependent and
even temperature-dependent rheological properties of the injected
fluids, since they may significantly affect the propagation processes
(e.g., Fidelibus and Lenti 2012; Rahman et al., 2015; Zhang et al., 2017;
Liang et al., 2019; Bohloli et al., 2019).

To face the engineering challenges of cement grouting for subsur-
face formations, reliable and accurate measurements of the rheological
parameters, and advanced laboratory experiments as well as field tests
for verifying the effects of rheological properties and geometry condi-
tions on the propagation process are needed. Laboratory experiments

Fig. 9. An example of propagation patterns in a fracture network with heterogeneous apertures for p=0.5, (a) t= 30 s and (b) t= 1000 s. The bold fractures
represent =b 1 mm1 .
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on propagation of cement grouts in a single fracture with variable
apertures and ultrasound sensors have been designed and applied in
tests recently (e.g. Ghafar et al., 2017; Rahman et al., 2015; Funehag
and Thörn, 2018; Liang et al., 2019; Xu et al., 2019). Comparisons
between modeling results and these experimental data could be im-
portant tasks for future studies.

7. Conclusions

In this work, we extended the two-phase flow model for a Bingham
fluid in a single fracture presented in Zou et al. (2018) to yield-power-
law fluids in a network of fractures. Using the extended model, we
studied the propagation of yield-power-law fluids in water-saturated
regular and randomized fracture networks, which is an important topic
in modeling of cement grouting in fractured rocks. The most important
conclusions from this study are summarized as follows:

• The extended two-phase flow model for fracture networks is verified
using benchmark experimental data. Simulation results have been
found to match closely to the observations. The extended model
provides an accurate and efficient numerical tool for modeling ad-
vection-dominated two-phase flow of yield-power-law fluids pro-
pagation in water-saturated, randomized fracture networks, which
can be used for rock grouting design.

• The propagation process in fracture networks can be quantitatively
described by the propagation volume fraction that has been defined
in equation (8). The evolution of propagation volume fraction is
sensitive to the rheological parameters of the injected yield-power-
law fluid. The propagation rate reduces with increase of the yield
stressτ0, the consistency index k and the flow index n. The maximum
propagation volume fraction also decreases with the increase of
yield stress τ0.

• The time-dependent rheological properties (i.e., the hardening
process) significantly affect the propagation process. Ignoring the
time-dependent rheological properties will largely overestimate the
predicted propagation volume fraction in practice. When the hard-
ening rate is relatively high, i.e., a= b=0.001, the maximum
propagation volume fraction ( =Γ 0.4) reduces to 50% of the case
without consideration of hardening ( =Γ 0.8). Similarly, even when
the hardening rate is relatively low, i.e., a= b=0.0005, the max-
imum propagation volume fraction ( =Γ 0.5) reduces to62.5% of the
case without consideration of hardening ( =Γ 0.8).

• The heterogeneity of fracture aperture with randomized two-point
distribution yields an uncertain propagation volume fraction. The
propagation volume fraction generally reduces with a decreasing
fraction (p) of the larger aperture.

• The two-phase flow of yield-power-law fluids in randomized frac-
ture networks with two-point aperture distribution can be well re-
presented by the harmonic mean aperture, which provides an ef-
fective aperture for upscaling analysis.

In practice, rock grouting involves complex fluids propagation in
complex fracture networks. The complex rheological properties of
grouts and the complex geometrical structures of the rock fracture
networks cause major challenges and significant uncertainties for
modeling of rock grouting in applications. Extension of the mathema-
tical model to account for the more realistic rheological properties of
gouts and geometrical structures of natural rock fracture networks, and
to compare with high-quality experimental results are important tasks
for future studies.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influ-
ence the work reported in this paper.

Acknowledgements

This study is funded by the BeFo Rock Engineering Research
Foundation, which is thankfully acknowledged.

Fig. 10. Propagation volume fraction curves for different p values (p=0, 0.25,
0.5, 0.75 and 1), (a) Newtonian fluid (water), τ0 =0Pa, =k 0.001 and n=1;
(b) Power-law fluid, τ0= 0 Pa, =k 1.5 and n= 0.4; (c) Bingham fluid,
τ0 =2.5 Pa, =k 1.5 and n=1; and (d) Herschel-Bulkley fluid, τ0= 2.5 Pa, =k
1.5 and n= 0.4. The dashed lines represent scaling of corresponding hetero-
geneous cases using the harmonic mean aperture Eq. (12).
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Appendix A. Analytical solution for yield-power-law fluid flow between parallel plates

The yield-power-law model is a generalized rheological model for non-Newtonian fluids, which is illustrated by Fig. A1. By specifying controlling
parameters, the yield-power-law model can be classified into four categories as follows (Herschel and Bulkley, 1926; Mitsoulis, 2007):

(1) Herschel-Bulkley model. The constitutive equation of the Herschel-Bulkley model for the general yield-power-law fluids can be mathematically
expressed as

⎧
⎨⎩

= + ≥
= <

−τ τ γ k γ γ τ τ
γ τ τ

( /| |̇ | |̇ ) ,̇
̇ 0

n
0

1
0

0 (A1)

where τ is the shear stress, τ0 is the yield stress, k is the consistency index, n is the power-law index, andγ ̇ is the shear rate.
(2) Bingham model. By taking the power-law exponent n=1, the Herschel-Bulkley model reverts to the Bingham model, written as

⎧
⎨⎩

= + ≥
= <

τ τ γ k γ τ τ
γ τ τ

( /| |̇ ) ,̇
̇ 0

0 0

0 (A2)

In this case, the consistency index k is the plastic viscosity.
(3) Power-law model. When the yield stress =τ 00 , the Herschel-Bulkley model transfers into the power-law model, expressed by

= −τ k γ γ( | |̇ ) ̇n 1 (A3)

(4) Newtonian model. When both the yield stress =τ 00 and the power-law index n=1, the Herschel-Bulkley model reduces to the Newtonian
model, expressed as

=τ kγ ̇ (A4)

In this case, the consistency index k is the dynamic viscosity.
By invoking the assumptions summarized in Section 2, the governing equation for a single-phase yield-power-law fluid flow in parallel plates can

be written as (Bird et al., 1960)

∂
∂

+
∂
∂

=P
x

τ
z

0zx

(A5)

The boundary conditions are

= = = =P x P P x L P( 0) , ( )1 2 (A6)

= ± =v z B( ) 0x (A7)

∂
∂

= ± =v
z

r z z( , ) 0x
p (A8)

where zp is half of the plug flow region caused by the yield stress and B=b/2 is the half of the fracture aperture. Eq. (A6) represents the known
pressure boundary conditions; Eq. (A7) denotes no-slip boundary condition on the plate walls, and Eq. (A8) represents the no-shear rate condition in
the plug flow region for yield-stress fluids, i.e. Herschel-Bulkley and Bingham fluids.

The integration of the pressure term in Eq. (A5), after introducing the pressure boundary condition, yields

= − − +P P P
L

x P( )1 2
0 (A9)

∂
∂

= − −P
x

P P
L

( )1 2
(A10)

The integration of the shear stress in Eq. (A5) then gives,

= − ∂
∂

−τ τ P
x

z z( )zx p0 (A11)

The solution of velocity is an even function ofz. For the upper half aperture, ≤ ≤z z Bp , invoking Eq. (A11) into Eq. (A5) gives

Fig. A1. Illustration of rheological models for yield-power-law fluids.
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The velocity can now be obtained by introducing the no-slip boundary condition after integration of Eq. (A12) over z:

< ≤ =
+

⎛
⎝

− ∂
∂

⎞
⎠

⎡⎣ − − − ⎤⎦
+ +v z z B n
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P
x

B z z z( )
1

1 ( ) ( )x p p p
n n

n
n

n

1
1 1
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+

⎛
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− ∂
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⎞
⎠

− +v z z n
n k

P
x

B z(0 )
1

1 ( )x p p
n n

n

1
1

(A14)

Integration of the velocity over the aperture across z-axis gives

∫=Q W v dz2
B

x0 (A15)

where Q is flowrate that can be obtained as defined in Eq. (5).

Appendix B. Solution method for advection-dominated two-phase yield-power-law fluid flow in fracture works

The governing equations of the two-phase flow model (1)–(3) are a set of nonlinear Reynolds equations coupled with the interface transport
equation. The Picard iterative method is used to solve the nonlinear Reynolds Eq. (1) and the interface transport Eq. (3). At each time step, the
velocity is calculated by Eq. (2) after obtaining a convergent pressure field.

A finite volume method (FVM) is implemented to solve the nonlinear Reynolds equation. The FVM is used because of its advantages in securing
mass balance and flexibility in consideration of complex geometry and spatially varying properties of the non-Newtonian fluids. It is based on the
integration form of the Reynolds equation, expressed as

∫ ∑∂
∂

∂
∂

= ∂
∂

=T C dx T C P
x

( ) P
x

( )
x

0 (B1)

Fig. B1 illustrates an intersection within the fracture network. The integration form of the Reynolds Eq. (B1) represents the mass balance at each
node.

For any node i in the lattice model (Fig. B1), Eq. (B1) can be discretized as

∑ −
=

=

T C
P P

L
[ ( )] 0

j

M

ij
j i

ij1 (B2)

where M is the number of neighboring nodes, and Lij is the length between the nodes i and j. Assembling the discretized Eq. (B2) over all cells yields a
system of linear equations, which are solved by using a direct solver, such as Cholesky factorization.

The phase transport is a hyperbolic (advection) equation, which is a difficult numerical problem in the presence of a sharp interface (i.e., high
phase gradient) at the propagation front if an Eulerian scheme is used. To overcome this numerical difficulty, a Lagrangian interface tracking method
was adopted to track the grout propagation, which can be written as (Zou et al., 2018)

= ++I I u(I )Δtn 1 n n (B3)

whereI is the position of the interface and Δt is the time step. Since equation (B3) is an explicit discretization scheme, the adaptive time step based on
the Courant-Friedrichs-Lewy (CFL) condition is used in this study to achieve higher efficiency and maintain computational stability for the solution,
expressed by

≤Δt Δx
u (B4)

where Δx is a characteristic length assumed to be the minimum volume/cell length. In networks, it also should avoid discontinuity at intersections,

Fig. B1. Illustration of the solution method for fracture networks.
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which requires

≤Δt ΔL
u (B5)

whereΔL is the minimum distance to the closest intersection. Therefore, the final adaptive time step is

=Δt min( Δx
u

, ΔL
u

) (B6)

To implement the particle tracking, we add a moving node in each single fracture to represent the propagation of the propagation fronts/interfaces
(Fig. B1). This method overcomes the difficulty in determining transmissivity for the fracture that contains the interface. When the fracture is filled
with a single-phase fluid, i.e. the yield-power-law fluid or water, the node is placed in the middle of the fracture. This middle node adds to the
computational load since the number of computing volumes/cells is doubled, but it simplifies the programming considerably, since the connectivity
geometry and data structure remains constant even though the volume sizes changes due to the propagation of the propagation interfaces.

Using this solution strategy, we directly solve the Reynolds equation by FVM and use the particle tracking method to capture the interface. This
introduces a moving mesh due to the interface propagation, but it avoids any iteration for solving the pressure at the propagation interfaces in
partially filled fractures. The detailed algorithm of the two-phase flow solver for modeling of yield-power-law fluids propagation in water-saturated
fracture networks is summarized as follows (Zou et al., 2019):

(a) Define rheological parameters, controlling parameters and geometry model, including fracture nodes and connections.
(b) Initialize the phase function C and pressure field P0 for t= 0.
(c) Determine the effective transmissivity T C( ).
(d) Compute the pressure P1by solving Eq. (B2).
(e) Compare pressure P1 with previous pressure field P0: if the differences meet the convergence condition − <P P ε| |1 0 , then go to (f); otherwise,

=P P0 1 go back to (c).
(f) Compute the velocity u and determine the time stepΔt based on Eq. (B6).
(g) Update the phase function C, i.e. update the location of interface through particle tracking based on Eq. (B3), and t= t +Δt.
(h) Stop criteria: if <t tmax, go back to (c); otherwise, stop.

An alternative approach for resolving the two-phase flow in fracture networks can be found in the literature for the Bingham fluid, e.g., Hässler
(1991), Fidelibus and Lenti (2012). In their method, the flowrate equation and the interface pressure is iteratively solved from an implicit equation,
which adds a significant computational burden as convergence may take prohibitively long time. In contrast, we introduced a moving interface node
to explicitly track the interface; the interface pressure can thereby be solved in a straightforward manner without necessity of extra iterations.

Appendix C. Supplementary material

Supplementary data to this article can be found online at https://doi.org/10.1016/j.tust.2019.103170.
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