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A B S T R A C T

A utility tunnel typically houses various types of urban lifelines. As one of the assembled pipelines in a utility
tunnel, the sewer pipeline is of great importance for city life. For example, leakage of toxic and combustible
gases and a subsequent explosion can result in severe accidents. The potential hazards in the sewer pipeline
compartment of a utility tunnel are greatly different from those in traditional directly buried sewer pipelines. In
this study, a risk assessment method based on a Bayesian network (BN) and Dempster-Shafer (D-S) Evidence
theory was developed to evaluate complicated sewer pipeline accidents in a utility tunnel. First, potential ha-
zards and typical accident scenarios were identified based on case studies of sewer pipeline accidents and
evaluated by experts. Then, a BN-based risk assessment framework for the sewer pipeline in a utility tunnel was
established. Using the proposed model, BN inferences of sewer pipeline accident scenarios were conducted.
Furthermore, sensitivity analysis (SA) was conducted to identify the critical threats of the sewer pipeline in a
utility tunnel. The proposed risk assessment framework can help to prevent and mitigate sewer pipeline acci-
dents in utility tunnels.

1. Introduction

With the rapid urbanization of China, underground utility tunnels
have been extensively constructed, which are effective for arranging
urban lifelines. Chinese utility tunnels normally house various types of
pipelines in different compartments, such as gas, sewer, electricity,
heat, water and telecommunication (Wang et al, 2018). According to
the technical code for urban utility tunnel engineering (Wang, 2015), a
feasible prototype of a utility tunnel is presented in Fig. 1. Underground
utility tunnels save urban underground space and facilitate the in-
stallation, inspection, replacement, and maintenance of urban lifelines
(Lee et al, 2018). The sewer pipeline is a significant component of the
urban drainage system, which transports wastewater from people’s
daily life, industries, and rainfall. Like the directly buried sewer pipe-
line, a large quantity of toxic, hazardous, inflammable, or explosive
gases (such as CH4, H2S, CO, and SO2) are produced during the mi-
crobial decomposing process. These gases will leak out of the pipeline
for various reasons such as corrosion, earthquakes, man-made damage,
etc. If the gas leakage develops to a certain concentration limit, once
being triggered by a fire source, it may cause combustion and explosion
accidents, leading to severe consequences. For example, the sewer

pipeline explosion in Guadalajara, Mexico, in 1992, caused 252 fatal-
ities and made 15 thousand people homeless. More than that, except for
general consequences such as casualties and economic loss, a prominent
problem particularly related to sewer pipelines is the pollution of en-
vironment including air, soil and water, which are serious secondary
hazards and to be taken into adequate account in this paper.

In the past few decades, many researchers have focused on per-
forming risk assessments of directly buried sewer pipelines. Mark et al.
(1998) proposed a method for urban sewer pipeline risk analysis based
on numerical modeling and the GIS system, and they discussed the
spread rules of underground sewer accidents and treatment techniques
for the sewer system. Whitaker et al. (2014) developed a risk assess-
ment model for the combined sewer system and introduced risk miti-
gation measures by estimating the failure of sewer pipelines. Other
methods, such as the conventional Fault Tree and Event Tree, were also
used to perform safety assessments of sewer pipeline accidents (He
et al., 2011; Guo, 2014). However, these types of methods are static,
and the states of the variables implemented in these methods are binary
(“Yes” and “No”) to model an accident scenario. Considering the lim-
itations of these types of conventional methods, synthetic methods,
such as the Artificial Neural Network, Fuzzy System and Analytic
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Hierarchy Process, have been employed (Legrand et al, 2004; Canto-
Perello et al., 2013; Stanić et al., 2013; Jiang et al., 2016; Mohammad
et al., 2017). These comprehensive methods can set up several levels of
accident consequences and make a semi-quantitative decision. During
the process of risk analysis, each variable has more than two states, and
each state has a corresponding graded score given by experts. In the
grading system, a smaller subdivision of grade indicates a more accu-
rate result. However, this situation can make it more difficult for ex-
perts to provide a final opinion. One limitation of such types of methods
for performing a dynamic risk assessment is the time-consuming re-
calculation since all relevant parameters must be recalculated when the
model variables change.

For a dynamic risk assessment of complex systems, the Bayesian
network (BN) has significant advantages (Trucco et al., 2008). First, the
Bayesian network is appropriate for representing a large variety of
uncertain scenarios because multi-state BN nodes can be established.
Second, the Bayesian network takes advantage of conditional prob-
abilities to represent causal relationships, which are subject to con-
tinuous distributions instead of discrete figures. Moreover, the Bayesian
network is flexible in updating the probability with newly provided
evidence. Based on case-specific data and updating mechanisms, it is
permissible to update the probabilities of the BN nodes, which are in-
itially obtained from generic data during the design phase of the target
system. Thus, the Bayesian network can make a prediction and diag-
nosis and has proven to be effective in various areas (Khakzad et al.,
2012; Sousa and Einstein, 2012 Kabir et al., 2016; Wang and Chen,
2017; Beaudequin et al., 2017; Gan et al., 2017, Wu et al., 2018).
However, research on BN-based risk analysis of the sewer pipeline in
utility tunnels is scarce. In addition, the potential hazards in the sewer
pipeline compartment of a utility tunnel are different from those of a
conventional directly buried sewer pipeline.

In this study, based on case studies of sewer pipeline accidents and
expert experiences, a BN-based risk assessment framework for the sewer
pipeline in a utility tunnel is proposed. The conditional probabilities of
the Bayesian nodes are collected based on expert experience with
treatment by the Dempster-Shafer (D-S) evidence theory. Using the
proposed framework, the evolution process of a sewer pipeline accident
from its causes to consequences can be explicitly presented, and the
critical threats of a sewer pipeline accident in a utility tunnel can be
identified based on sensitivity analysis (SA). The proposed risk assess-
ment framework can help to prevent and mitigate sewer pipeline ac-
cidents in utility tunnels.

2. Methodology

2.1. Bayesian network

The Bayesian network (BN) is a Directed Acyclic Graph (DAG) that
includes two types of nodes (parent nodes and child nodes), directed
links (relationship) between parent and child nodes, and conditional
probability tables (CPTs) of each node to represent dependencies (Li
et al, 2017). The Bayesian network has been proven to be an effective
quantitative tool for risk analysis and decision making. A basic sample
of a Bayesian network is illustrated in Fig. 2, where X1 and X2 are de-
fined as the root nodes or “parent” nodes, respectively, and X denotes
an intermediate node or “child” node. The directed links between the
nodes indicate the corresponding causalities, and the CPTs of each node
are presented.

The Bayesian network works based on Bayesian theory, in which
conditional probability plays a key role. Probability in a Bayesian net-
work is updated using the following basic equation.

=p A B
p B A p A

p B
( | )

( | ) ( )
( ) (1)

Eq. (1) represents the basic principle of Bayesian theory, where p A( )
and p B( ) are the probabilities of events A and B, respectively; p B A( | ) is
the probability of B when A occurs; andp A B( | ) is the probability of A
when B occurs. The great advantage of the Bayesian network is its
ability to update data. The posterior probability of an event can be
calculated by updating the prior probability with new evidence:
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Fig. 1. Profile of a feasible design for a utility tunnel in China.

Fig. 2. Basic sample of a Bayesian network.
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where p A( ) is the prior probability of event A, p A e( | ) is the posterior
probability under given evidence E, p e A( | ) is defined as the likelihood

of the evidence under event A, and ∑
=
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is the joint prob-

ability distribution of the evidence E. The main process of Bayesian
analysis is illustrated in Fig. 3.

2.2. Dempster-Shafer evidence theory

The Dempster-Shafer evidence theory was introduced by Dempster
and later extended by Shafer (Dempster, 1967; Shafer, 1976); before
long, it was brought into the field of artificial intelligence (Barnett,
1981). This method is concerned with the question of the belief in a
proposition and systems of propositions (Basir and Yuan, 2007), being
of great use for multi-source information fusion and applied to a very
large class of situations of data collection, including expert systems
(Basir and Yuan, 2007; Sun et al, 2008; Tian and Yang, 2014). Just like
in this study, adopting the D-S evidence theory can help to determine
conditional probabilities, which are required by the BN method and
must be extracted from collecting different experts’ knowledge. The
basic principle of the D-S evidence theory is as follows:

(a) Θ is the frame of discernment, which is a finite set of mutually
exclusive elements for a particular proposition. By defining the
mass function m as the mapping from the power set 2Θ to a number
between 0 and 1, we obtain m (A) as the mass function of object A

and the Basic Probability Assignment (BPA) of the D-S evidence
theory, which must satisfy the following conditions:
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(b) Dempster’s combinational rule for multiple evidence is calculated
with Equations (4) and (5):
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At the same frame Θ of discernment, A is any event to be estimated
and m (A )i i is the BPA for a series of evidence to be combined. Thus,
∑ ∏∩ ≠ ⩽ ⩽ m (A )ϕ i N i iA 1i

is the conflict degree of evidence and K is defined
to be the normalization factor.

When using the D-S method, the collected data from experts should
be firstly evaluated according to the Cronbach’s coefficient alpha (α)
(Cronbach, 1951), which refers to the statistical consistency and relia-
bility. The value of alpha ranges from 0 to 1 and the higher, the more
reliable (Santos, 1999). It has been indicated that 0.7 is a threshold
value of acceptable reliability (Nunnaly, 1978). Also, it is generally
thought to be acceptable while α > 0.8 for fundamental researches
and α > 0.6 for practical researches. The Cronbach’s coefficient Alpha
can be calculated as follows:
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3. Bayesian network development

3.1. BN nodes and relationships

In this study, the BN was learned from typical sewer pipeline acci-
dents and further evaluations made by professional experts. One of the
accidents was happened at 2014 in Wuhan Province, China (Zhang
et al., 2015); and one of the experts participated in the accident in-
vestigation. According to the investigation conclusion, this accident
might have originated from the anticorrosion coating’s spalling; and
then the corrosion of the sewer pipeline, with the addition of the in-
fluences of external construction and geological condition, caused a
puncture occurring on the pipe wall and gradually developing into a
rupture, while the gas kept leaking out into the confined space of the
compartment. After a period of time, the accumulation of gas reached
the explosive limit and unfortunately it came in contact with an open
flame; as a result, an explosion accident happened and caused two
deaths and serious road damage. Through many case studies like this,
the codes and causal relationships between them were obtained. The
detailed description of each node is as follows.

(a) Coating spalling. Coating is an effective measure to protect the
inner surface of sewer pipelines from corrosion. Different antic-
orrosion coatings are required for different sewer pipelines. Epoxy
polyurethane and melting epoxy powder are commonly used an-
ticorrosive materials in China (Yang et al, 2013). The serious state
of coating spalling can cause serious internal corrosion of sewer
pipes.

(b) Inhibitor failure. A corrosion inhibitor can help to protect the inner
surface of sewer pipelines.

(c) External interference. External interferences such as overload and
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Fig. 3. Process of Bayesian analysis.
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industrial constructions may directly damage utility tunnels and
sewer pipelines. In particular, an overload can be due to the con-
stant pressure imposed by aboveground constructions or the in-
stant pressure due to heavy traffic moving over the utility tunnel.

(d) Earthquake. Generally, utility tunnels should reach the seismic
design of a category-II structure (levels 5 ~ 6). This node re-
presents the probability of earthquakes over level 6 in urban areas.

(e) Unreasonable design. Design flaws in small underground spaces
may eventually cause serious accidents.

(f) Incorrect manipulation. This node represents human errors, which
consist of bad welding, bad installation by unprofessional opera-
tors, and mechanical damage during the process of transportation,
installation and maintenance.

(g) Fire source. It is difficult to avoid fire during the welding process or
in other situations, such as electric spark, electrostatic or external
arson, in a utility tunnel.

(h) Accident area. Sewer pipelines are extensively installed under re-
sidential areas, commercial areas and office areas. A serious acci-
dent in these areas will cause serious casualties and economic loss
and have a social impact.

(i) Occurrence time. The effect of the time of an accident can be sig-
nificant. If an accident occurs at night (rest time), it will not di-
rectly cause large casualties around the sewer pipeline. In daytime
(working time), the consequences of an accident will be more
complex and serious.

(j) Internal corrosion. Coating spalling and inhibitor failure may cause
internal corrosion, sewer pipe leakage and other secondary acci-
dents.

(k) Defect of the sewer pipeline. This node describes the damaged
condition of sewer pipelines. The “slight” state implies a punctured
pipeline, and the “serious” state indicates a rupture.

(l) Geological hazard. Geological hazards such as subsides and land-
slides might damage the sewer pipeline in a utility tunnel. Actually,
the probabilities of most geological hazards will increase with the
occurrence of an earthquake.

(m) Puncture. This node indicates that the damage condition of a sewer
pipeline is slight and that there is only a small amount of sewage
and hazardous gas leak.

(n) Rupture. This node represents serious damage to the sewer pipe-
line, which causes a large amount of sewage and hazardous gas to
leak into the utility tunnel. As a result, the entire sewer system and
utility tunnel will break down.

(o) Hazardous gas leakage. As mentioned, there are several types of
hazardous gases in the sewer pipeline. The state of this node is
classified according to the dangerous levels of CH4, H2S, and CO.
As soon as one of the three gases reaches its dangerous con-
centration level, the corresponding state is recognized. CH4 is most
likely to cause a fire or an explosion due to the CH4 concentration
in the sewer pipeline. Therefore, this node only considers the ex-
plosive limit of CH4, while the other two gases are only considered
in terms of their poison limit. Hence, the slight state is C(CH4) less
than 5%, C(H2S) less than 70 mg/m3 or C(CO) less than 200 ppm;
the moderate state is when C(CH4) is close to 5% and 15%, C(H2S)
is 70–760 mg/m3, or C(CO) is 200–1300 ppm; and the serious state
is C(CH4) of 5–15% or C(H2S) > 760 mg/m3 or
C(CO) > 1300 ppm (Fan and Ding, 2016; An et al., 2006; Wang,
2011).

(p) Damage of the utility tunnel. This node represents the damage
caused by a sewer pipeline explosion and the pollution due to
sewage leakage.

(q) Fire/Explosion. This node describes a secondary accident due to
hazardous gas leakage. In specific scenarios of a fire/explosion, the
released energy may cause large fatalities and economic loss. The
slight state represents heat radiation in a fire scenario of less than
5.0 KW/min or overpressure in an explosion scenario of less than
3.5 psi according to the individual data from the Environmental

Protection Agency (EPA) and National Oceanic and Atmospheric
Administration (NOAA).

(r) Economic loss. This node measures the consequences of sewer pi-
peline accidents. The classifications are based on the Production
Safety Accident Report, the Investigations and Handling Rules,
China. The light state is less than 50 million, the moderate state is
50–100 million, and the serious state is> 100 million.

(s) Casualties. This node is another important measurement of the
consequences of sewer pipeline accidents. According to the
Production Safety Accident Report, Investigations and Handling
Rules, China, casualties can be graded into three states. The light
state represents fewer than 10 deaths or fewer than 50 injuries, the
moderate state represents 11–30 deaths or 51–100 injuries, and the
serious one represents> 30 deaths or> 100 injuries.

(t) Pollution. Sewage flow in a utility tunnel may result in high con-
centrations of toxic pollutants and bacteria in the compartment.
Additionally, the decomposition of degradable organic components
by microorganism may cause an oxygen deficit in the utility tunnel
(Holeton et al., 2011; Madoux-Humery et al., 2013; Brzezińska
et al., 2016).

After determining the variables and dependencies of the nodes, the
basic structure of the Bayesian network for the sewer pipeline in a
utility tunnel is established, as presented in Fig. 4, where the textboxes
of parent nodes are filled with grey color to be distinguished from those
transparent ones representing child nodes; and the classified states of
every BN node are listed in Table 1.

3.2. Conditional probability tables

Conditional probability tables (CPTs) are essential to perform a
quantitative risk assessment of a sewer pipeline accident. However, the
records of such accidents in a utility tunnel are rare. In this situation,
the Dempster-Shafer evidence theory can be used to determine the CPTs
by combining expert experience and knowledge. The Dempster-Shafer
evidence theory is effective for performing an accident analysis
(Hegarat-Mascle et al., 1997; Tesfamariam et al., 2010; Nordgard and
Sand, 2010; Zhao et al., 2012). In this study, the prior probabilities of
the parent nodes were estimated referring to related accident records
and incomplete statistics, as listed in Table 2. The probability dis-
tribution (0.40, 0.40, 0.20) of the node “External Interference” implies
that external interferences can occur in an urban area with a probability
of up to 80% in two ways: overloads and industrial constructions.

For the child nodes, their CPTs were determined by five experts
using questionnaires with the treatment of the Dempster-Shafer evi-
dence theory. Taking the determination of the CPTs of the child node
“Internal Corrosion” for example, the probability distribution of
“Internal Corrosion” depends on its parent nodes “Coating Spalling”
and “Inhibitor Failure”; and from the expertise questionnaires, the five
experts provided their judgement in Table 3. Symbols m1 (1, 2) to m5 (1,
2) are the probability distributions given by the five experts, where the
pair of digits within parentheses (1, 2) indicate the states of (Yes, No)
respectively, corresponding to the labeled states listed in Table 1. In the
first line where the combined conditions are “Coating Spalling: Yes”
and “Inhibitor Failure: Yes”, m1(1,2)=(0.71, 0.29) means that the first
expert believed that the “Internal Corrosion” will happen with a
probability of 71% (not happen with 29%) if both the “Coating Spal-
ling” and “Inhibitor Failure” happen. The treatment of the collected
data from the five experts by the D-S method based on Eqs. (4) and (5)
yields the experts’ elicitation in the last column, “Calculated results”.
Here Eq. (6) was adopted to calculate the Cronbach’s coefficient and we
obtained α = 0.804, satisfying the statistical consistency and relia-
bility. Utilizing the conditional probabilities listed in Table 3 and the
prior probabilities listed in Table 2, the probability distribution of the
child code can be calculated by the Bayesian formula. The calculation of
the probability of “Yes” for “Internal Corrosion” is demonstrated as
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(7)

where A and B indicate the parent nodes “Coating Spalling” and

“Inhibitor Failure” respectively, C indicates the child node “Internal
Corrosion”.

Based on the aforementioned procedure of expert elicitation with
the D-S method, the CPTs of all the Bayesian nodes can be determined;
thus, the complete Bayesian network of sewer pipeline accidents in a
utility tunnel is established (see Fig. 5). In this study, BN probability
inference and sensitivity analysis is conducted using Netica (Netica
4.16, Norsys Software Corp, Vancouver, BC, CANADA), which has been
widely used in Bayesian network analysis.

4. Results and discussion

This section presents an accident scenario analysis and critical-

Earthquake

Fire Source

Damage of Utility Tunnel

Hazardous Gas Leakage

RupturePuncture

Coating Spalling Inhibitor Failure

Internal Corrosion

External Interference

Geological Hazard

Defect of Sewerage pipe

Unreasonable Design

Incorrect Manipulation

PollutionCasualties

Occurrence Time

Fire/Explosion

Economic Loss

Accident Area

Fig. 4. Initial Bayesian network of a sewer pipeline accident.

Table 1
. Classified states of sewer pipe accident Bayesian network nodes.

Bayesian nodes States of nodes

Coating Spalling ①Yes ②No
Inhibitor Failure ①Yes ②No
External Interference ①Overload ②Industrial Construction ③None
Earthquake ①Yes ②No
Unreasonable Design ①Yes ②No
Incorrect Manipulation ①Bad Weld ②Bad Installation ③Mechanical Damage

④None
Fire Source ①Yes ②No
Accident Area ①Business District ②Remote Area
Occurrence Time ①Working Time ②Rest Time
Internal Corrosion ①Yes ②No
Defect of Sewer Pipe ①Slight ②Serious
Geological Hazard Subside ② Landslides ③None
Puncture ①Yes ②No
Rupture ①Yes ②No
Hazardous Gas Leakage ①Slight ②Moderate ③Serious
Damage of Utility Tunnels ①Slight ②Moderate ③Serious
Fire / Explosion ①Slight ②Serious
Economic Loss ①Slight ②Moderate ③Serious
Casualties ①Slight ②Moderate ③Serious
Pollution ①Slight ②Moderate ③Serious

Table 2
. Prior probabilities of the parent nodes.

Bayesian nodes State of Bayesian nodes Probability of node state

Coating Spalling ①Yes 0.50
②No 0.50

Inhibitor Failure ①Yes 0.35
②No 0.65

External Interference ①Overload 0.40
②Industrial Construction 0.40
③None 0.20

Earthquake ①Yes 0.01
②No 0.99

Unreasonable Design ①Yes 0.30
②No 0.70

Incorrect Manipulation ①Bad Weld 0.15
②Bad Installation 0.15
③Mechanical Damage 0.15
④None 0.55

Fire source ①Yes 0.25
②No 0.75

Accident Area ①Business District 0.50
②Remote Area 0.50

Occurrence Time ①Working Time 0.50
②Rest Time 0.50
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threat identification based on the established BN. The accident scenario
analysis focuses on the effect of “Fire Source”, “Earthquake”, “Incorrect
Manipulation” and “External Interference” by changing their states
when the states of other nodes are set (Table 4). The critical threats of
sewer pipeline accidents are identified by the sensitivity analysis
method, and the sensitivity values of the parent nodes are calculated.

4.1. Accident scenario analysis

4.1.1. Scenario 1: Effect of the fire source
Based on the proposed framework, the inference results of a typical

accident scenario without a fire source or with a fire occurring in a
business area during work hours are illustrated in Table 5. The results
show that the fire source greatly affects all the consequence codes, in-
cluding “Casualties”, “Economic Loss” and “Pollution”. For example, for
the code “Casualties”, as shown in Fig. 6, the probability of the serious
state is 17.30% without a fire source and increases to 27.70% when a
fire occurs. Accordingly, the probabilities of both the moderate and
slight states decrease, implying an obvious tendency of accident se-
verity. Note that the largest relative growth of severity appears at the
node “Pollution”, more than doubled probability of “Serious” (14.8% to
6.38%), particularly due to the sewer pipeline’s functional character-
istics. Such a phenomenon occurs because the fire sources are the direct
event triggers for fire and explosion disasters, which can easily cause
serious damage, even when all the concerned parent nodes, which are
the majority of the cause of hazardous gas leakage, are set to “No” or
“None” to minimize the probability of gas leakage. Therefore, it is
important to avoid fire sources in the sewer pipeline compartment of a
utility tunnel in any case, and if possible, more fire-proof measures

should be arranged.

4.1.2. Scenario 2: Effect of an earthquake
This accident scenario focuses on the effect of an “Earthquake”.

Cities are mostly built in areas where the crustal movement is less

Table 3
. Conditional probability distribution calculation of the node “Internal Corrosion”

BN nodes Experts’ opinions Calculated results

Coating Spalling Inhibitor Failure m1(1,2) m2(1,2) m3(1,2) m4(1,2) m5(1,2) m(1,2)

Yes Yes (0.71,0.29) (0.69,0.31) (0.60,0.40) (0.55,0.45) (0.48,0.52) (0.90,0.10)
Yes No (0.54,0.46) (0.56,0.44) (0.59,0.41) (0.57,0.43) (0.51,0.49) (0.75,0.25)
No Yes (0.43,0.57) (0.39,0.61) (0.59,0.41) (0.48,0.52) (0.51,0.49) (0.40,0.60)
No No (0.33,0.67) (0.37,0.63) (0.33,0.67) (0.48,0.52) (0.51,0.49) (0.12,0.88)

Fig. 5. Bayesian network of a sewer pipeline accident in a utility tunnel.

Table 4
. Typical sewer pipeline accident scenarios.

Scenario 1 Scenario 2 Scenario 3 Scenario 4

Coating Spalling No No No No
Inhibitor Failure No No No No
External

Interference
No No No ①Overload

②Industrial
Construction
③None

Earthquake No ①Yes
②No

No No

Unreasonable
Design

No No No No

Incorrect
Manipulation

No None ①Bad Weld
②Bad
Installation
③Mechanical
Damage
④None

No

Accident Area Business
Districts

Business
Districts

Business
Districts

Business
Districts

Occurrence Time Working
Time

Working
Time

Working Time Working Time

Fire Source ①Yes
②No

Yes Yes Yes
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active. However, the risk of earthquakes should not be neglected be-
cause the impact of an earthquake can be catastrophic, especially to
underground facilities such as utility tunnels. In Table 6, we evaluate an
accident scenario in which an earthquake occurs in a business area
during work hours. The earthquake can cause a sharp increase in the
probabilities of subside and landslide. Meanwhile, earthquake-induced
fires often occur, so the state of the code “Fire Source” is set to “Yes”.
Under the earthquake condition, the consequences are going to be more
severe, such as the code “Casualties” illustrated in Fig. 7. And again, the
largest relative growth of severity appears at the node “Pollution”,
nearly twice as “Serious” (26.2–14.8%). The highly destructive con-
sequences are probably due to the direct seismic damage to the entire
structure of utility tunnels and, if unfortunately, secondary fires and

Table 5
. Probability distribution of Scenario 1.

BN nodes Probability distribution

Slight Moderate Serious

Yes No Yes No Yes No

Economic Loss 41.6% 47.8% 25.2% 28.7% 33.2% 23.5%
Casualties 44.8% 50.6% 27.6% 32.1% 27.7% 17.3%
Pollution 70.0% 76.8% 15.3% 16.9% 14.8% 6.38%
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Fig. 6. Accident consequences with and without a fire source.

Table 6
. Probability distribution of Scenario 2.

BN nodes Probability distribution

Slight Moderate Serious

Yes No Yes No Yes No

Economic Loss 37.7% 41.6% 23.0% 25.2% 39.3% 33.2%
Casualties 38.2% 44.8% 23.8% 27.6% 37.9% 27.7%
Pollution 59.6% 70.0% 14.1% 15.2% 26.2% 14.8%
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Fig. 7. Accident consequences with and without an earthquake.
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explosions occurring at the increasing level of “Hazardous Gas Leakage”
caused by the seismic damage. Therefore, the optimization of the
structure design of utility tunnels should receive more consideration to
enhance their resistance and resilience to earthquakes. More effective
preventive measures and emergency response plans are also essential to
mitigate the damage from earthquakes.

4.1.3. Scenario 3: Effect of an incorrect manipulation
This accident scenario is presented to estimate the effect of human

factors, such as “Bad Weld”, “Bad Installation” or “Mechanical
Damage”, on the consequences of sewer pipeline accidents. The in-
ference results are illustrated in Table 7. The probability of the serious
state under incorrect manipulations dramatically increases compared to
the result of “None” for an incorrect manipulation, just like the code
“Casualties” illustrated in Fig. 8, implying the significant impact of
incorrect manipulations on the sewer pipeline in a utility tunnel.
“Mechanical Damage” is the most influential factor among the con-
cerned types. The probability of serious casualties (the state “Serious”
for the node “Casualties”) under “Mechanical Damage” appears as high
as twice the result of “None” (62.8–31.1%), and even three times
(54.5–18.6%) for serious pollution (the state “Serious” for the node
“Pollution”). According to this scenario analysis, safety training of
workers is essential for the operation of the sewer pipeline in a utility
tunnel.

4.1.4. Scenario 4: Effect of external interference
Ground transportation and over/under-ground constructions may

directly affect the utility tunnel structure. The BN inference results for
this type of accident scenarios are illustrated in Table 8. Generally, the
estimated probabilities of all the consequences caused by “Overload”
are basically equal to those caused by “Industrial Constructions”. The
result is believable because these two types of external interferences
have similar disaster-causing mechanisms, in which the concrete walls
of the utility tunnel are damaged and then make the sewer pipeline
break down. Perhaps for the reason that “Overload” and “Industrial
Constructions” don’t have a direct impact on the pipelines under the

protection of the utility tunnel structure, only slightly increase the
probabilities of serious consequences compared with “None” for ex-
ternal interference, as visually displayed in Fig. 9. It implies that “Ex-
ternal Interference” appears to not have as significant an impact as
those in the previous three scenarios, where the fire source, earthquake
or incorrect manipulation are internal or overall factors and thus have
destructive effect directly on the pipelines. Nonetheless, more attention
should be paid to the location of utility tunnels, so that they are not too
close to existing or planned urban roads and buildings.

4.2. Critical threats identification

According to the above scenario analysis, there are different causes
of sewer pipeline accidents in utility tunnels with different effects. The
impacts of fire source, earthquake and incorrect manipulation appear
significant, whereas that of external interference is not. Thus, there may
be critical threats, which should be identified and be given priority for
treatment.

Sensitivity analysis (SA) is an effective method for identifying the
critical threats of an accident based on the BN model (Matellini et al,
2013). Furthermore, the rank of the sensitivity values can verify the
reasonability of the relationships among the BN nodes. The sensitivity
value can be calculated using the following equation:

=
P

D (SA) 
result change

Pchange (8)

where D (SA) is the sensitivity value of an input node and
Presult change and Pchange are the probability changes of the serious
state in the target consequence node. We used the node “Casualties” as
the target node.

The variance of the probability of the parent nodes is displayed in
Fig. 10, and the sensitivity values are listed in Table 9. According to the
quantitative results, “Fire Source”, “Accident Area”, “Incorrect Manip-
ulation” and “Unreasonable Design” are identified as highly influential
factors or critical threats, even not less than “Earthquake” that is gen-
erally regarded as a very big threat. Correspondingly, fire prohibition
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Fig. 8. Results of casualties induced by different types of incorrect manipula-
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Table 8
. Probability distribution of Scenario 4.

BN nodes Probability distribution

Slight Moderate Serious

None Overload Industrial Constructions None Overload Industrial Constructions None Overload Industrial Constructions

Economic Loss 41.6% 40.1% 40.3% 25.2% 24.4% 24.5% 33.2% 35.5% 35.2%
Casualties 44.8% 42.4% 42.6% 27.6% 26.2% 26.3% 27.6% 31.4% 31.1%
Pollution 70.0% 66.1% 66.5% 15.3% 14.9% 31.1% 14.7% 19.0% 18.6%
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Fig. 9. Accident consequences of none, overload, and industrial constructions.
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and protection, appropriate site selection, normative operation and
training, reasonable design and, especially, inherent safety design
should be critical concerns in utility tunnel construction and operation.

5. Conclusion

In this study, a flexible risk assessment method was proposed for
sewer pipelines, taking advantage of a Bayesian Network combined
with the D-S evidence theory. The Bayesian Network was established to
display the complex disaster-causing mechanism of sewer pipeline ac-
cidents in utility tunnels; and the D-S evidence theory was adopted to
process different experts’ knowledge. Bayesian inferences were carried
out to estimate the probability distribution of consequences with dif-
ferent severity levels, under four typical accident scenarios; and the
major findings were presented as follows:

“Fire source” is one of the most common causes of triggering com-
bustion and explosion, which usually leads to serious consequences.
Then taking “Earthquake” as a representative of natural hazards and
“Incorrect manipulation” as a representative of human-made hazards,
both of them can significantly increase the severity of the consequences.
By contrast, the effect of “External interference” doesn’t appear to be so
serious, implying that the utility tunnel structure is able to protect the
pipelines from direct destruction by some external interference. It is
worth noting that “Pollution” shows up as a particular and prominent
consequence of sewer pipeline accidents, in which the node “Hazardous
Gas Leakage” plays a big part. Finally, by the means of sensitivity
analysis, “Fire Source”, “Accident Area”, “Incorrect Manipulation” and
“Unreasonable Design” are identified as critical threats and need to be
paid high attention for proper treatment.

From the view of methodology, we’ve found that the BN-based
framework is really an effective method of dynamic scenario inference
for complex hazards and disasters. The significant benefits of ex-
pansibility, flexibility and the capability of fast calculation make it

applicable to dynamic risk assessment, emergency planning and rapid
decision making. In this paper, we focused on establishing and de-
monstrating this analytical approach though the results were influenced
to some extent by subjectivity from experts’ opinions, which can be
improved in future with accumulation of practical data being produced
during the actual operation of utility tunnels.

CRediT authorship contribution statement

Rui Zhou: Conceptualization, Methodology, Validation, Formal
analysis, Writing - review & editing, Supervision, Project administra-
tion, Funding acquisition. Weipeng Fang: Formal analysis,
Investigation, Writing - original draft, Visualization. Jiansong Wu:
Conceptualization, Methodology, Resources, Data curation, Writing -
review & editing.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influ-
ence the work reported in this paper.

Acknowledgments

This work was supported by National Key R&D Program of China
(Grant No. 2017YFC0805001) and the Opening Funds of State Key
Laboratory of Building Safety and Built Environment and National
Engineering Research Center of Building Technology (BSBE 2017-03).

Appendix A. Supplementary material

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.tust.2020.103473.

References

An, Y.L., Yang, G.S., Peng, L.M., 2006. Investigation on the mechanism of CO damage in
tunnel fire. Min. Technol. 6 (3), 412–414.

Barnett, J.A., 1981. Computational methods for a mathematical theory of evidence. In:
Proceedings of 7th International Joint Conference on Artificial Intelligence,
Vancouver, Canada. USA: William Kaufmann. 868–875 pp.

Basir, O., Yuan, X., 2007. Engine fault diagnosis based on multi-sensor information fusion
using Dempster-Shafer evidence theory. Inform. Fusion. 8 (4), 379–386.

Beaudequin, D., Harden, F., Roiko, A., Mengersen, K., 2017. Potential of Bayesian net-
works for adaptive management in water recycling. Environ. Modell. Software 91,
251–270.

Brzezińska, A., Zawilski, M., Sakson, G., 2016. Assessment of pollutant load emission from
combined sewer pipe overflows based on the online monitoring. Environ. Monit.
Assess. 188 (9), 502.

Canto-Perello, J., Curiel-Esparza, J., Calvo, V., 2013. Criticality and threat analysis on
utility tunnels for planning security policies of utilities in urban underground space.
Expert Syst. Appl. 40 (11), 4707–4714.

Cronbach, L.J., 1951. Coefficient alpha and the internal structure of tests. Psychometrika
16, 297–334.

Dempster, A.P., 1967. Upper and lower probabilities induced by a multivalued mapping.
Ann. Math. Statist. 38 (2), 325–339.

Fan, X.H., Ding, Y.C., 2016. Risk assessment of gas explosion in the urban sewer pipe. Ind.
Saf. Environ. Protect. 8, 32–34.

Gan, H., Zhang, Y., Song, Q., 2017. Bayesian belief network for positive unlabeled
learning with uncertainty. Pattern Recogn. Lett. 90, 28–35.

Guo, Q.S., 2014. Study on optimization design and safety evaluation about urban drai-
nage system in the case of abrupt rainstorm, China. Jilin University.

He, Q., Peng, S.J., Zhai, J., 2011. Development and application of a water pollution
emergency response system for the Three Gorges Reservoir in the Yangtze River,
China. J. Environ. Sci. 23 (4), 595–600.

Hegarat-Mascle, S.L., Bloch, I., Vidal-Madjar, D., 1997. Application of Dempster-Shafer
evidence theory to unsupervised classification in multisource remote sensing. Geosci.
Remote Sens. 35 (4), 1018–1031.

Holeton, C., Chambers, P., Grace, L., Kidd, K., 2011. Wastewater release and its impacts
on Canadian waters. Can. J. Fish. Aquat. Sci. 68 (10), 1836–1859.

Jiang, G., Keller, J., Bond, P.L., Yuan, Z., 2016. Predicting concrete corrosion of sewer
pipes using artificial neural network. Water Res. 92, 52–60.

Lee, P.C., Wang, Y.H., LO, T.P., Long, D.B., 2018. An integrated system framework of
building information modelling and geographical information system for utility

20%

21%

22%

23%

24%

25%

26%

27%

28%

29%

-20% -10% 0 10% 20%

Pr
ob

ab
ili

ty
 o

f C
as

ua
lti

es
: S

er
io

us

The range of probability change of parent nodes 

Coating spalling
Inhibitor failure
External inference
Unreasonable design
Incorrect Manipulation
Fire source
Earthquake
Occurrence time
Accident Area

Fig. 10. Sensitivity analysis of “Casualties”

Table 9
. Sensitivity value of “Casualties”

Input node Sensitivity value

Fire Source 0.1825
Accident Area 0.1425
Incorrect Manipulation 0.1325
Unreasonable Design 0.1075
Earthquake 0.0800
Occurrence Time 0.0675
External Interference 0.0325
Coating Spalling 0.0225
Inhibitor Failure 0.0075

R. Zhou, et al. Tunnelling and Underground Space Technology 103 (2020) 103473

9

https://doi.org/10.1016/j.tust.2020.103473
https://doi.org/10.1016/j.tust.2020.103473
http://refhub.elsevier.com/S0886-7798(20)30427-2/h0005
http://refhub.elsevier.com/S0886-7798(20)30427-2/h0005
http://refhub.elsevier.com/S0886-7798(20)30427-2/h0015
http://refhub.elsevier.com/S0886-7798(20)30427-2/h0015
http://refhub.elsevier.com/S0886-7798(20)30427-2/h0020
http://refhub.elsevier.com/S0886-7798(20)30427-2/h0020
http://refhub.elsevier.com/S0886-7798(20)30427-2/h0020
http://refhub.elsevier.com/S0886-7798(20)30427-2/h0025
http://refhub.elsevier.com/S0886-7798(20)30427-2/h0025
http://refhub.elsevier.com/S0886-7798(20)30427-2/h0025
http://refhub.elsevier.com/S0886-7798(20)30427-2/h0030
http://refhub.elsevier.com/S0886-7798(20)30427-2/h0030
http://refhub.elsevier.com/S0886-7798(20)30427-2/h0030
http://refhub.elsevier.com/S0886-7798(20)30427-2/opt8XJsguU9Pr
http://refhub.elsevier.com/S0886-7798(20)30427-2/opt8XJsguU9Pr
http://refhub.elsevier.com/S0886-7798(20)30427-2/h0035
http://refhub.elsevier.com/S0886-7798(20)30427-2/h0035
http://refhub.elsevier.com/S0886-7798(20)30427-2/h0040
http://refhub.elsevier.com/S0886-7798(20)30427-2/h0040
http://refhub.elsevier.com/S0886-7798(20)30427-2/h0045
http://refhub.elsevier.com/S0886-7798(20)30427-2/h0045
http://refhub.elsevier.com/S0886-7798(20)30427-2/h0055
http://refhub.elsevier.com/S0886-7798(20)30427-2/h0055
http://refhub.elsevier.com/S0886-7798(20)30427-2/h0055
http://refhub.elsevier.com/S0886-7798(20)30427-2/h0060
http://refhub.elsevier.com/S0886-7798(20)30427-2/h0060
http://refhub.elsevier.com/S0886-7798(20)30427-2/h0060
http://refhub.elsevier.com/S0886-7798(20)30427-2/h0065
http://refhub.elsevier.com/S0886-7798(20)30427-2/h0065
http://refhub.elsevier.com/S0886-7798(20)30427-2/h0070
http://refhub.elsevier.com/S0886-7798(20)30427-2/h0070


tunnel maintenance management. Tunnel. Undergr. Space Technol.. 79, 263–283.
Legrand, L., Blanpain, O., François, B.B., 2004. Technical note: promoting the urban

utilities tunnel technique using a decision-making approach. Tunn. Undergr. Space
Technol. 19 (1), 79–83.

Li, N., Feng, X., Jimenez, R., 2017. Predicting rock burst hazard with incomplete data
using bayesian networks. Tunn. Undergr. Space Technol. 61, 61–70.

Madoux-Humery, A.S., Dorner, S., Sauvé, S., Aboulfadl, K., Galarneau, M., Servais, P.,
Prévost, M., 2013. Temporal variability of combined sewer pipe overflow con-
taminants: evaluation of wastewater micro pollutants as tracers of fecal contamina-
tion. Water Res. 47 (13), 4370–4382.

Mark, O., Wennberg, C., Van Kalken, T., Rabbi, F., Albinsson, B., 1998. Risk analyses for
sewer pipe systems based on numerical modelling and GIS. Saf. Sci. 30 (1), 99–106.

Matellini, D.B., Wall, A.D., Jenkinson, I.D., Wang, J., Pritchard, R., 2013. Modelling
dwelling fire development and occupancy escape using Bayesian network. Reliab.
Eng. Syst. Saf. 114 (1), 75–91.

Mohammad, J.A., Massoud, T., Abbas, R., 2017. Risk assessment model to prioritize sewer
pipes inspection in wastewater collection networks. J. Environ. Manage. 190,
91–101.

Nordgard, D.E., Sand, K., 2010. Application of Bayesian networks for risk analysis of MV
air insulated switch operation. Reliab. Eng. Syst. Saf. 95, 1358–1366.

Kabir, G., Sadiq, R., Tesfamariam, S., 2016. A fuzzy Bayesian belief network for safety
assessment of oil and gas pipelines. Struct. Infrastruct. Eng. 12 (8), 874–889.

Khakzad, N., Khan, F., Amyotte, P., 2012. Dynamic risk analysis using bow-tie approach.
Reliab. Eng. Syst. Saf. 104, 36–44.

Nunnaly, J., 1978. Psychometric Theory. McGraw-Hill, New York.
Santos, J.R.A., 1999. Cronbach’s alpha: A tool for assessing the reliability of scales. J.

Extension 37 (2).
Shafer, G., 1976. A mathematical theory of evidence. Princeton University Press, New

Jersey.
Sousa, R.L., Einstein, H.H., 2012. Risk analysis during tunnel construction using Bayesian

networks: porto metro case study. Tunn. Undergr. Space Technol. 27 (1), 86–100.
Stanić, N., de Haan, C., Tirion, M., Langeveld, J.G., Clemens, F.H., 2013. Comparison of

core sampling and visual inspection for assessment of concrete sewer pipe condition.

Water Science Technology. 67 (11), 2458–2466.
Sun, R., Huang, H.Z., Miao, Q., 2008. Improved information fusion approach based on DS

evidence theory. J. Mech. Sci. Technol. 22 (12), 2417–2425.
Tesfamariam, S., Sadiq, R., Najjaran, H., 2010. Decision-making under uncertainty - An

example for seismic risk management. Risk Anal. 30, 78–94.
Tian, C., Yang, B., 2014. A D-S evidence theory based fuzzy trust model in file-sharing P2P

networks. Peer-to-Peer Networking and Applications 7 (4), 332–345.
Trucco, P., Cagno, E., Ruggeri, F., Grande, O., 2008. A Bayesian Belief Network modelling

of organizational factors in risk analysis: a case study in maritime transportation.
Reliab. Eng. Syst. Saf. 93 (6), 845–856.

Whitaker, D., Gonzalez, R., Adderley, V., 2014. Combined sewer pipe system capacity risk
assessment and mitigation //In Pipelines 2014: From Underground to the Forefront
of Innovation and Sustainability. 1875-1884 pp.

Wang, H.D., 2015. The revision note for national standard GB 50838–2015 Technical
code for urban utility tunnel engineering. China Concr. Cem. Product. 08, 73–75.

Wang, S.H., 2011. Study on protection harm of H2S for petroleum exploitation. J. Saf. Sci.
Technol. 7 (1), 148–152.

Wang, T.Y., Tan, L.X., Xie, S.Y., Ma, B., 2018. Development and applications of common
utility tunnels in china. Tunn. Undergr. Space Technol. 76, 92–106.

Wang, Z.Z., Chen, C., 2017. Fuzzy comprehensive Bayesian network-based safety risk
assessment for metro construction projects. Tunn. Undergr. Space Technol. 70,
330–342.

Wu, J.S., Hu, Z.Q., Chen, J.Y., Li, Z., 2018. Risk assessment of underground subway
stations to fire disasters using Bayesian network. Sustainability 10 (10), 3810.

Yang, N., Wu, M., Qi, H., Wang, D., Xie, F., 2013. Corrosion mechanism and protection
measures of oilfield sewer pipelines. Contemporary Chem. Industr. 42 (4), 496–498.

Zhang, X., Lv, S.R., Yang, K., Zhang, S.M., 2015. Research and prospects of the prevention
and control measures of methane explosion in city sewer pipes. Saf. Environ. Eng. 22
(5), 134–138.

Zhao, L.J., Wang, X.L., Qian, Y., 2012. Analysis of factors that influence hazardous ma-
terial transportation accidents based on Bayesian networks: a case study in China.
Saf. Sci. 50, 1049–1055.

R. Zhou, et al. Tunnelling and Underground Space Technology 103 (2020) 103473

10

http://refhub.elsevier.com/S0886-7798(20)30427-2/h0080
http://refhub.elsevier.com/S0886-7798(20)30427-2/h0080
http://refhub.elsevier.com/S0886-7798(20)30427-2/h0080
http://refhub.elsevier.com/S0886-7798(20)30427-2/h0085
http://refhub.elsevier.com/S0886-7798(20)30427-2/h0085
http://refhub.elsevier.com/S0886-7798(20)30427-2/h0090
http://refhub.elsevier.com/S0886-7798(20)30427-2/h0090
http://refhub.elsevier.com/S0886-7798(20)30427-2/h0090
http://refhub.elsevier.com/S0886-7798(20)30427-2/h0090
http://refhub.elsevier.com/S0886-7798(20)30427-2/h0095
http://refhub.elsevier.com/S0886-7798(20)30427-2/h0095
http://refhub.elsevier.com/S0886-7798(20)30427-2/h0100
http://refhub.elsevier.com/S0886-7798(20)30427-2/h0100
http://refhub.elsevier.com/S0886-7798(20)30427-2/h0100
http://refhub.elsevier.com/S0886-7798(20)30427-2/h0105
http://refhub.elsevier.com/S0886-7798(20)30427-2/h0105
http://refhub.elsevier.com/S0886-7798(20)30427-2/h0105
http://refhub.elsevier.com/S0886-7798(20)30427-2/h0110
http://refhub.elsevier.com/S0886-7798(20)30427-2/h0110
http://refhub.elsevier.com/S0886-7798(20)30427-2/h0115
http://refhub.elsevier.com/S0886-7798(20)30427-2/h0115
http://refhub.elsevier.com/S0886-7798(20)30427-2/h0120
http://refhub.elsevier.com/S0886-7798(20)30427-2/h0120
http://refhub.elsevier.com/S0886-7798(20)30427-2/opt8LT9wbSJwr
http://refhub.elsevier.com/S0886-7798(20)30427-2/optbdMWypPeyX
http://refhub.elsevier.com/S0886-7798(20)30427-2/optbdMWypPeyX
http://refhub.elsevier.com/S0886-7798(20)30427-2/h0125
http://refhub.elsevier.com/S0886-7798(20)30427-2/h0125
http://refhub.elsevier.com/S0886-7798(20)30427-2/h0130
http://refhub.elsevier.com/S0886-7798(20)30427-2/h0130
http://refhub.elsevier.com/S0886-7798(20)30427-2/h0135
http://refhub.elsevier.com/S0886-7798(20)30427-2/h0135
http://refhub.elsevier.com/S0886-7798(20)30427-2/h0135
http://refhub.elsevier.com/S0886-7798(20)30427-2/h0140
http://refhub.elsevier.com/S0886-7798(20)30427-2/h0140
http://refhub.elsevier.com/S0886-7798(20)30427-2/h0145
http://refhub.elsevier.com/S0886-7798(20)30427-2/h0145
http://refhub.elsevier.com/S0886-7798(20)30427-2/h0150
http://refhub.elsevier.com/S0886-7798(20)30427-2/h0150
http://refhub.elsevier.com/S0886-7798(20)30427-2/h0155
http://refhub.elsevier.com/S0886-7798(20)30427-2/h0155
http://refhub.elsevier.com/S0886-7798(20)30427-2/h0155
http://refhub.elsevier.com/S0886-7798(20)30427-2/h0165
http://refhub.elsevier.com/S0886-7798(20)30427-2/h0165
http://refhub.elsevier.com/S0886-7798(20)30427-2/h0170
http://refhub.elsevier.com/S0886-7798(20)30427-2/h0170
http://refhub.elsevier.com/S0886-7798(20)30427-2/h0175
http://refhub.elsevier.com/S0886-7798(20)30427-2/h0175
http://refhub.elsevier.com/S0886-7798(20)30427-2/h0180
http://refhub.elsevier.com/S0886-7798(20)30427-2/h0180
http://refhub.elsevier.com/S0886-7798(20)30427-2/h0180
http://refhub.elsevier.com/S0886-7798(20)30427-2/h0185
http://refhub.elsevier.com/S0886-7798(20)30427-2/h0185
http://refhub.elsevier.com/S0886-7798(20)30427-2/h0190
http://refhub.elsevier.com/S0886-7798(20)30427-2/h0190
http://refhub.elsevier.com/S0886-7798(20)30427-2/h0195
http://refhub.elsevier.com/S0886-7798(20)30427-2/h0195
http://refhub.elsevier.com/S0886-7798(20)30427-2/h0195
http://refhub.elsevier.com/S0886-7798(20)30427-2/h0200
http://refhub.elsevier.com/S0886-7798(20)30427-2/h0200
http://refhub.elsevier.com/S0886-7798(20)30427-2/h0200

	A risk assessment model of a sewer pipeline in an underground utility tunnel based on a Bayesian network
	Introduction
	Methodology
	Bayesian network
	Dempster-Shafer evidence theory

	Bayesian network development
	BN nodes and relationships
	Conditional probability tables

	Results and discussion
	Accident scenario analysis
	Scenario 1: Effect of the fire source
	Scenario 2: Effect of an earthquake
	Scenario 3: Effect of an incorrect manipulation
	Scenario 4: Effect of external interference

	Critical threats identification

	Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgments
	Supplementary material
	References




